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Introduction and definitions

The strong couplings of our interest, gPV′V and gPP′V:

⟨P′(p2)V(q)|P(p1)⟩ = −1
2gPP′V(p1 + p2)µε∗µ(q),

⟨V ′(p2)V(q)|P(p1)⟩ = −ϵε∗(q)ε∗(p2)p1 p2gPV′V ,

with momentum transfer q = p1 − p2. gPP′V is dimensionless; gPV′V has inverse mass dimension.

The couplings g are related to the residues of the poles in the transition form factors at time-
like momentum transfer arising from contributions of intermediate meson states in the transition
amplitudes.

The form factors FP→P′
+ (q2), VP→V(q2), and AP→V

0 (q2), related to the transition amplitudes induced
by quark currents: vector q̄2γµq1 and axial-vector q̄2γµγ5q1:

⟨P′(p2)|q̄2γµq1|P(p1)⟩ = FP→P′
+ (q2)(p1 + p2)µ + · · · ,

⟨V(p2)|q̄2γµq1|P(p1)⟩ = 2VP→V(q2)
MP + MV

ϵµε∗(p2)p1 p2,

⟨V(p2)|q̄2γµγ5q1|P(p1)⟩ = iqµ(ε∗(p2)p1)
2MV

q2 AP→V
0 (q2) + · · · ,

dots stand for other Lorentz structures.
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The poles in the above form factors are of the form

FP→P′
+ (q2) =

gPP′VR fVR

2MVR

1
1 − q2/M2

VR

+ · · · ,

VP→V(q2) =
(MV + MP)gPVVR fVR

2MVR

1
1 − q2/M2

VR

+ · · · ,

AP→V
0 (q2) =

gPPRV fPR

2MV

1
1 − q2/M2

PR

+ · · · .

In these relations, PR and VR label pseudoscalar and vector resonances with appropriate quan-
tum numbers; fP and fV are the leptonic decay constants of the pseudoscalar and vector mesons,
respectively, defined in terms of the amplitude of the meson-to-vacuum transition induced by the
axial-vector or vector quark currents according to

⟨0|q̄1γµγ5q2|P(p)⟩ = i fPpµ,
⟨0|q̄1γµq2|V(p)⟩ = fV MVεµ(p).
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Relativistic constituent quark model as dispersion approach

• Relativistic quark models treat mesons as two-particle bound states of effective objects — con-
stituent quarks.
• Relativistic treatment of two-particle contributions to the bound-state structure may be con-
sistently formulated using relativistic dispersion approach which takes into account only two-
particle intermediate (constituent) quark-antiquark states in Feynman diagrams.

• This formulation is explicitly relativistic-invariant: hadron observables (decay constants, form
factors) are given by spectral representations over the invariant masses of the quark-antiquark
intermediate states.

• The main benefit of the relativistic formulation is the possibility to obtain the weak form factors
in the decay region by analytic continuation. Then anomalous cuts and the anomalous contribu-
tions to the form factors emerge. The anomalous contributions are given via wave functions in the
physical region (i.e. via ψ(s) at s ≥ (m1 + m2)2)
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Two-particle unitarity of the partial-wave scattering amplitude A0(s),

Im A0(s) = ρ(s)|A0(s)|2

has the following solution

A0(s) = G(s)
1

1 − B(s)
G(s), B(p2) =

∫
ds

s − p2G2(s).

B(s) B(s)B(s)P P
G G G G G G G G

The pole in this amplitude is the bound state, and in the two-particle approximation its properties
can be calculated by the following procedure:

Decay constant of the bound state:
A0

µ
Bµ

A0
µ

Bµ
A0

µ
B   (s)ps+ +

f =
∫

ds
G(s)

s − M2ρ(s)
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Two-current decay of the bound state: Elastic or transition form factor of the bound state:

1k

k2

γ5iGv
q

q
3

2

p

3k
α

α3

2 γ5v1iG v2iG γ5

1

1
m m

m

kk2

2

3
1p p2

q

k3

F(q2
2, q

2
3) =
∫

ds
Gv(s)

s − M2ρ(s, q2
2, q

2
3), F(q2) =

∫
ds1

Gv1(s1)
s1 − M2

1

∫
ds2

Gv2(s2)
s2 − M2

2

∆(s1, s2, q2).

• The wave function of the bound state is: ψ(s) = Gv(s)
s−M2 .

•Normalization condition for ψ: the elastic form factor at zero momentum transfer is equal unity.

• Nuclei-like bound state: Gv(s) is a regular function, pole in ψ(s)at s = M2

Confined bound state: ψ(s) is regular, no pole in ψ(s) at s = M2
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Decay constants of pseudoscalar and vector mesons:

fP =
√

Nc

∞∫
(m1+m)2

ds ϕP(s) (m1 + m)
λ1/2(s,m2

1,m
2)

8π2s
s − (m1 − m)2

s
,

fV =
√

Nc

∞∫
(m1+m)2

ds ϕV(s)
2
√

s + m1 + m
3

λ1/2(s,m2
1,m

2)
8π2s

s − (m1 − m)2

s
,

The wave functions ϕi(s), i = P,V, can be written as

ϕi(s) =
π
√

2

√
s2 − (m2

1 − m2)2√
s − (m1 − m)2

wi(k2)
s3/4 , k2 =

λ(s,m2
1,m

2)
4s

,

with wi(k2) normalized according to∫
dk k2w2

i (k2) = 1.
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The M1(p1)→ M2(p2) transition ffs induced by the constituent-quark transition Q̄1 → Q2 reads

Fi(q2) =
∫

ds1 ψ1(s1)
∫

ds2 ψ2(s2)∆i(s1, s2, q2).

At q2 < 0, this form factors is equal to the form factors of the light-front relativistic constituent
quark model: the double spectral representation at q2 < 0 may be rewritten as the convolution of
the light-cone wave functions of the initial and the final hadrons.

In the decay region 0 < q2 ≤ (m2 − m1)2 the analytic continuation in q2 leads to the anomalous
contributions. Both the normal and the anomalous contributions involve the s1 and s2 integrations
over the corresponding two-particle cuts, i.e. for k2

1 > 0 and k2
2 > 0.

For ffs in this region, a Gaussian parameterization can be adopted: wi(k2) ∝ exp(−k2/2β2
i ).

• The transition form factors from dispersion approach satisfy the rigorous constraints of non-
perturbative QCD in the limit of the heavy-to-heavy (HQET) and heavy-to light quark transitions
(LEET).

• The spectral representation is based on constituent-quark degrees of freedom and we apply it
to calculate the form factors in the region q2 < (m2 − m1)2. We then numerically interpolate the
results of our calculations and use the obtained parameterizations to study the form factors at
q2 > (m1 − m2)2, where one expects the appearance of meson resonance at q2 = M2

R.
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QCD quark currents vs constituent quark currents

An essential feature of the constituent quark picture is the appropriate matching of the quark cur-
rents in QCD (q̄γµq, q̄γµγ5q, etc.) and the associated currents formulated in terms of constituent
quarks (Q̄γµQ, Q̄γµγ5Q, etc.).
For currents containing heavy quarks, these matching conditions are simple:

q̄1γµq2 = gV Q̄1γµQ2 + · · · ,
q̄1γµγ5q2 = gAQ̄1γµγ5Q2 + · · · ,

where dots indicate other possible Lorentz structures.
Constituent quarks Q1 and Q2 have masses m1 and m2, respectively. In general, the form factors
gV and gA depend on the momentum transfer. Vector current conservation requires gV = 1 at
zero momentum transfer for the elastic current and at zero recoil for the heavy-to-heavy quark
transition. The specific values of the form factors gV and gA and their momentum dependences
belong to the parameters of the model, as well as the quark masses and the wave functions of
mesons regarded as relativistic quark–antiquark bound states.
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Parameters of the model

• constituent-quark matching couplings gA and gV

gV = gA = 1.

• constituent quark masses

md = mu = 0.23 GeV, ms = 0.35 GeV, mc = 1.45 GeV.

• wave function shape and size parameter β
For the wave functions, we make use of the simple Gaussian wave-function Ansatz which proved
to provide a reliable picture of a large class of transition form factors.

With the above quark couplings and masses, and the meson wave-function parameters β collected
in Table, the decay constants from our dispersion approach reproduce the best-known decay con-
stants of pseudoscalar and vector mesons.

D D∗ Ds D∗s ηc J/ψ
M (GeV) 1.87 2.010 1.97 2.11 2.980 3.097
f (MeV) 206 ± 8 260 ± 10 248 ± 2.5 311 ± 9 394.7 ± 2.4 405 ± 7
β (GeV) 0.475 0.48 0.545 0.54 0.77 0.68
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Form factors

,
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•We calculate the ffs via double spectral representations

•We interpolate by

F(q2) =
F(0)(

1 − q2/M2
R

) (
1 − σ1q2/M2

R + σ2q4/M4
R

),
where MR = MV for F+ and V, and MR = MP for A0. The value of MR obtained by the fit is very
close to the mass of the resonance with the appropriate quantum numbers. The residue is given
by products of the (known) weak and the strong couplings g to be determined.

• In some cases, the residues of different form factors involve the same strong coupling; for such
form-factor sets a constrained interpolation will be done.
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FP→P′
+ (q2) =

gPP′VR
fVR

2MVR

1
1−q2/M2

VR

+ · · · → 2MVR
fVR

FP→P′
+ (q2)(1 − q2/M2

VR
) ≡ gPP′VR(q2)

AP→V
0 (q2) =

gPPRV fPR
2MV

1
1−q2/M2

PR

+ · · · → 2MV
fPR

AP→V
0 (q2)(1 − q2/M2

PR
) ≡ gPPRV(q2)
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Our results may be summarized as follows:

• for the couplings involving J/ψ and ηc mesons,

gηcηcψ = 25.8 ± 1.7, gηcψψ = (10.6 ± 1.5) GeV−1,

• for the J/ψ and ηc couplings to charmed mesons,

gDDψ = 26.04 ± 1.43, gDD∗ψ = (10.7 ± 0.4) GeV−1,

gDD∗ηc = 15.51 ± 0.45, gD∗D∗ηc = (9.76 ± 0.32) GeV−1,

• and, for the J/ψ and ηc couplings to charmed strange mesons,

gDsDsψ = 23.83 ± 0.78, gDsD∗sψ = (9.6 ± 0.8) GeV−1,

gDsD∗sηc = 14.15 ± 0.52, gD∗sD∗sηc = (8.27 ± 0.37) GeV−1.

Comparison of the couplings predicted by the dispersion approach with the results from exper-
iment and lattice QCD in those cases where such results are available, allows us to expect the
accuracy of our predictions to be not worse than 15–20%.

Our results considerably exceed the ones from QCD sum rules.
gDDψ gDD∗ψ (GeV−1) gDsDsψ gDsD∗sψ (GeV−1)

This work 26.04 ± 1.43 10.7 ± 0.4 23.83 ± 0.78 9.6 ± 0.8
QCD sum rules 11.6 ± 1.8 4.0 ± 0.6 11.96 ± 1.34 4.30 ± 1.53
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Properties of individual resonances from OPE

• The basic object
T -product of a number of the interpolating currents j(x):

⟨Ω| j(0)|M⟩ = fM , 0.

(E.g. j(x) = q̄1(x)Oq2(x) for “normal” mesons, 4-quark currents for exotic mesons).
The simplest object—2-point function

Π(p2) = i
∫

d4x eipx
⟨
Ω
∣∣∣∣T ( j(x) j†(0)

)∣∣∣∣Ω⟩
•Wilsonian OPE - separation of distances:

T
(

j(x) j†(0)
)
= C0(x2, µ)1̂ +

∑
n

Cn(x2, µ) : Ôn(x = 0, µ) :

Π(p2) = Πpert(p2, µ) +
∑

n

Cn

(p2)n⟨Ω| : Ôn(x = 0, µ) : |Ω⟩

• Physical QCD vacuum |Ω⟩ is complicated and differs from perturbative QCD vacuum |0⟩.
Condensates – nonzero expectation values of gauge-invariant operators over physical vacuum:

⟨Ω| : Ô(0, µ) : |Ω⟩ , 0

⟨Ω|q̄q(2 GeV|Ω⟩ = −(271 ± 3 MeV)3, ⟨Ω|αs/πGG|Ω⟩ = 0.012 ± 0.006 GeV.
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2-point function is analytic function of p2

Π(p2) =
∫

ds
s − p2ρ(s),

One calculates the spectral densities using OPE and using hadron states

ρtheor(s) =

ρpert(s, µ) +
∑

n

Cnδ
(n)(s)⟨Ω|On(µ)|Ω⟩

 , ρhadr(s) = f 2δ(s − M2) + ρcont(s)

*

+
x x

m2
b M2

BB

Im    (s)Π

s

theoretical
physical

2(M  +m  )π
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How to relate to each other truncated ΠOPE(p2) and Πhadron(p2) ?
Borel transform p2 → τ [ 1

s−p2 → exp(−τp2)]

Π(τ) =
∫

ds exp(−sτ)ρ(s) = f 2e−M2
Bτ +

∞∫
sphys

ds e−sτρhadr(s) =

∞∫
(mb+m)2

ds e−sτρpert(s, µ) + Πpower(τ, µ).

Here sphys is the physical threshold, and f is the decay constant defined by

⟨0|q̄Ob|B⟩ = f .

To get rid of the excited-state contributions, one adopts the duality Ansatz: all contributions of
excited states are counterbalanced by the perturbative contribution above an effective continuum
threshold, seff(τ) which differs from the physical continuum threshold.
Applying the duality assumption yields:

f 2e−M2
Bτ =

seff(τ)∫
(mb+m)2

ds e−sτρpert(s, µ) + Πpower(τ, µ).
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Strong decays from 3- point vertex functions

• The basic object:

Γ(p, p′, q) =
∫
⟨0|T (J(x) j(0) j′(x′)|0⟩ exp(ipx − ip′ x′)dxdx′

q

p p’

This correlator contains the triple-pole in the Minkowski region: namely

Γ(p, p′, q) =
f f ′

(p2 − M2)(p′2 − M′2)
F(q2) + · · ·

where the form factor F(q2) contains pole at q2 = M2
q:

F(q2) =
fqgMM′Mq

(q2 − M2
q)
+ · · ·

gMM′Mq describes the M → M1M2 strong transition;
f , f ′, and fMq are the decay constants of the mesons ⟨0| j(0)|M⟩ = fM.
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The three-point function satisfies the double spectral representation

Γ(p, p′, q) =
∫

ds
s − p2

ds′

s′ − p′2
∆(s, s′, q2)

Perform double Borel transform p2 → τ, p′2 → τ′ and applying duality we obtain

exp(−M2τ) exp(−M′2τ′) f f ′F(q2) =

seff∫
ds exp(−sτ)

s′eff∫
ds′ exp(−s′τ′)∆OPE(s, s′, q2)

Γ has the following perturbative expansion

ΓOPE(p2, p′2, q2) = Γ0(p2, p′2, q2) + αsΓ1(p2, p′2, q2) + . . .

p p
′

q

+ . .

.

+ . .

.

+. . .

A one-loop zero-order diagram has a nonzero double-spectral density and provides a nonzero
contribution to the form factor at small and intermediate momentum transfers (and to the cou-
pling). Radiative corrections are crucial for large q2; at small q2 one has to specfy the behaviour
αs(q2). Assuming freezing of αs(q2), O(1) and O(αs) contributions to the pion elastic form factor
give comparable contributions at q2 = 0.
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Radiative 2-loop corrections to the 3-point functions relevant for strong couplings are unknown.

The presently available sum-rule extractions have several shortcomings:
• Radiative corrections were not included in the correlator;
the q2-dependence of the effective threshold has been neglected.
• Calculation in a limited q2-range may be done
• Extrapolation over large q2-ranges; unphysical parametrizations are used for some of the ffs

Left aside: calculation of the coupling using light-cone sum rules

Γ(p, q) =
∫

dx exp(−iqx)⟨0|T ( j(x) j(0))|M(p)⟩

and expressing the result via the light-cone wave function of the M(p).
Severe and so far unsettled problems in describing the D∗Dπ coupling: gD∗Dπ = 10± 2 (vs exp: 18)
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Summary and conclusions

We discussed three-meson couplings using constituent quark picture and QCD sum rules.
• Dispersion approach
a. Relativistic dispersion approach based on the constituent quark picture provides form factors
as double dispersion representations in terms of the nonperturbative meson wafe functions.

b. These spectral representations satisfy rigorous constraints from nonperturbative QCD in the
limit of a heavy-to-heavy and heavy-to-light quark transitions.

c. Fixing a few parameters (constituent quark masses, wave-function parameters) allows one to
calculate many form factors in a broad range of momentum transfers (far from hadron thresholds
and resonances). Good agreement with results from lattice QCD and the data.

d. Numerical interpolation of the calculated results shows the behaviour well compatible with the
presence of the poles at timelike momenta at the “right” locations (i.e. at the location of hadron
resonances with the appropriate quantum numbers). This behaviour allows us to extract the
strong couplings related to the residues of the form factors.

One and the same coupling may be extracted from the residues of different form factors (related
to different transitions like e.g. D → D and Jψ → D). The extracted values are excellently
compatible with each other rendering further credit to our results.
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• QCD sum rules have two shortcomings: the method allows one to calculate the form factors in
a narrow q2 range and needs the extrapolation over a wide range of q2.
• The dispersion approach reports sizeably larger predictions for the three-meson couplings com-
pared to the existing results from QCD sum rules.


