Light-front quantization methods: from QED to QCD

Luca Mantovani

European Research Council

1

http://www.hadronicphysics.it/hasqcd/

Outline

- Light-front quantization in a nutshell
- Applications in QED
 - Wigner distributions and TMDs
 - Photon propagator
- Hint on: QCD energy-momentum tensor
- Conclusions

At École polytechnique!

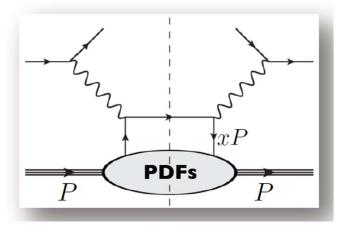
Light-front quantization

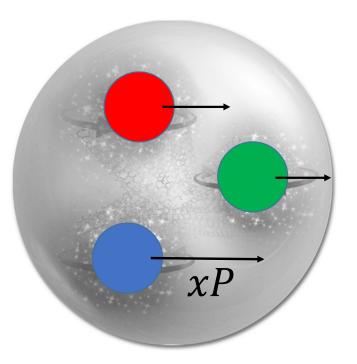
Motivation

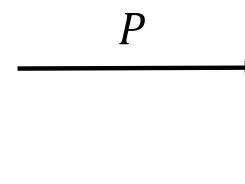
GOAL: unreveale the internal structure of nucleons

Motivation

Deep Inealstic Scattering

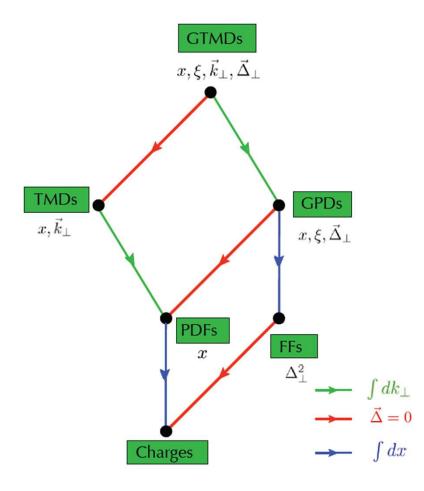






Parton Distribution Functions (*x*)

Landscape of parton distributions



<u>Lorcé, Pasquini,</u> <u>Vanderhaeghen (2011)</u>

Infinite momentum frame

Canonical frame

 $x^{\mu} = (t, x, y, z)$

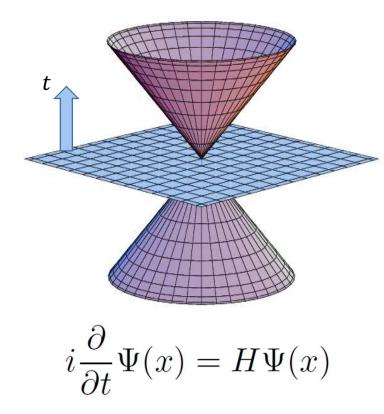
Infinite momentum frame

Canonical frame Infinite Momentum frame $x^{\mu} = (x^+, x^-, \mathbf{x}_{\perp})$ $x^{\mu} = (t, x, y, z)$ $P \rightarrow \infty$ Light-cone coordinates $\mathbf{x}_{\perp} = (x, y)$ $x^{\pm} = \frac{1}{\sqrt{2}} (z \pm t)$

Forms of relativistic dynamics

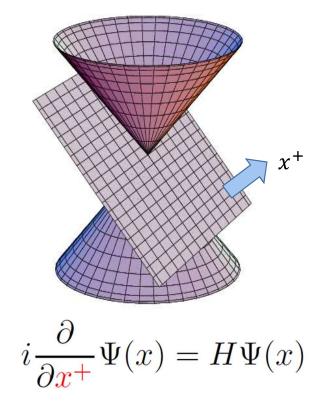
Instant form

$$x^{\mu} = (t, x, y, z)$$



Light-front Form

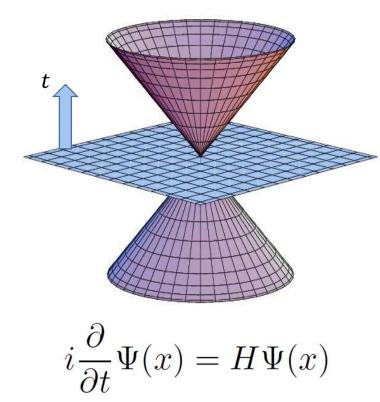
$$x^{\mu} = \left(x^+, x^-, \mathbf{x}_{\perp}\right)$$



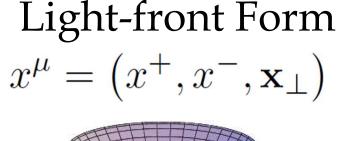
Forms of dynamics

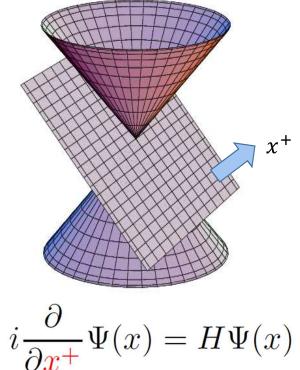
Instant form

$$x^{\mu} = (t, x, y, z)$$

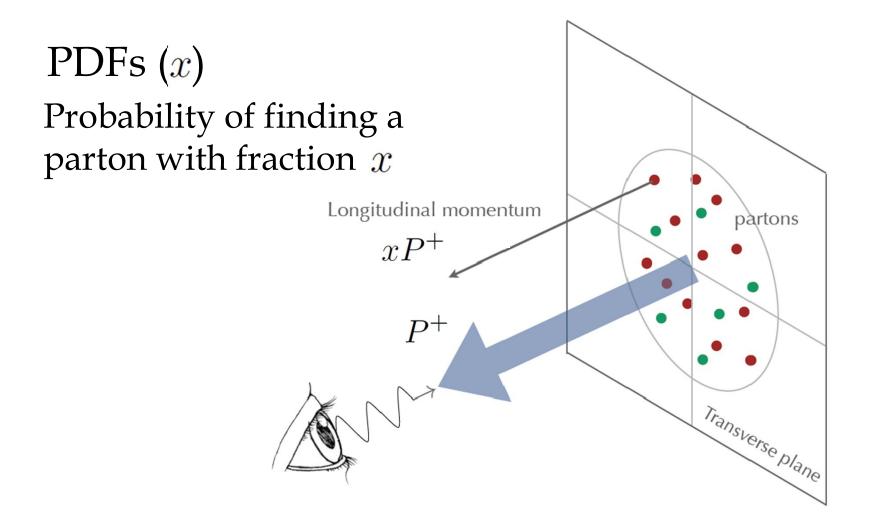


<u>Dirac (1949)</u>

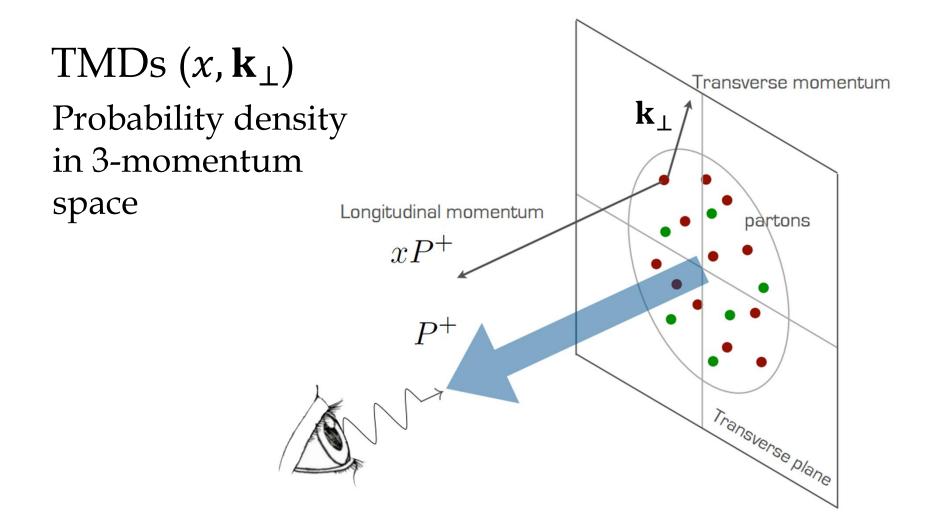




Infinite-momentum frame picture

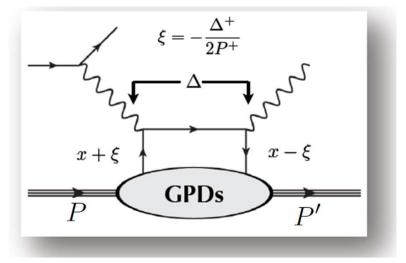


Infinite-momentum frame picture



Impact parameter space

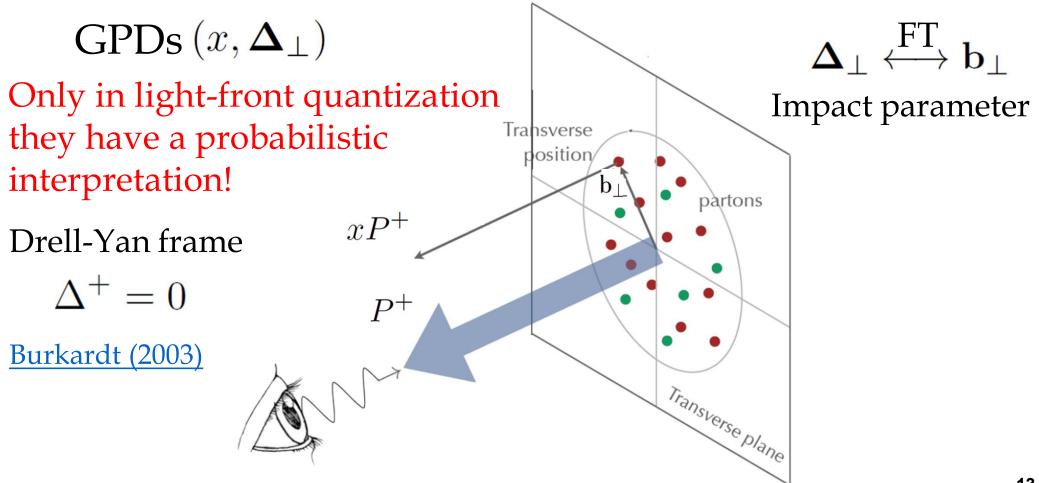
Deeply Virtual Compton Scattering



Generalized Parton Distributions (x, ξ, Δ_{\perp})

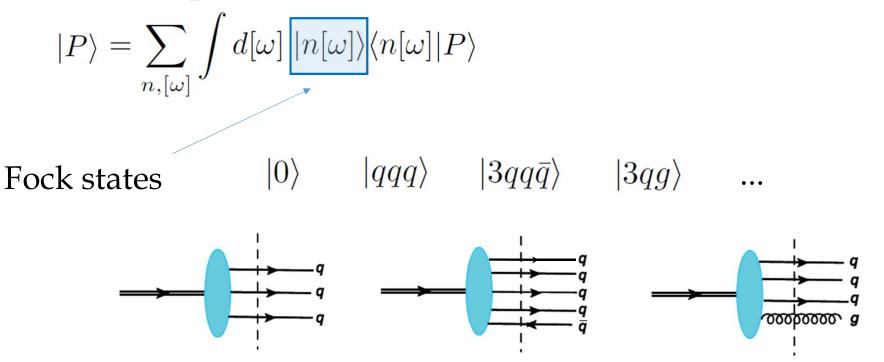
$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik^{+}z^{-}} \left\langle P'^{+}, -\frac{\boldsymbol{\Delta}_{\perp}}{2}, \Lambda' \left| \bar{\psi} \left(-\frac{z}{2} \right) \Gamma \mathcal{W} \psi \left(\frac{z}{2} \right) \right| P^{+}, \frac{\boldsymbol{\Delta}_{\perp}}{2}, \Lambda \right\rangle \Big|_{(z^{+}, \mathbf{z}_{\perp}) = (0, \mathbf{0}_{\perp})}$$

Impact parameter space



Light-Front Wave Functions (LFWF)

Fock state expansion of Nucleon state



Light-Front Wave Functions (LFWF)

$$P\rangle = \sum_{n,[\omega]} \int d[\omega] |n[\omega]\rangle \langle n[\omega]|P\rangle$$
LFWFs $\Psi_n(\omega)$

- Probability of finding n partons in the nucleon $= |\Psi_n|^2$
- Eigeinstates of momentum, parton light-front helicity and total orbital angular momentum
- Model dependent

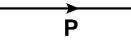
Applications in QED

Based on:

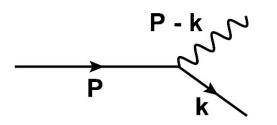
Bacchetta, LM, Pasquini (LM master thesis, 2014)

Bacchetta, LM, Pasquini (2015)

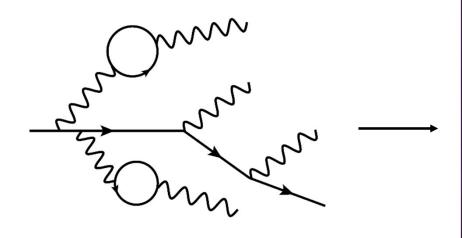
3D Electron

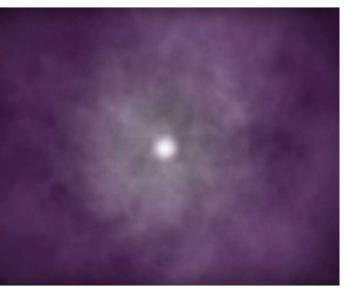


3D Electron

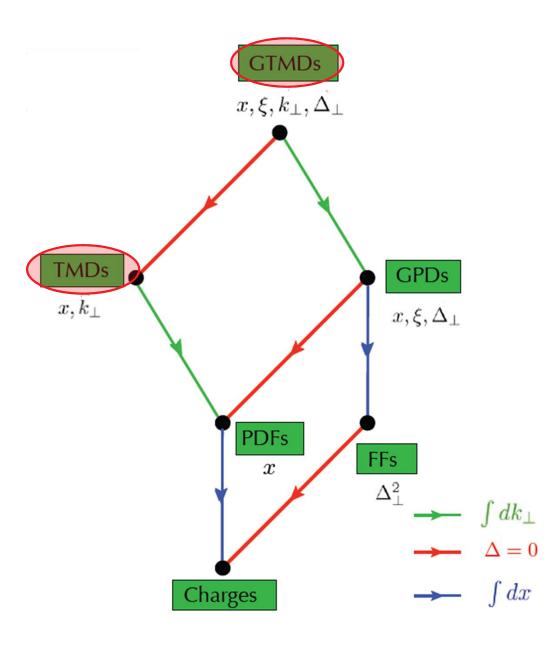


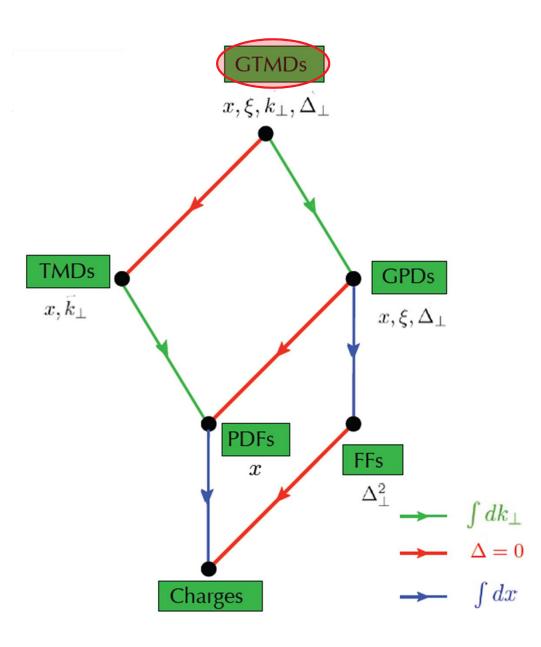
3D Electron





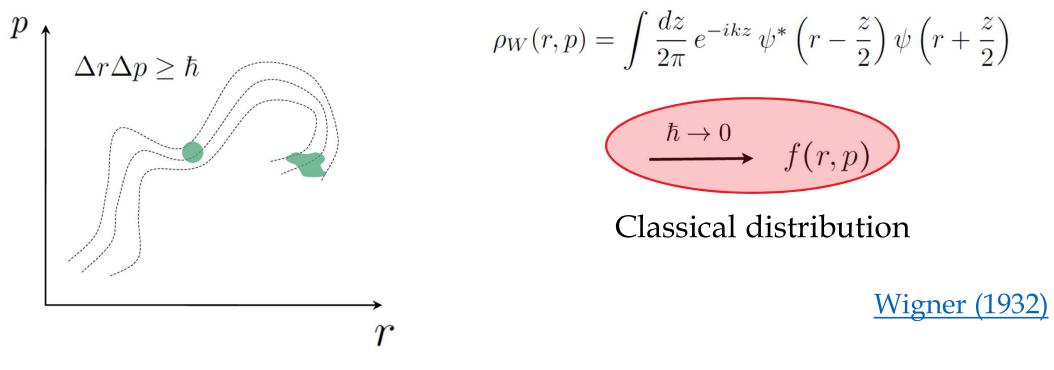
Brodsky, Hwang, Ma, Schmidth (2000) Hoyer, Kurki (2009) Miller (2014)





Wigner distributions

Phase space distributions



Quasi-probabilistic interpretation

Generalized Transverse-Momentum Dependent Parton Distributions $(x, \mathbf{k}_{\perp}, \xi, \Delta_{\perp})$

$$\frac{1}{2} \int \frac{dz^{-} d^{2} \mathbf{z}_{\perp}}{(2\pi)^{3}} e^{ikz} \left\langle P'^{+}, -\frac{\boldsymbol{\Delta}_{\perp}}{2}, \Lambda' \left| \bar{\psi} \left(-\frac{z}{2} \right) \Gamma \mathcal{W} \psi \left(\frac{z}{2} \right) \right| P^{+}, \frac{\boldsymbol{\Delta}_{\perp}}{2}, \Lambda \right\rangle \Big|_{z^{+}=0}$$

In the Drell-Yan frame $\Delta^+ = 0$

$$\rho_{\Lambda,\Lambda'}^{[\Gamma]}(\mathbf{b}_{\perp},x,\mathbf{k}_{\perp}) = \frac{1}{2} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{-i\mathbf{\Delta}_{\perp}\cdot\mathbf{b}_{\perp}} \left\langle P^+, \frac{\mathbf{\Delta}_{\perp}}{2}, \Lambda' \left| \hat{W}^{[\Gamma]}(\mathbf{0},x,\mathbf{k}_{\perp}) \right| P^+, -\frac{\mathbf{\Delta}_{\perp}}{2}, \Lambda \right\rangle$$

= 2-D Fourier transform of GTMD $(x, \mathbf{k}_{\perp}, \xi = 0, \Delta_{\perp})$

Lorcè, Pasquini (2011) Lorcè, Pasquini, Xiong, Yuan (2012)

In the Drell-Yan frame $\Delta^+ = 0$

$$\rho_{\Lambda,\Lambda'}^{[\Gamma]}(\mathbf{b}_{\perp}, x, \mathbf{k}_{\perp}) = \frac{1}{2} \int \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{-i\Delta_{\perp} \cdot \mathbf{b}_{\perp}} \left\langle P^{+}, \frac{\Delta_{\perp}}{2}, \Lambda' \left| \hat{W}^{[\Gamma]}(\mathbf{0}, x, \mathbf{k}_{\perp}) \right| P^{+}, -\frac{\Delta_{\perp}}{2}, \Lambda \right\rangle$$
$$= 2-D \text{ Fourier transform of } \mathbf{GTMD} \left(x, \mathbf{k}_{\perp}, \xi = 0, \Delta_{\perp} \right)$$
$$\underbrace{\text{Lorcè, Pasquini (2011)}}_{\text{Lorcè, Pasquini, Xiong, Yuan (2012)}}$$

2+3 dimensional

In the Drell-Yan frame $\Delta^+ = 0$

$$\rho_{\Lambda,\Lambda'}^{[\Gamma]}(\mathbf{b}_{\perp},x,\mathbf{k}_{\perp}) = \frac{1}{2} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{-i\mathbf{\Delta}_{\perp}\cdot\mathbf{b}_{\perp}} \left\langle P^+, \frac{\mathbf{\Delta}_{\perp}}{2}, \Lambda' \left| \hat{W}^{[\Gamma]}(\mathbf{0},x,\mathbf{k}_{\perp}) \right| P^+, -\frac{\mathbf{\Delta}_{\perp}}{2}, \Lambda \right\rangle$$

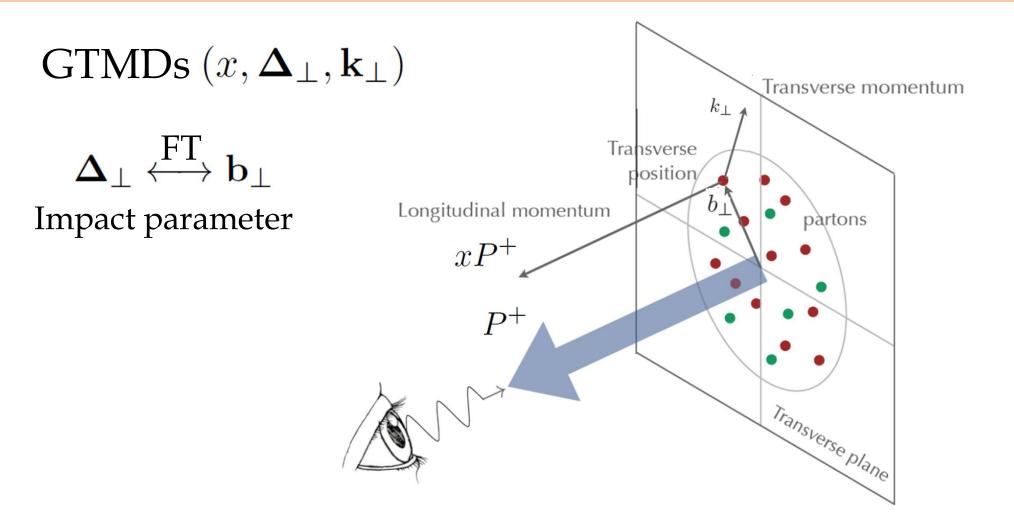
= 2-D Fourier transform of GTMD $(x, \mathbf{k}_{\perp}, \xi = 0, \Delta_{\perp})$

Lorcè, Pasquini (2011)

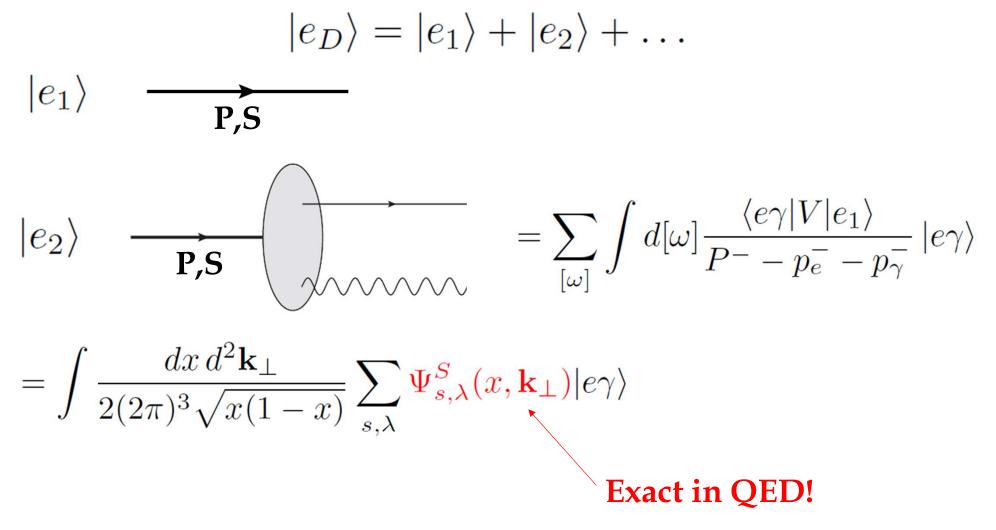
Lorcè, Pasquini, Xiong, Yuan (2012)

Semi-classical probabilistic interpretation

Infinite-momentum frame picture



Fock state expansion of the dressed electron



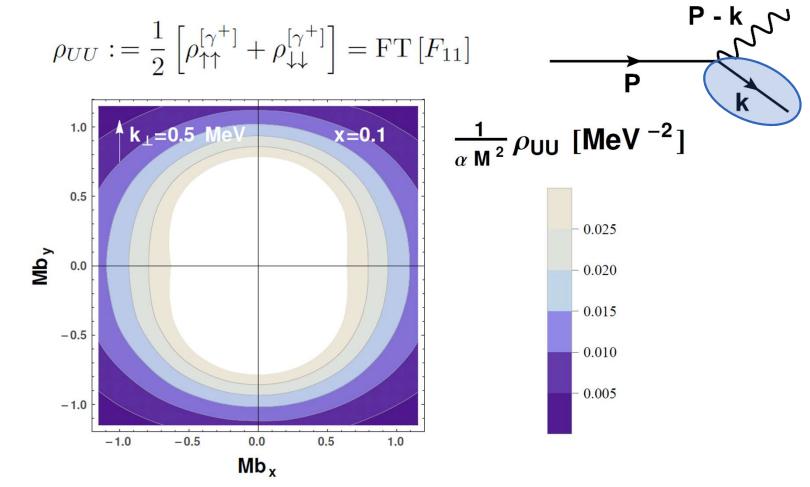
22

LFWF overlap representation of GTMDs

$$W_{S,S'}^{[\gamma^+]} = \int \frac{dz^- d^2 \mathbf{k}_\perp}{2(2\pi)^3} e^{ikz} \langle e_D; \mathbf{P}', S' | \bar{\psi} \left(-\frac{z}{2} \right) \gamma^+ \psi \left(\frac{z}{2} \right) | e_D; \mathbf{P}, S \rangle$$
$$|e_D\rangle = |e_1\rangle + |e_2\rangle$$

$$W_{S,S'}^{[\gamma^+]} = \frac{1}{2(2\pi)^3} \sum_{s,\lambda} \Psi_{s,\lambda}^{S'^*} \left(x, \mathbf{k}_\perp + (1-x) \frac{\mathbf{\Delta}_\perp}{2} \right) \ \Psi_{s,\lambda}^S \left(x, \mathbf{k}_\perp - (1-x) \frac{\mathbf{\Delta}_\perp}{2} \right)$$

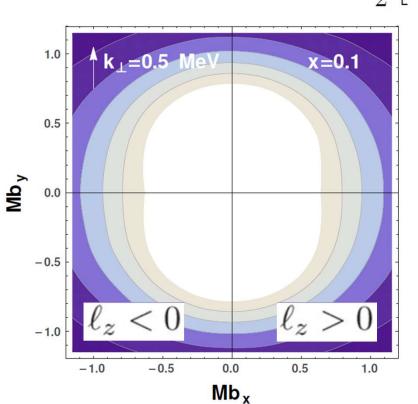
Unpol. electron in **unpol.** dressed electron



Bacchetta, LM, Pasquini (LM master thesis, 2014)

24

Unpol. electron in **unpol.** dressed electron



 $\rho_{UU} := \frac{1}{2} \left[\rho_{\uparrow\uparrow}^{[\gamma^+]} + \rho_{\downarrow\downarrow}^{[\gamma^+]} \right] = \operatorname{FT} \left[F_{11} \right]$

 $\mathbf{b}_{\perp} \perp \mathbf{k}_{\perp}$ favored

 $\mathbf{b}_{\perp} \parallel \mathbf{k}_{\perp}$ unfavored

$$l_z^U = \int dx \, d^2 \mathbf{b}_\perp d^2 \mathbf{k}_\perp \, (\mathbf{b}_\perp \times \mathbf{k}_\perp)_z \, \rho_{UU} = 0$$

Bacchetta, LM, Pasquini (LM master thesis, 2014)

24

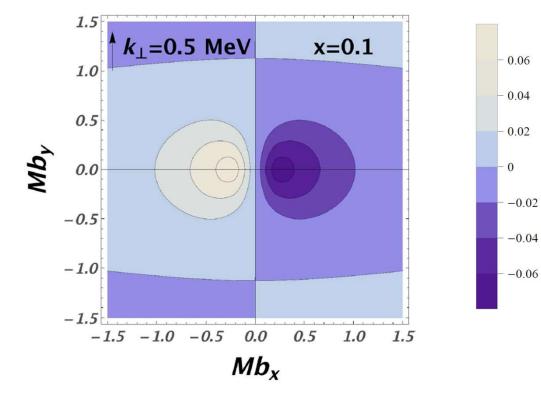
Unpol. electron in long. pol. dressed electron

$$\rho_{LU} := \frac{1}{2} \left[\rho_{\uparrow\uparrow}^{[\gamma^+]} - \rho_{\downarrow\downarrow}^{[\gamma^+]} \right] = -\frac{1}{M^2} \left(\mathbf{k}_{\perp} \times \frac{\partial}{\partial \mathbf{b}} \right)_z \operatorname{FT} \left[F_{1,4} \right]$$

0

-0.02

-0.04



Unpol. electron in long. pol. dressed electron

$$\rho_{LU} := \frac{1}{2} \left[\rho_{\uparrow\uparrow}^{[\gamma^+]} - \rho_{\downarrow\downarrow}^{[\gamma^+]} \right] = -\frac{1}{M^2} \left(\mathbf{k}_{\perp} \times \frac{\partial}{\partial \mathbf{b}} \right)_z \operatorname{FT} \left[F_{1,4} \right]$$

- 0.06

- 0.04

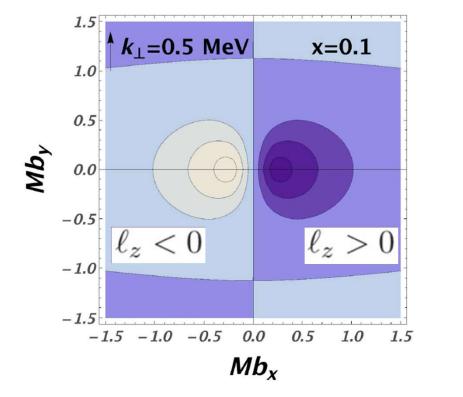
- 0.02

0

-0.02

-0.04

- -0.06

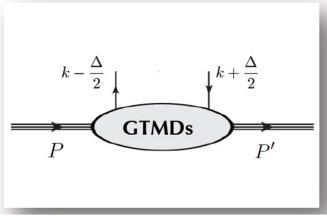


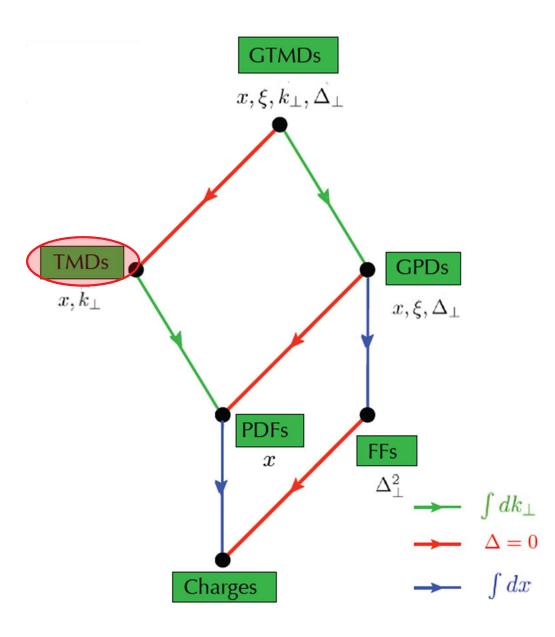
$$d_z^{L} = \int dx \, d^2 \mathbf{b}_{\perp} d^2 \mathbf{k}_{\perp} \, (\mathbf{b}_{\perp} \times \mathbf{k}_{\perp})_z \, \rho_{LU} \neq 0$$

What we learned about GTMDs in QED

- First model-independent evaluation (α^2 order, $x \neq 1$, $\mathbf{k}_{\perp} \neq \mathbf{0}_{\perp}$)
- Generic features of GTMDs recovered
- Mesauring GTMDs: could be done in QED (quantum optics)?

??????





Electron TMDs

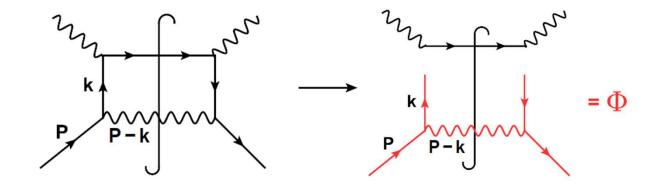
TMD correlator:

$$\Phi(x, \mathbf{k}_{\perp}; P, S) = \int \frac{d\xi^{-} d^{2} \boldsymbol{\xi}_{\perp}}{(2\pi)^{3}} e^{ik \cdot \boldsymbol{\xi}} \langle P, S | \bar{\psi}(0) \mathcal{U}_{(0, \boldsymbol{\xi})} \psi(\boldsymbol{\xi}) | P, S \rangle \Big|_{\boldsymbol{\xi}^{+} = 0}$$

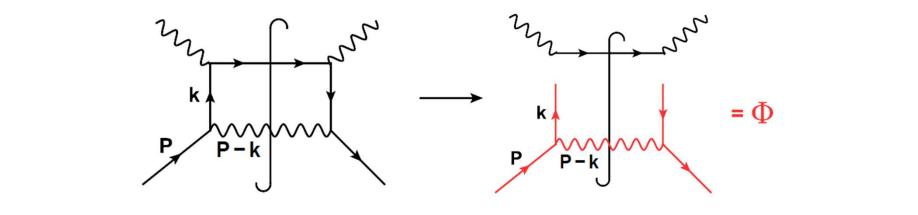
Electron TMDs

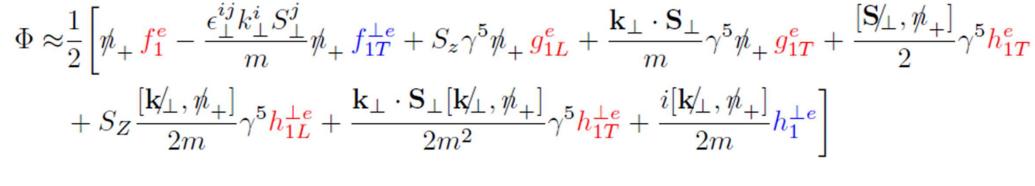
TMD correlator:

$$\Phi(x,\mathbf{k}_{\perp};P,S) = \int \frac{d\xi^- d^2 \boldsymbol{\xi}_{\perp}}{(2\pi)^3} e^{ik\cdot\xi} \langle P,S|\bar{\psi}(0)\mathcal{U}_{(0,\xi)}\psi(\xi)|P,S\rangle \bigg|_{\xi^+=0}$$



Electron TMDs



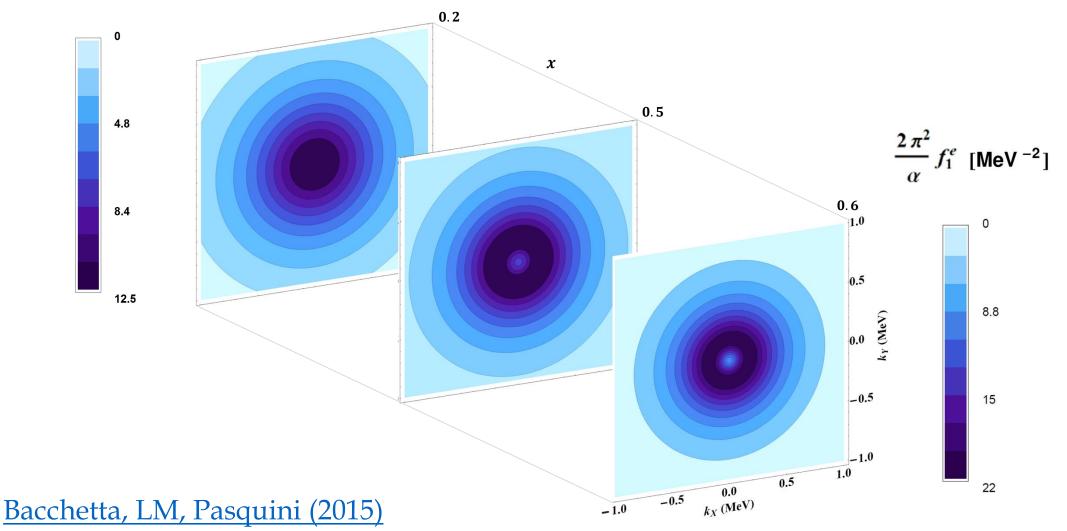


T-even

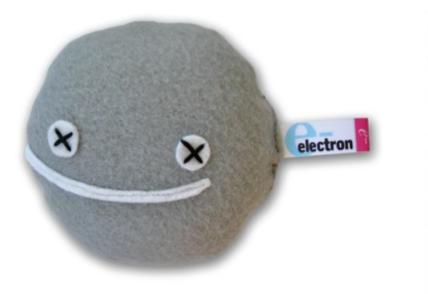
T-odd

Meissner, Metz, Goeke (2007)

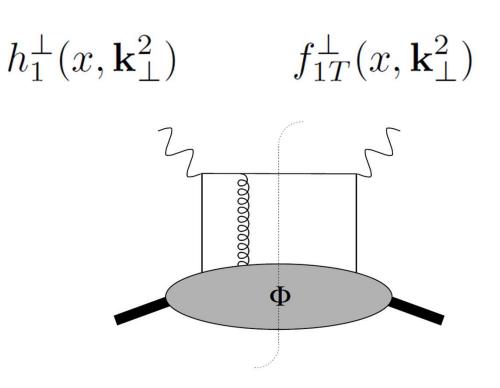
3D-picture for unpol. electron in unpol. dressed electron



The electron is ring-shaped! (in momentum space, for large *x*)

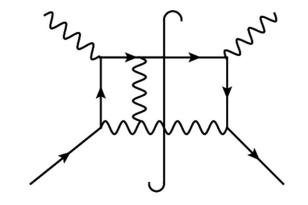


T-odd TMDs



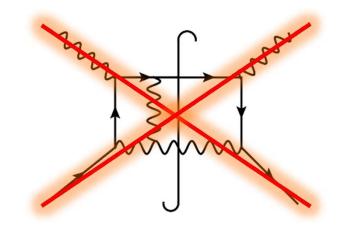
T-odd TMDs

$$h_1^{\perp}(x, \mathbf{k}_{\perp}^2) \qquad f_{1T}^{\perp}(x, \mathbf{k}_{\perp}^2)$$



T-odd TMDs are vanishing

$$h_1^{\perp}(x, \mathbf{k}_{\perp}^2) = 0 \quad f_{1T}^{\perp}(x, \mathbf{k}_{\perp}^2) = 0$$



 α^2 order

T-odd TMDs are vanishing...? Positron SIDIS DY e^+e^- = - e^+e^- ?

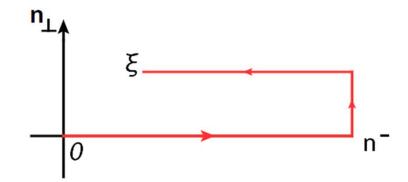
Sivers effect should be a property of a gauge theory, independently of its (non) Abelian nature

Gauge link

$$\Phi(x,\mathbf{k}_{\perp};P,S) := \int \frac{d\xi^{-}d^{2}\boldsymbol{\xi}_{\perp}}{(2\pi)^{3}} e^{i\boldsymbol{k}\cdot\boldsymbol{\xi}} \langle P,S|\bar{\psi}(0)\boldsymbol{\mathcal{U}}_{(0,\boldsymbol{\xi})}\psi(\boldsymbol{\xi})|P,S\rangle \bigg|_{\boldsymbol{\xi}^{+}=0}$$

with

$$\mathcal{U}_{(\xi_1,\xi_2)} := \exp\left[-ie\int_{\xi_1}^{\xi_2} d\eta^{\mu} A_{\mu}(\eta)\right]$$



Gauge link

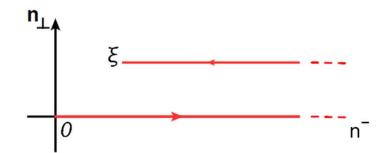
$$\Phi(x,\mathbf{k}_{\perp};P,S) := \int \frac{d\xi^{-}d^{2}\boldsymbol{\xi}_{\perp}}{(2\pi)^{3}} e^{i\boldsymbol{k}\cdot\boldsymbol{\xi}} \langle P,S|\bar{\psi}(0)\boldsymbol{\mathcal{U}}_{(0,\boldsymbol{\xi})}\psi(\boldsymbol{\xi})|P,S\rangle \bigg|_{\boldsymbol{\xi}^{+}=0}$$

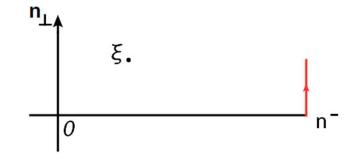
Feynman gauge

Light-cone gauge

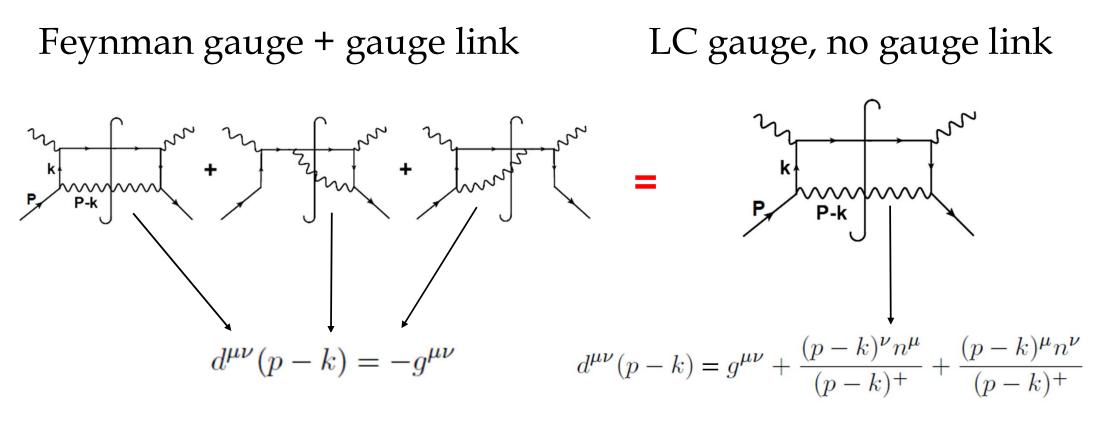
$$\mathbf{A}_{\perp}(\infty) = 0$$

 $A^{+} = 0$





Gauge link



What about the transverse gauge link?

Prescription choice for regularization

$$\frac{1}{(p-k)^{+}} \longrightarrow \begin{cases} \frac{1}{(p-k)^{+}+i\epsilon} & \text{Retarted} \\ \frac{1}{(p-k)^{+}-i\epsilon} & \text{Advanced} \\ \frac{1}{2} \left[\frac{1}{(p-k)^{+}+i\epsilon} + \frac{1}{(p-k)^{+}-i\epsilon} \right] & \text{Principal Value} \end{cases}$$

Belitsky, Ji, Yuan (2002)

Prescription choice for regularization

Extra terms from regularization Extra terms from transverse gl

$$\begin{cases} -\frac{ie^2}{(2\pi)^2} \frac{1}{\mathbf{k}_{\perp}^2} \delta(1-x) & \text{Retarted} \\ \frac{ie}{(2\pi)^2} \frac{1}{\mathbf{k}_{\perp}^2} \delta(1-x) & \text{Advanced} \\ 0 & \text{Principal Value} \end{cases} \begin{cases} \frac{ie^2}{(2\pi)^2} \frac{1}{\mathbf{k}_{\perp}^2} \delta(1-x) \\ -\frac{ie}{(2\pi)^2} \frac{1}{\mathbf{k}_{\perp}^2} \delta(1-x) \\ 0 \\ 0 \end{cases}$$

The transverse gauge link makes the evaluation of TMDs prescription-independent in the light-cone gauge

Photon propagator in light-cone gauge

Based on: LM, Pasquini, Xiong, Bacchetta(2016)

Gauge-field propagator in light-cone gauge

$$\mu \bigvee_{q} \bigvee_{q} \bigvee_{\nu} v$$
$$\mathcal{D}^{\mu\nu}(q) \text{ with } A^{+} = 0$$

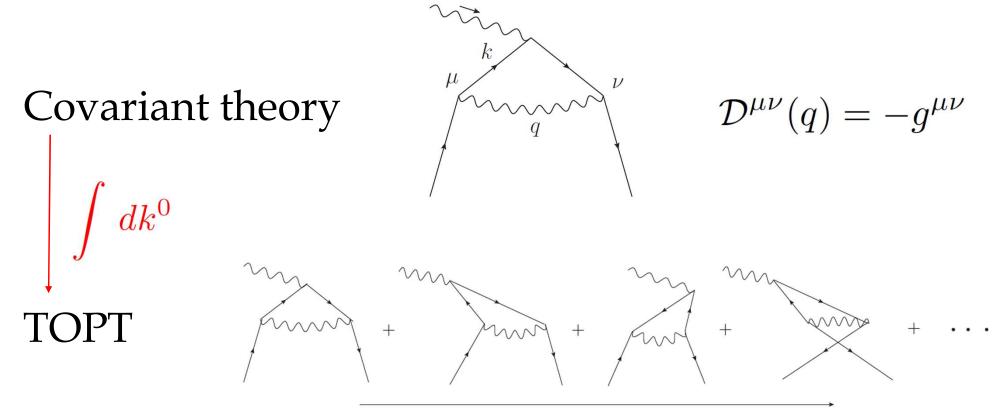
Gauge-field propagator in light-cone gauge

Which is the correct one?

$$\mu \bigvee_{q} \psi (q) = \frac{-i}{q^2} \left(g^{\mu\nu} - \frac{q^{\mu}n^{\nu} + q^{\nu}n^{\mu}}{q^+} + q^2 \frac{n^{\mu}n^{\nu}}{(q^+)^2} \right)$$
$$\mathcal{D}^{\mu\nu}(q) \text{ with } A^+ = 0$$
$$\mathcal{D}^{\mu\nu}(q) = \frac{-i}{q^2} \left(g^{\mu\nu} - \frac{q^{\mu}n^{\nu} + q^{\nu}n^{\mu}}{q^+} \right)$$

Comparison between TOPT and covariant theory

QED triangle diagram in instant form and in Feynman gauge:



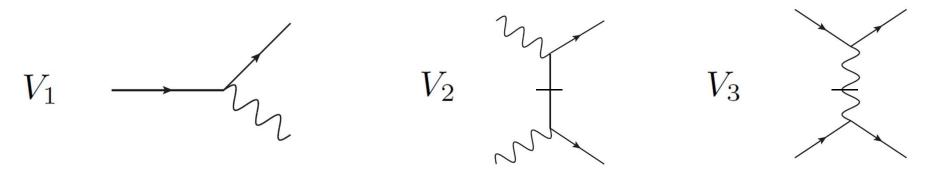
TOPT on the light-front

Diagrams with vacuum fluctuations are vanishing, but...

$$\mathscr{L}_{QED} = \bar{\psi}(i\partial \!\!\!/ - m)\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

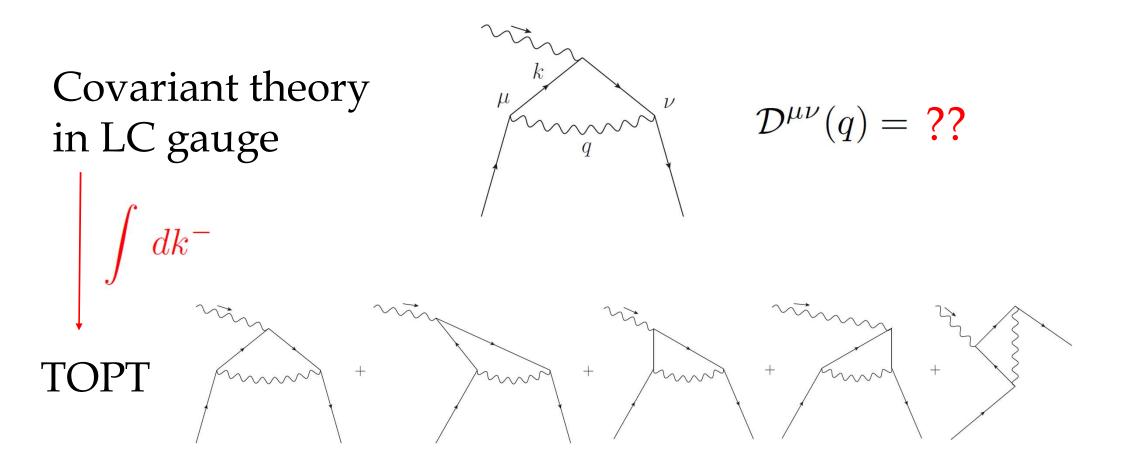
Using $A^+ = 0$ and the equations of motion in light-front coordinates:

$$H = \int d^2 \mathbf{x}_{\perp} dx^{-} T^{+-} = H_0 + V_1 + V_2 + V_3$$



<u>Mustaki *et al.* (1991)</u>

TOPT on the light-front



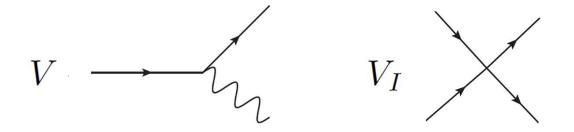
Interaction Hamiltonian in light-cone gauge

If we start with
$$\mathcal{D}_T^{\mu\nu}(q) = \frac{-i}{q^2} \left(g^{\mu\nu} - \frac{q^{\mu}n^{\nu} + q^{\nu}n^{\mu}}{q^+} + q^2 \frac{n^{\mu}n^{\nu}}{(q^+)^2} \right)$$

in covariant

theory, the interaction Hamiltonian becomes:

$$H_I = e\bar{\psi}\gamma^\mu A_\mu\psi = V + V_I$$



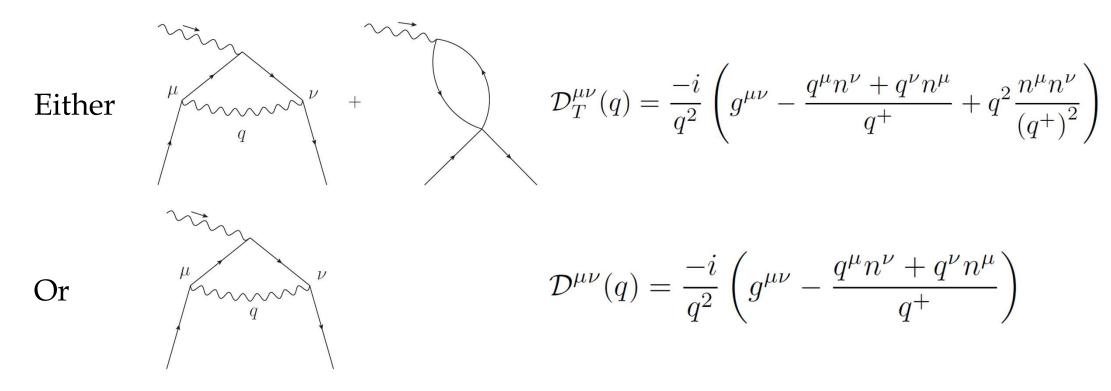
Covariant theory for the QED triangle diagram

with
$$\mathcal{D}^{\mu\nu}(q) = \frac{-i}{q^2} \left(g^{\mu\nu} - \frac{q^{\mu}n^{\nu} + q^{\nu}n^{\mu}}{q^+} + q^2 \frac{n^{\mu}n^{\nu}}{(q^+)^2} \right)$$

The cancelation happens in any physical process, as it is for any non-covariant gauge (e.g. Coulomb gauge)

Brodsky, Srivastava (2000) 41

Covariant theory for the QED triangle diagram



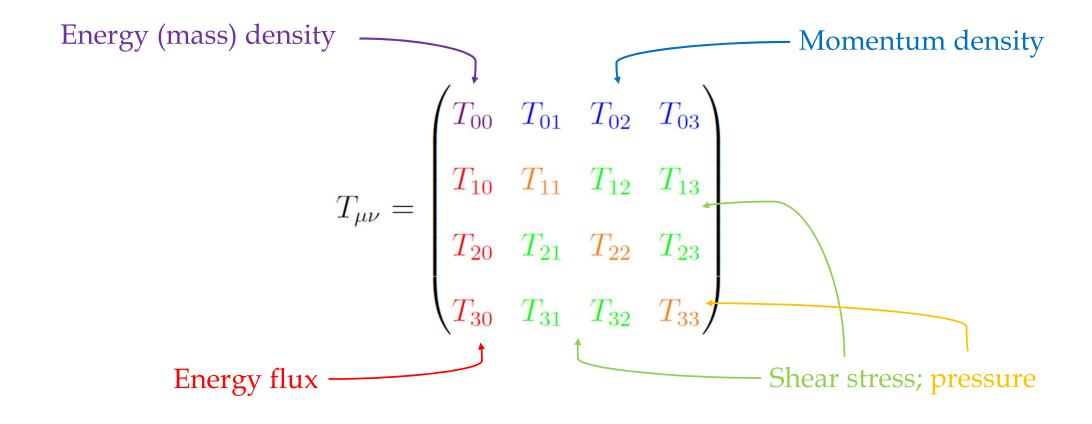
We can generate the diagrams with instantaneous photons appearing in TOPT, even starting from the two-term propagator.

How does the proof of the equivalence work?

Perfectly fine...! (ça marche!)

Towards QCD: the energy momentum tensor

The energy momentum tensor



The energy momentum tensor

$$T_{\mu\nu} = \begin{pmatrix} T_{00} & T_{01} & T_{02} & T_{03} \\ T_{10} & T_{11} & T_{12} & T_{13} \\ T_{20} & T_{21} & T_{22} & T_{23} \\ T_{30} & T_{31} & T_{32} & T_{33} \end{pmatrix}$$

$$T^{\mu\nu} = \frac{\partial \mathscr{L}}{\partial(\partial_{\mu}\varphi_{r})} \partial^{\nu}\varphi_{r} - g^{\mu\nu}\mathscr{L}$$

QCD energy momentum tensor

$$\begin{aligned} \mathscr{L}_{QCD} &\longrightarrow \langle P | T^{q;g}_{\mu\nu} | P' \rangle = \bar{u'} \bigg[\frac{A(t) \frac{P^{\mu} P^{\nu}}{M} + [A(t) + B(t)] \frac{P^{\{\mu} i \sigma^{\nu\} \rho} \Delta_{\rho}}{4M} \\ &+ \frac{C(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2}}{M} + \bar{C}(t) M g^{\mu\nu} + D(t) \frac{P^{[\mu} i \sigma^{\nu] \rho} \Delta_{\rho}}{4M} \bigg] u \end{aligned}$$

$$t = (P' - P)^2$$

<u>Polyakov (2002)</u> <u>Polyakov et a. (2007)</u>

Us:

Instant form; Breit frame $\Delta^0 = 0$

Light-front form; generic frame

Connection with GPDs

Angular momentum density:

$$M^{\alpha\mu\nu} = T^{\alpha\nu}x^{\mu} - T^{\alpha\mu}x^{\nu}$$

Light-cone helicity operator:

$$J^3 = \int dx^- d^2 \mathbf{x}_\perp M^{+12}(x)$$

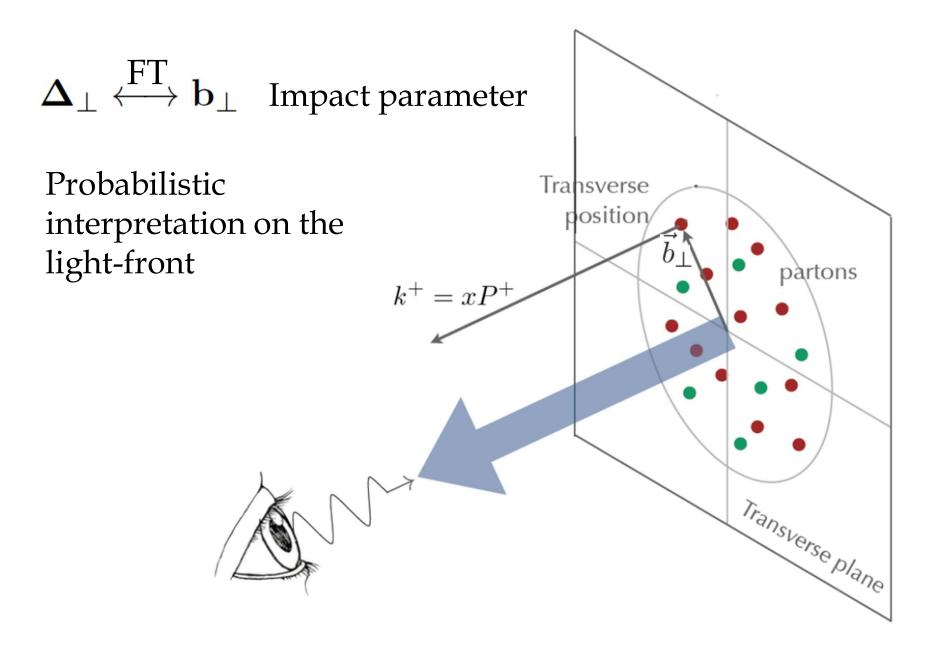
Relations with GPDs:

$$\langle J^3 \rangle = \frac{1}{2} \left[A(0) + B(0) \right] ,$$

$$A_q(t) + B_q(t) = \int_{-1}^1 dx \, x \left[H_q(x,\xi,t) + E_q(x,\xi,t) \right]$$

$$A_g(t) + B_g(t) = \int_0^1 dx \, x \left[H_g(x,\xi,t) + E_g(x,\xi,t) \right]$$

Diehl (2003)



Conclusions

Conclusions

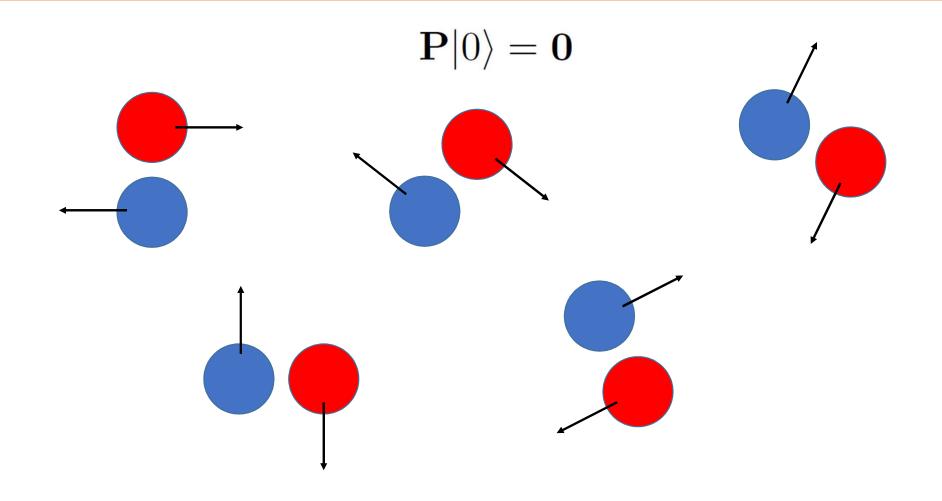
- Overview on light-front quantization methods: importance of probabilistic interpretation in the impact paramter space.
- Wigner distributions in QED: exact result, recovering generic properties. Mesaurements?
- TMDs in QED: differences compared to QCD due to Abelian nature; role of transverse gauge link
- Gauge-field propagator in light-cone gauge for the equivalence between covariant theory and TOPT
- Hint on: QCD energy-momentum tensor on the light-front

Light-front vacuum

We take $|0\rangle$ such that $(P^+, \mathbf{P}_{\perp}) |0\rangle = (0, \mathbf{0}_{\perp})$ Constraint: $P^+ > 0$

The vacuum is empty!

Instant-form vacuum



Wigner distributions in QFT

$$\hat{W}(\mathbf{r},\mathbf{k}) = \int \frac{dz^{-}d^{2}\mathbf{z}_{\perp}}{(2\pi)^{3}} e^{ikz} \bar{\psi}\left(\mathbf{r}-\frac{z}{2}\right) \Gamma \mathcal{W} \psi\left(\mathbf{r}+\frac{z}{2}\right) \Big|_{z^{+}=0}$$

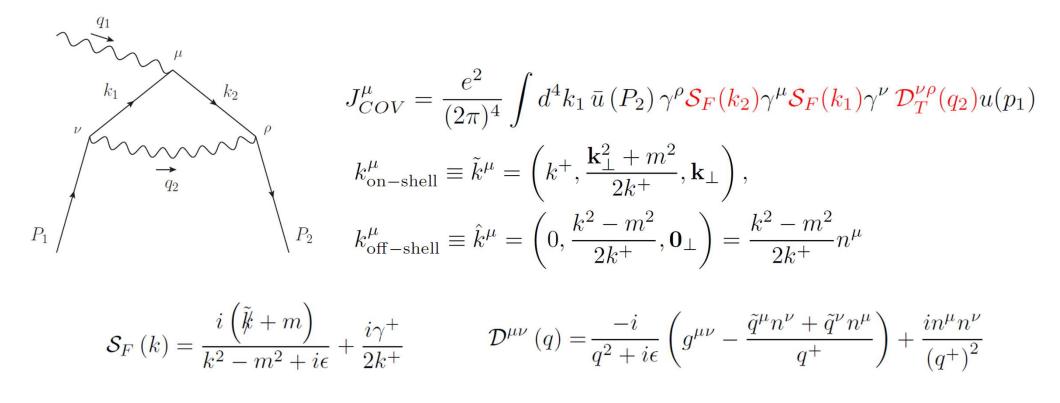
Wigner distribution in the Breit frame $\Delta^0 = 0$

$$\rho_{\Lambda,\Lambda'}(\mathbf{r},\mathbf{k}) = \frac{1}{2} \int \frac{d^3 \mathbf{\Delta}}{(2\pi)^3} e^{-i\mathbf{\Delta}\cdot\mathbf{r}} \left\langle \frac{\mathbf{\Delta}}{2}, \Lambda' \left| \hat{W}(\mathbf{0},\mathbf{k}) \right| - \frac{\mathbf{\Delta}}{2}, \Lambda \right\rangle$$

No semi-classical probabilistic interpretation!!

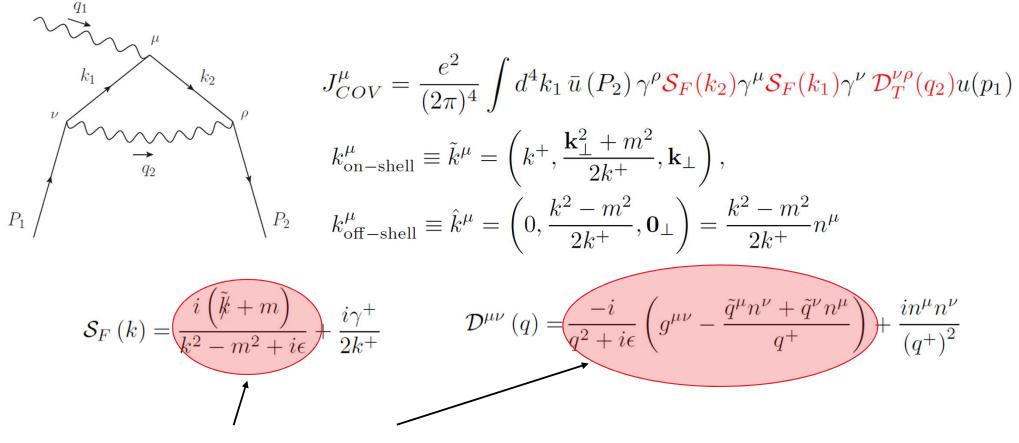
<u>Ji (2003)</u> <u>Belitsky, Ji, Yuan (2004)</u>

Proof of the equivalence



Numerators do not depend on k^-

Proof of the equivalence



On-shell (propagating) parts

Proof of the equivalence

