Production of Heavy Mesons and Quarkonia within Jets

Thomas Mehen Duke University

U. of Paris-Sud, Orsay, France

Sep. 8, 2016

Review of Quarkonium Production Theory

Heavy Quarkonium Fragmenting Jet Functions

New Tests of NRQCD Using Jet Observables

Cross sections for e⁺e⁻, pp collisions

Color-Singlet Model (pre-1995)

$$\sigma(pp \to J/\psi + X) = f_{g/p} \otimes f_{g/p}$$
$$\otimes \sigma[gg \to c\bar{c}({}^{3}S_{1}^{(1)}) + X] |\psi_{c\bar{c}}(0)|^{2}$$

 $c\overline{c}$ pair produced with same quantum numbers as J/ψ

Predictive Formalism

 $\sigma[gg \to c\bar{c}({}^{3}S_{1}^{(1)}) + X] \text{ calculable in QCD perturbation theory} \\ |\psi_{c\bar{c}}(0)|^{2} \text{ fixed by } \Gamma[J/\psi \to \ell^{+}\ell^{-}]$

Suffers from theoretical inconsistencies when applied to χ_{cJ}

$$\Gamma[\chi_{cJ} \to \text{hadrons}] = |\psi'_{c\bar{c}}(0)|^2 \sigma(c\bar{c}({}^3P_J^{(1)}) \to gg) \longrightarrow \text{Not IR Safe}$$

J/ ψ production at Tevatron (1996)

CSM badly underpredicts J/ ψ and ψ ' production at large p_T

Non-Relativistic QCD (NRQCD) Factorization Formalism

(Bodwin, Braaten, Lepage)

$$\sigma(gg \to J/\psi + X) = \sum_{n} \sigma(gg \to c\bar{c}(n) + X) \langle \mathcal{O}^{J/\psi}(n) \rangle$$
$$n - {}^{2S+1}L_J^{(1,8)}$$

double expansion in α_s, v

NRQCD long-distance matrix element (LDME)

 $\langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1]})\rangle \sim v^{3}$ CSM - lowest order in v

$$\langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]})\rangle, \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]})\rangle, \langle \mathcal{O}^{J/\psi}({}^{3}P_{J}^{[8]})\rangle \sim v^{7}$$

color-octet mechanisms

 p_{\perp} (GeV)

Global Fits with NLO CSM + COM

 $e^+e^-, \gamma\gamma, \gamma p, p\bar{p}, pp \to J/\psi + X$

fit to 194 data points, 26 data sets, Butenschoen and Kniehl, PRD 84 (2011) 051501

NLO: CSM + COM Required to Fit Data

Status of NRQCD approach to J/ ψ Production

NLO: COM + CSM required for most processes

extracted LDME satisfy NRQCD v-scaling $\langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1]}) \rangle = 1.32 \,\,\mathrm{GeV^{3}}$

$$\begin{array}{|c|c|c|c|c|} \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle & (4.97 \pm 0.44) \times 10^{-2} \text{ GeV}^{3} \\ \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle & (2.24 \pm 0.59) \times 10^{-3} \text{ GeV}^{3} \\ \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle & (-1.61 \pm 0.20) \times 10^{-2} \text{ GeV}^{5} \end{array}$$

$$\chi^2_{\rm d.o.f.} = 857/194 = 4.42$$

Polarization Puzzle

 $^3S_1^{[8]}$ fragmentation at large pT predicts transversely polarized J/ ψ , ψ '

Braaten, Kniehl, Lee, 1999

Polarization of J/ ψ at LHCb

Polarization of $\Upsilon(nS)$ at CMS

Recent Attempts to Resolve J/ ψ Polarization Puzzle

simultaneous NLO fit to CMS, ATLAS high pt production, polarization

Chao, et. al. PRL 108, 242004 (2012)

Recent Attempts to Resolve J/ ψ Polarization Puzzle

i) large p_t production at CDF

Bodwin, et. al., PRL 113, 022001 (2014)

ii) resum logs of p_t/m_c using AP evolution

iii) fit COME to pt spectrum, predict basically no polarization

Extracted COME inconsistent with global fits

$$\langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{(8)})\rangle = 0.099 \pm 0.022 \,\text{GeV}^{3} \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{(8)})\rangle = 0.011 \pm 0.010 \,\text{GeV}^{3} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{(8)})\rangle = 0.011 \pm 0.010 \,\text{GeV}^{5}$$

Recent Attempts to Resolve J/ ψ Polarization Puzzle

Faccioli, et. al. PLB736 (2014) 98

Lourenco, et. al., NPA, in press

argue for ${}^{1}S_{0}^{(8)}$ dominance in both $\psi(2S)$ & $\Upsilon(3S)$ production

Fragmenting Jet Functions

Procura, Stewart, arXiv:0911.4980 Jain, Procura, Waalewijn, arXiv:1101.4953 Procura, Waalewijn, arXiv:1111.6605

jets with identified hadrons

cross sections determined by fragmenting jet function (FJF):

 $\mathcal{G}_g^h(E, R, \mu, z)$

inclusive hadron production: fragmentation functions

$$\frac{1}{\sigma_0} \frac{d\sigma^h}{dz} \left(e^+ e^- \to h X \right) = \sum_i \int_z^1 \frac{dx}{x} C_i(E_{\rm cm}, x, \mu) D_i^h(z/x, \mu)$$

jet cross sections: jet functions

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}z}(E,R) = \int \mathrm{d}\Phi_{N} \mathrm{tr}[H_{N}S_{N}] \prod_{\ell} J_{\ell}$$

$$\mathcal{G}_g^h(E,R,\mu,z) \longrightarrow D_i^h(z/x,\mu), J_\ell$$

relationship to jet function:

cross section for jet w/ identified hadron from jet cross section

relationship to fragmentation functions

$$\mathcal{G}_i^h(E,R,z,\mu) = \sum_i \int_z^1 \frac{\mathrm{d}z'}{z'} \mathcal{J}_{ij}(E,R,z',\mu) D_j^h\left(\frac{z}{z'},\mu\right) \left[1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^2}{4E^2 \tan^2(R/2)}\right)\right]$$

matching coefficients calculable in perturbation theory

$$\begin{split} \frac{\mathcal{J}_{gg}(E,R,z,\mu)}{2(2\pi)^3} &= \delta(1-z) + \frac{\alpha_s(\mu)C_A}{\pi} \left[\left(L^2 - \frac{\pi^2}{24} \right) \delta(1-z) + \hat{P}_{gg}(z)L + \hat{\mathcal{J}}_{gg}(z) \right] \\ \hat{\mathcal{J}}_{gg}(z) &= \begin{cases} \hat{P}_{gg}(z) \ln z & z \leq 1/2 \\ \frac{2(1-z+z^2)^2}{z} \left(\frac{\ln(1-z)}{1-z} \right)_+ & z \geq 1/2. \end{cases} & L = \ln[2E \tan(R/2)/\mu], \\ z \geq 1/2. \end{cases}$$
scale for

sum rule for matching coefficients

$$\sum_{j} \int_{0}^{1} dz \, z \, \mathcal{J}_{ij}(R, z, \mu) = 2(2\pi)^{3} \, J_{i}(R, \mu)$$

NRQCD fragmentation functions

Braaten, Yuan, hep-ph/9302307 Braaten, Chen, hep-ph/9604237 Braaten, Fleming, hep-ph/9411365

Perturbatively calculable at the scale 2m_c

Altarelli-Parisi evolution: $2m_c$ to 2E tan(R/2)

FJF in terms of fragmentation function

$$\begin{aligned} \mathcal{G}_{g}^{\psi}(E,R,z,\mu) \ &= \ D_{g \to \psi}(z,\mu) \left(1 + \frac{C_{A}\alpha_{s}}{\pi} \left(L_{1-z}^{2} - \frac{\pi^{2}}{24} \right) \right) \\ &+ \frac{C_{A}\alpha_{s}}{\pi} \left[\int_{z}^{1} \frac{dy}{y} \tilde{P}_{gg}(y) L_{1-y} D_{g \to \psi} \left(\frac{z}{y}, \mu \right) \right. \\ &\left. + 2 \int_{z}^{1} dy \frac{D_{g \to \psi}(z/y,\mu) - D_{g \to \psi}(z,\mu)}{1-y} L_{1-y} \right. \\ &\left. + \theta \left(\frac{1}{2} - z \right) \int_{z}^{1/2} \frac{dy}{y} \hat{P}_{gg}(y) \ln \left(\frac{y}{1-y} \right) D_{g \to \psi} \left(\frac{z}{y}, \mu \right) \right] \end{aligned}$$

$$L_{1-z} = \ln\left(\frac{2E\tan(R/2)(1-z)}{\mu}\right)$$

For large E, FJF ~ NRQCD frag. function (at scale 2E tan(R/2))

 $\mathcal{G}_g^h(E, R, \mu = 2E \tan(R/2), z) \to D_g^{\psi}(z, 2E \tan(R/2)) + O(\alpha_s)$

NRQCD FF's (at scale 2m_c)

(normalization arbitrary)

Evolution to 2E tan(R/2) will soften discrepancies

Color-Octet ³S₁ fragmentation function, FJF

M. Baumgart, A. Leibovich, T.M., I. Z. Rothstein, JHEP 1411 (2014) 003

FJF's at Fixed Energy vs. z

FJF's at Fixed z vs. Energy

 $^{1}S_{0}^{(8)}$ dominance predicts negative slope for z vs. E if z > 0.5

Ratios of Moments

$E\tan(R/2) < \mu < 4E\tan(R/2)$

Ratios of Moments

Gluon FJF for different extractions of LDME

fix z, vary energy

Butenschoen and Kniehl, PRD 84 (2011) 051501, arXiv:1105.0822

Bodwin, et. al. arXiv:1403.3612

Chao, et. al. PRL 108, 242004 (2012)

Gluon FJF for different extractions of LDME

Jets w/ Heavy Mesons: Analytic vs. Monte Carlo

(w/ R. Bain, L. Dai, A. Hornig, A.Leibovich, Y. Makris) JHEP 1606 (2016) 121 (arXiv:1601.05815)

$$e^+e^- \rightarrow b\bar{b}$$

 \longrightarrow B jet

$$e^+e^- \rightarrow q\bar{q}g$$

 $\longrightarrow J/\psi$ jet

NLL vs. Monte Carlo

$$e^+e^- \rightarrow$$
 Jets in SCET

S.D. Ellis, et.al., JHEP1011(2010) 101

$$d\sigma = H \times J^q \otimes J^{\bar{q}} \otimes J^g \otimes S$$

unmeasured jets:

E, R

measured jets:

angularity:
$$\tau_a = \frac{1}{\omega} \sum_i (p_i^+)^{1-a/2} (p_i^-)^{a/2}$$

$$\omega = \sum_{i} p_i^- \quad s = \omega^2 \tau_0$$

$$e^+e^- \rightarrow$$
 Jets Formula (NLL')

$$\begin{split} \frac{1}{\sigma^{(0)}} \frac{d\sigma^{(i)}}{dz d\tau_a} &= \sum_j \int_z^1 \frac{dx}{x} D_j(x;\mu_J) H_2(\mu_H) \left(\frac{\mu_H}{\omega}\right)^{\omega_H(\mu,\mu_H)} S^{\text{unmeas}}(\mu_\Lambda) J_\omega(\mu_R) \left(\frac{\mu_R}{\omega \tan \frac{R}{2}}\right)^{\omega_R(\mu,\mu_R)} \\ & \times \left\{ \left[\delta_{ij} \delta(1-z/x) (1+f_S(\tau_a,\mu_S)) + f_{\mathcal{J}}^{ij}(\tau_z,z/x;\mu_J) \right] \left(\frac{\mu_S \tan^{1-a} \frac{R}{2}}{\omega_1}\right)^{\omega_S(\mu,\mu_S)} \\ & \times \left(\frac{\mu_J}{\omega}\right)^{(2-a)\omega_J(\mu,\mu_J)} \frac{1}{\Gamma[-\omega_J(\mu,\mu_J) - \omega_S(\mu,\mu_S)]} \frac{1}{\tau_a^{1+\omega_J(\mu,\mu_J) + \omega_S(\mu,\mu_S)}} \right\}_+ \\ & \times \exp\left[\mathcal{K}(\mu;\mu_H,\mu_R,\mu_J,\mu_S,\mu_\Lambda) + \gamma_E \Omega(\mu;\mu_J,\mu_S)\right]. \end{split}$$

$$e^+e^- \rightarrow$$
 Jets Formula (NLL')

$$\frac{1}{\sigma^{(0)}} \frac{d\sigma^{(i)}}{dz d\tau_a} = \sum_j \int_z^1 \frac{dx}{x} D_j(x;\mu_J) H_2(\mu_H) \left(\frac{\mu_H}{\omega}\right)^{\omega_H(\mu,\mu_H)} S^{\text{unmeas}}(\mu_\Lambda) J_\omega(\mu_R) \left(\frac{\mu_R}{\omega \tan \frac{R}{2}}\right)^{\omega_R(\mu,\mu_R)} \\ \times \left\{ \left[\delta_{ij} \delta(1-z/x)(1+f_S(\tau_a,\mu_S)) + f_J^{ij}(\tau_z,z/x;\mu_J) \right] \left(\frac{\mu_S \tan^{1-a} \frac{R}{2}}{\omega_1}\right)^{\omega_S(\mu,\mu_S)} \right. \\ \left. \times \left(\frac{\mu_J}{\omega} \right)^{(2-a)\omega_J(\mu,\mu_J)} \frac{1}{\Gamma[-\omega_J(\mu,\mu_J) - \omega_S(\mu,\mu_S)]} \frac{1}{\tau_a^{1+\omega_J(\mu,\mu_J)+\omega_S(\mu,\mu_S)}} \right)_+ \\ \times \exp \left[\mathcal{K}(\mu;\mu_H,\mu_R,\mu_J,\mu_S,\mu_\Lambda) + \gamma_E \Omega(\mu;\mu_J,\mu_S) \right].$$

Importance of Resummation of Logarithms in Thrust

R.Abbate, et.al., Phys.Rev. D83 (2011) 074021

R.Abbate, et.al., Phys.Rev. D83 (2011) 074021

NLL vs. Monte Carlo

fixed τ_0 , variable z

(HQ FF from LEP data)

Kniehl, et. al. Phys.Rev. D77 (2008) 014011

NLL vs. Monte Carlo

fixed z, variable τ_0

(HQ FF from LEP data)

Kniehl, et. al. Phys.Rev. D77 (2008) 014011

Madgraph + PYTHIA

Force Madgraph to create J/ψ from gluon initiated jet

PYTHIA: parton shower, hadronization

NLL vs. Monte Carlo

fixed z, variable τ_0

good agreement, some discrimination for large z

NLL vs. Monte Carlo

PYTHIA yields harder z distributions

Gluon Fragmentation and PYTHIA

PYTHIA's picture of showering off onia different from theory

Monte carlo z distributions much harder than analytic

Gluon Fragmentation Improved PYTHIA (GFIP)

2. PYTHIA ----- No hadronization, adjust shower pT cutoff

3. Convolve NRQCD FFs w/ random final state gluon

NLL vs. Monte Carlo vs. GFIP

GFIP in much better agreeement with NLL

Resummed Cross Section vs. Monte Carlo

Agreement: τ_a dependence

Disagreement: z dependence

PYTHIA model of evolution of color-octet cc disagrees with physical interpretation of NLL calculation

Jet Shapes in Dijet Events at the LHC

(w/ A. Hornig, Y. Makris) JHEP 1604 (2016) 097 (arXiv:1601.01319)

boost invariant angularity

$$\tau_a^{e^+e^-} = \frac{1}{2E_J} \sum_i |p_T^{iJ}| e^{-(1-a)|y_{iJ}|}$$
$$= (2E_J)^{-(2-a)} (p_T)^{1-a} \sum_i |p_T^i| \left(\frac{\theta_{iJ}}{\sin \theta_J}\right)^{2-a} \left(1 + \mathcal{O}(\theta_{iJ}^2)\right)$$

$$\tau_a^{pp} = \left(\frac{2E_J}{p_T}\right)^{2-a} \tau_a^{e^+e^-} + \mathcal{O}(\tau_a^2)$$

modified jet function

$$J_i(\tau_a) = \left(\frac{p_T}{2E_J}\right)^{2-a} J_i^{e^+e^-} \left(\left(\frac{p_T}{2E_J}\right)^{2-a} \tau_a\right)$$

Analogous Formulae for pp collisions

Soft Function in $e^+e^$ rotationally invariant cuts: $E < E_{min}$

Soft Function in pp boost invariant cuts, observables: pt, rapidity

hard, soft functions are matrices in color space

 $d\sigma(\tau_a^1, \tau_a^2) = \frac{p_T x_1 x_2}{8\pi E_{\rm cm}^4} \frac{1}{N} B(x_1; \mu) \bar{B}(x_2; \mu) \operatorname{Tr}\{\mathbf{H}(\mu) \mathbf{S}(\tau_a^1, \tau_a^2; \mu)\} \otimes [J_1(\tau_a^1; \mu) J_2(\tau_a^2; \mu)]$

$pp \rightarrow 2$ jets with boost invariant soft function

Study dependence on: a, R, p_T cut, scale variation

Conclusions

NRQCD describes much world data on quarkonium data but puzzles, esp. polarization, remain

existing analyses focus on inclusive p_T spectra, polarization can we find other observables distinguish various production mechanisms at high p_T ?

measuring $Q\overline{Q}$ within jets, and using jet observables should provide insights into QQ production

quarkonium fragmenting jet functions (FJFs)

If ${}^{(8)}$ mechanism dominates high p_T production FJF should have negative slope for z(E), for z>0.5

Work in Progress

comparing SCET factorization theorems w/ Monte Carlo

developing analytic formulae for pp collisions

comparison with experiment from ATLAS, CMS, LHCb

Backup

fragmentation function (QCD)

$$D^h_q(z) = z \int \frac{\mathrm{d}x^+}{4\pi} \; e^{ik^- x^+/2} \frac{1}{4N_c} \operatorname{Tr} \sum_X \; \langle 0 | \vec{\eta} \; \Psi(x^+, 0, 0_\perp) | Xh \rangle \langle Xh | \bar{\Psi}(0) | 0 \rangle \big|_{p_h^\perp = 0}$$

fragmentation function (SCET)

$$D_q^h \left(\frac{p_h^-}{\omega}, \mu\right) = \pi \omega \int dp_h^+ \frac{1}{4N_c} \operatorname{Tr} \sum_X \, \bar{\eta} \, \langle 0 | [\delta_{\omega,\bar{\mathcal{P}}} \, \delta_{0,\mathcal{P}_\perp} \, \chi_n(0)] | Xh \rangle \langle Xh | \bar{\chi}_n(0) | 0 \rangle$$

Jet function (SCET)

$$J_u(k^+\omega) = -\frac{1}{\pi \omega} \operatorname{Im} \int d^4x \ e^{ik \cdot x} \ i \ \langle 0 | \operatorname{T} \bar{\chi}_{n,\omega,0_{\perp}}(0) \ \frac{\bar{\eta}}{4N_c} \chi_n(x) | 0 \rangle$$

fragmentation jet function (SCET)

$$\mathcal{G}_{q,\text{bare}}^{h}(s,z) = \int \mathrm{d}^{4}y \, e^{\mathrm{i}k^{+}y^{-}/2} \, \int \mathrm{d}p_{h}^{+} \sum_{X} \, \frac{1}{4N_{c}} \operatorname{tr}\left[\frac{\vec{p}}{2} \langle 0 \big| [\delta_{\omega,\overline{\mathcal{P}}} \, \delta_{0,\mathcal{P}_{\perp}} \chi_{n}(y)] \big| Xh \rangle \langle Xh \big| \bar{\chi}_{n}(0) \big| 0 \rangle\right]$$

$$\delta(p^+/z - P_H^+) \to \delta(p^+/z - P_H^+)\delta(p^- - s/p^+)$$
FF
FJF
FJF

Scales in Jet Cross section

mechanisms contributing to J/ψ production

Dependence on a,R vs. Monte Carlo

S.D. Ellis, et.al., JHEP1011(2010) 101

Refactorizing the Soft function

Y.T. Chien, A. Hornig, C. Lee, Phys.Rev. D93 (2016) 1,014033

A. Hornig, Y. Makris, T.M., arXiv:1601.01319

