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At low xBj , many DIS observables can be expressed within dipole
factorization, including gluon saturation → rich phenomenology.

In particular: Dipole amplitude obtained from fits of HERA data for DIS
structure functions in the dipole factorization at LO+LL with rcBK
Albacete et al., PRD80 (2009); EPJC71 (2011)
Kuokkanen et al., NPA875 (2012);

Lappi, Mäntysaari, PRD88 (2013)

⇒ The fitted dipole amplitude can then be used for pp, pA, AA, as well
as other DIS observables.

In the last 10 years, many theoretical (including numerical) progresses
towards NLO/NLL accuracy for gluon saturation/CGC.

Obviously, DIS structure functions at NLO in the dipole factorization are
required to push the fits beyond LO+LL accuracy.
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DIS phenomenology at LO+LL
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Comparison with data on F

Fits of the reduced DIS cross-section σr and its charm contribution σrc at
HERA data with numerical solutions of the running coupling BK
equation.
Albacete, Armesto, Milhano, Quiroga, Salgado (2011)
see also: Kuokkanen, Rummukainen, Weigert (2012);

Lappi, Mäntysaari (2013); . . .
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Kinematics for Deep Inelastic Scattering (DIS)

γ∗

k
k’

electron

P

proton

p
p+q

q=k-k’

dσep→e+X

dxBj d2Q
=

αem

πxBjQ2

[(
1−y+

y2

2

)
σγT (xBj ,Q

2) + (1−y)σγL (xBj ,Q
2)

]

Photon virtuality: Q2 ≡ −q2 > 0

Bjorken x variable: xBj ≡ Q2

2P·q ∈ [0, 1]

Inelasticity: y ≡ 2P·q
(P+k)2 ∈ [0, 1]
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Kinematics for Deep Inelastic Scattering (DIS)

γ∗

k
k’

electron

P

proton

p
p+q

q=k-k’

dσep→e+X

dxBj d2Q
=

αem

πxBjQ2

[(
1−y+

y2

2

)
σγT (xBj ,Q

2) + (1−y)σγL (xBj ,Q
2)

]
Other equivalent parametrization: structure functions Fi

σγT ,L(xBj ,Q
2) =

(2π)2αem

Q2
FT ,L(xBj ,Q

2)

F2 = FT + FL and 2xBj F1 = FT
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Eikonal dilute-dense scattering

Recipe for dilute-dense processes at high-energy in light-front
perturbation theory (LFPT)
following Bjorken, Kogut and Soper (1971):

Decompose the projectile on a Fock basis at the time x+ = 0, with
appropriate light-front wave-functions.

Each parton n scatters independently on the target via a light-like
Wilson line URn(xn) through the target:

URn(xn) = P+ exp

[
ig

∫
dx+ T a

Rn
A−a (x+, xn)

]
with Rn = A, F or F̄ for g , q or q̄ partons.

Include final-state evolution of the projectile remnants.

Comments:
1 Final form of the result is general
2 But building blocks can be calculated separately only in LFPT in

light-cone gauge A+
a = 0
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Dipole factorization for eikonal DIS

Total cross section for photon of polarization λ on the background field
target:

σγλ = 2 ImMfwd
γλ→γλ = 2Re (−i)Mfwd

γλ→γλ

With the forward elastic scattering amplitude defined by:〈
γ∗λ(q′

+
;q′ = 0)dressed

∣∣∣ (ŜE − 1
) ∣∣∣γ∗λ(q+;q = 0)dressed

〉
= (2q+) 2πδ(q′

+−q+) iMfwd
γλ→γλ

Note:

σγL ≡ σγλ=L

σγT ≡ 1

# phys. pol.

∑
λ phys. pol.

σγλ
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Dipole factorization for eikonal DIS

Fock-state decomposition (in mixed space) of an incoming virtual photon:

∣∣∣γ∗λ(q+;q = 0)dressed
〉

= Non-QCD Fock states

+
∑̃

q0q̄1 F. states

2πδ(k+
0 +k+

1 −q+) 1α0α1 ψ̃γλ→q0q̄1 b
†
0d
†
1 |0〉

+
∑̃

q0q̄1g2 F. states

2πδ(k+
0 +k+

1 +k+
2 −q+) ta2

α0α1
ψ̃γλ→q0q̄1g2 b

†
0d
†
1a
†
2|0〉+ · · ·

Note: the Fock states with no quarks nor gluons cannot contribute to
Mfwd

γλ→γλ and thus to σγλ
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Dipole factorization for eikonal DIS

(2q+) iMfwd
γλ→γλ

=
∑̃

q0q̄1 F. states

2πδ(k+
0 +k+

1 −q+)
∣∣∣ψ̃γλ→q0q̄1

∣∣∣2 [Tr(UF (x0)U†F (x1)
)
− Nc

]
+

∑̃
q0q̄1g2 F. states

2πδ(k+
0 +k+

1 +k+
2 −q+)

∣∣∣ψ̃γλ→q0q̄1g2

∣∣∣2
×
[
Tr
(
tb2UF (x0) ta2U†F (x1)

)
UA(x2)b2a2 − Nc CF

]
+ · · ·
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Dipole factorization for eikonal DIS

⇒ Dipole factorization formula:

σγλ = 2Nc

∑̃
q0q̄1 F. states

2πδ(k+
0 +k+

1 −q+)

2q+

∣∣∣ψ̃γλ→q0q̄1

∣∣∣2 Re [1− S01]

+ 2NcCF

∑̃
q0q̄1g2 F. states

2πδ(k+
0 +k+

1 +k+
2 −q+)

2q+

×
∣∣∣ψ̃γλ→q0q̄1g2

∣∣∣2 Re
[
1− S(3)

012

]
+ · · ·

Dipole operator: S01 ≡
1

Nc
Tr
(
UF (x0)U†F (x1)

)

Tripole operator: S(3)
012 ≡

1

Nc CF
Tr
(
tbUF (x0) taU†F (x1)

)
UA(x2)ba
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Dipole factorization for eikonal DIS

⇒ Dipole factorization formula:

σγλ = 2Nc

∑̃
q0q̄1 F. states

2πδ(k+
0 +k+

1 −q+)

2q+

∣∣∣ψ̃γλ→q0q̄1

∣∣∣2 Re [1− S01]

+ 2NcCF

∑̃
q0q̄1g2 F. states

2πδ(k+
0 +k+

1 +k+
2 −q+)

2q+

×
∣∣∣ψ̃γλ→q0q̄1g2

∣∣∣2 Re
[
1− S(3)

012

]
+ · · ·

⊗ ⊗

k+0 , x0

k+1 , x1

q+, Q2

⊗ ⊗

k+0 , x0

k+2 , x2

k+1 , x1

q+, Q2
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DIS at NLO: previous results

2 independent calculations had been performed earlier for NLO
corrections to photon impact factor and/or DIS cross-section:

1 Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
Using covariant perturbation theory. Results provided as

Current correlator in position space
Impact factor for k⊥ factorization → Good for BFKL phenomenology

2 G.B., PRD85 (2012)
Using light-front perturbation theory. Results provided as

DIS structure functions in dipole factorization
→ Good for gluon saturation phenomenology

However, in both papers only the qq̄g contribution was calculated
explicitly, whereas NLO corrections to the qq̄ contribution were guessed.
Methods used for that:

1 In Balitsky, Chirilli, PRD83 (2011):
Matching with older vacuum results. (But not very clear to me.)

2 In G.B., PRD85 (2012):
Unitary argument. But I realized later that it does not work...
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Unitarity sum rule: real photon case

Fock state decomposition of the physical state of an incoming real γ:

|γdressed〉 =
√
Zγ

[
a†γ |0〉+

∑
l l̄ states

Ψγ

l l̄
b†l d

†
l̄
|0〉+

∑
qq̄ states

Ψγ
qq̄ b†q d

†
q̄ |0〉

+
∑

qq̄g states

Ψγ
qq̄g b†q d

†
q̄ a†g |0〉+ · · ·

]

Normalization of both the dressed state and the Fock states implies:

1−Zγ
Zγ

=
∑

l l̄ states

∣∣∣Ψγ

l l̄

∣∣∣2 +
∑

qq̄ states

∣∣Ψγ
qq̄

∣∣2 +
∑

qq̄g states

∣∣Ψγ
qq̄g

∣∣2 + O(αem α
2
s )

Perturbative expansion ⇒ at each order, one gets a new relation .
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Unitarity sum rule: real photon case

In particular, terms of order αem αs :

(
1−Zγ

)
αem αs

=

( ∑
qq̄ states

∣∣Ψγ
qq̄

∣∣2)
αem αs

+

( ∑
qq̄g states

∣∣Ψγ
qq̄g

∣∣2)
αem αs

In the previous study ( G.B., PRD85 (2012)):

I implicitly assumed that
(

1−Zγ
)

received no αem αs contribution, in

order to get
(∑

qq̄ states

∣∣Ψγ
qq̄

∣∣2)
αem αs

from
(∑

qq̄g states

∣∣Ψγ
qq̄g

∣∣2)
αem αs

However, there is a non-trivial (and finite) contribution to
(

1−Zγ
)

at

order αem αs .

This discussion is also valid in the virtual (T or L) photon case.

⇒ In this approach, not possible to get the
∣∣Ψγ

qq̄

∣∣2 at NLO from unitarity!

⇒ One-loop correction to Ψγ
qq̄ has to be calculated independently
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One-loop correction to the γT,L → qq̄ LF wave-functions

Calculation of the γT ,L → qq̄ LF wave-functions at NLO

Calculation done in Light-front perturbation theory for QCD+QED

Cut-off k+
min introduced to regulate the small k+ (soft) divergences

UV divergences from various tensor integrals, but no UV
renormalization at this order.
⇒ UV divergences (and finite regularization artifacts) have to cancel
at cross-section level
⇒ Use (Conventional) Dimensional Regularization, and pay
attention to rational terms in (D − 4)/(D − 4)

Convenient trick: Tensor reduction of transverse integrals
(Passarino-Veltman)
Allows to organize better the calculation (reduces the number of
integrals to calculate and of Dirac structures) and show the
cancellation of unphysical divergences already at the integrand level
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for γT and γL LFWFs: self-energies

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

0′′

EDLO EDA EDLO

Diagram A

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

1′

2

1′′

EDLO EDB EDLO

Diagram B

Straightforward to calculate

Clearly factors into LO
wave-function times Form Factor

DimReg prevents quadratic UV
divergences to appear, only
logarithmic ones remain

Contain not only log but also
unphysical log2 soft divergences
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for γT and γL LFWFs: vertex corrections

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

1′

EDV EDA EDLO

Diagram 1

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

1′

EDV EDB EDLO

Diagram 2

By far the hardest to calculate

Involves various tensor integrals in
transverse-momentum as well as
various Dirac structures

Contain unphysical log2 soft
divergences which cancel the ones
of the previous graphs.

In the γL case: contain unphysical
power-like soft divergences.

In the γT case: even after tensor
reduction, still not proportional to
the LO LFWF: one extra piece
remain. However, it cancels
between the diagrams 1 and 2.



Full NLO corrections for DIS structure functions in the dipole factorization formalism

One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for γT and γL LFWFs: vertex corrections

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

1′

EDV EDLO

Diagram 3

In the γT case: vanishes due to Lorentz symmetry

In the γL case: non-zero, and cancels the unphysical power-like soft
divergences of the other vertex correction graphs.
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for the γT → qq̄ LF wave-function only

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

EDA EDLO

Diagram A’

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

EDA EDLO

Diagram 1’

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

1′

2

EDB EDLO

Diagram B’

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

1′

2

EDB EDLO

Diagram 2’

All four vanish due to Lorentz symmetry!
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One-loop correction to the γT,L → qq̄ LF wave-functions

Results for NLO γT ,L → qq̄ LFWFs in momentum space

ψγ∗T,L→q0q̄1 =

[
1 +

(
αs CF

2π

)
VT ,L

]
ψtree
γ∗T,L→q0q̄1

+O(e α2
s )

VL = 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] [
Γ
(
2− D

2

) (
Q

2

4π µ2

) D
2 −2

− 2 log
(

P2+Q
2

Q
2

)]
+ 1

2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 3 + O (D−4)

VT = VL + 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] (
P2+Q

2

P2

)
log
(

P2+Q
2

Q
2

)
+ O (D−4)

Notations: Q
2 ≡ k+

0 k+
1

(q+)2 Q
2,

and relative transverse momentum: P ≡ k0− k+
0

q+ q = −k1 +
k+

1

q+ q

Remark: results consistent with the ones of Boussarie, Grabovsky,

Szymanowski and Wallon, JHEP11(2016)149
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) D
2 −2

− 2 log
(

P2+Q
2

Q
2

)]
+ 1

2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 3 + O (D−4)

VT = VL + 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] (
P2+Q

2

P2

)
log
(

P2+Q
2

Q
2

)
+ O (D−4)

Notations: Q
2 ≡ k+

0 k+
1

(q+)2 Q
2,

and relative transverse momentum: P ≡ k0− k+
0

q+ q = −k1 +
k+

1

q+ q

Remark: results consistent with the ones of Boussarie, Grabovsky,

Szymanowski and Wallon, JHEP11(2016)149
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One-loop correction to the γT,L → qq̄ LF wave-functions

Results for NLO γT ,L → qq̄ LFWFs in mixed space

ψ̃γ∗T,L→q0q̄1 =

[
1 +

(
αs CF

2π

)
ṼT ,L

]
ψ̃tree
γ∗T,L→q0q̄1

+O(e α2
s )

ṼT = ṼL + O (D−4)

= 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] [
Γ(2−D

2 )
(4π)

D
2
−2

+ log
(

x01
2 µ2

4

)
− 2Ψ(1)

]
+ 1

2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 3 + O (D−4)

In mixed space: NLO corrections ⇒ rescaling of the LO γT ,L → qq̄
LFWFs by a factor independent of the photon polarization and
virtuality !

Leftover logarithmic UV and soft divergences to be dealt with at
cross-section level.
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DIS at NLO in the dipole factorization: combining the pieces

From LFWFs to DIS cross-section

⊗ ⊗

k+0 , x0

k+1 , x1

q+, Q2

⊗ ⊗

k+0 , x0

k+2 , x2

k+1 , x1

q+, Q2

ψ̃
γ∗T,L
γ∗T,L→q̄ now known at NLO accuracy in Dim Reg.

⇒ Need to be combined with the qq̄g contribution in the dipole
factorization formula at NLO

⇒ ψ̃γ∗T,Lqq̄g is required also in Dim Reg, in order to cancel UV
divergences as well as scheme dependent artifacts.

Only the case of σγL will be discussed in the following for simplicity. The
case of σγT can be dealt with in the same way, but gives much longer
expressions.
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DIS at NLO in the dipole factorization: combining the pieces

qq̄ contribution to σγL at NLO in dim. reg.

ψ̃tree
γ∗
T
→q0 q̄1

= −e ef µ2− D
2 (2π)1− D

2 2Q
k+

0
k+

1
(q+)2

(
Q
|x01|

) D
2
−2

K D
2
−2

(
|x01|Q

)
uG (0) γ+vG (1)

σγL

∣∣∣
qq̄

= 2Nc

∑̃
q0q̄1 F. states

2πδ(k+
0 +k+

1 −q+)

2q+

∣∣∣ψ̃tree
γL→q0q̄1

∣∣∣2 Re [1− S01]

×
[

1 +

(
αs CF

2π

)
ṼT ,L

]2

+ O(αem α
2
s )

σγL

∣∣∣
qq̄

= 4Nc αem

∑
f

e2
f

∫
dD−2x0

2π

∫
dD−2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1 δ(k+

0 +k+
1 −q+)

× 4Q2

(q+)5 (k+
0 k+

1 )2
[

Q
2

(2π)2µ2x2
01

] D
2 −2 [

K D
2 −2

(
|x01|Q

)]2

×
[
1 +

(
αs CF

π

)
ṼL
]
Re [1− S01] + O(αem α

2
s )
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DIS at NLO in the dipole factorization: combining the pieces

Tree-level diagrams for γL → qq̄g LFWFs

2 diagrams contribute to γL → qq̄g (and 4 to γT → qq̄g):

γ∗L : q+ , Q2

0

1

2

Diagram (a)

γ∗L : q+ , Q2

0

1

2

Diagram (b)

→ Standard calculation in momentum space using LFPT rules, but to be
done in dimensional regularization

Then: Fourier transform to mixed space
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DIS at NLO in the dipole factorization: combining the pieces

γL → qq̄g LFWF in mixed space

Result:

ψ̃Tree
γ∗L→q0q̄1g2

= e ef g ε
j∗
λ2

2Q
(q+)2

×
{
k+

1 uG (0)γ+
[
(2k+

0 +k+
2 )δjm +

k+
2

2 [γj , γm]
]
vG (1) Im

(
x0+2;1, x20;Q

2

(a), C(a)

)
−k+

0 uG (0)γ+
[
(2k+

1 +k+
2 )δjm − k+

2

2 [γj , γm]
]
vG (1) Im

(
x0;1+2, x21;Q

2

(b), C(b)

) }
with the notations:

Q
2

(a) =
k+

1 (q+−k+
1 )

(q+)2 Q2 and Q
2

(b) =
k+

0 (q+−k+
0 )

(q+)2 Q2

C(a) =
q+ k+

0 k+
2

k+
1 (k+

0 +k+
2 )2 and C(b) =

q+ k+
1 k+

2

k+
0 (k+

1 +k+
2 )2

And parent dipole vectors defined as:

xn+m;p = −xp;n+m ≡
(
k+
n xn + k+

mxm
k+
n +k+

m

)
− xp
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DIS at NLO in the dipole factorization: combining the pieces

First look at the Fourier integral

Im
(
r, r′;Q

2
, C
)
≡ (µ2)2− D

2

∫
dD−2P

(2π)D−2

∫
dD−2K

(2π)D−2
Km e iK·r

′
e iP·r[

P2+Q
2
]{

K2+C
[
P2+Q

2
]}

Introducing Schwinger variables:

Im
(
r, r′;Q

2
, C
)

= r′m
(
r′2
)1− D

2 i
2 (2π)2−D (µ2

)2− D
2

×
∫ +∞

0

dσ σ1− D
2 e−σQ

2

e−
r2

4σ Γ
(

D
2 −1, r

′2C
4σ

)
For D = 4:

Im
(
r, r′;Q

2
, C
)

= i
(2π)2

(
r′m

r′2

)
K0

(
Q
√
r2 + C r′2

)
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DIS at NLO in the dipole factorization: combining the pieces

qq̄g contribution to σγL at NLO in dim. reg.

σγL |qq̄g = 2NcCF

∑̃
q0q̄1g2 F. states

2πδ(k+
0 +k+

1 +k+
2−q

+)
2q+

∣∣∣ψ̃γL→q0q̄1g2

∣∣∣2 Re
[
1− S(3)

012

]
= 4Nc αem

∑
f

e2
f

∫
dD−2x0

∫
dD−2x1

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

(q+)5

× 2αsCF

∫ +∞

k+
min

dk+
2

k+
2
δ(k+

0 +k+
1 +k+

2 −q+)

∫
dD−2x2 Re

[
1− S(3)

012

]
×
{

(k+
1 )2(q+−k+

1 )2

[
2−2

k+
2

k+
0 +k+

2
+ D−2

2

(
k+

2

k+
0 +k+

2

)2
] ∣∣∣Im ((a))

∣∣∣2
+(k+

0 )2(q+−k+
0 )2

[
2−2

k+
2

k+
1 +k+

2
+ D−2

2

(
k+

2

k+
1 +k+

2

)2
] ∣∣∣Im ((b))

∣∣∣2
−k+

0 k+
1

[
2(k+

0 +k+
2 )k+

1 + 2k+
0 (k+

1 +k+
2 )− (D−2)(k+

2 )2
]

×Re
(
Im ((a))∗ Im ((b))

)}
+ O(αem α

2
s )



Full NLO corrections for DIS structure functions in the dipole factorization formalism

DIS at NLO in the dipole factorization: combining the pieces

UV divergences of the qq̄g contribution to σγL

UV divergences :

At x2 → x0 for |(a)|2 contribution

At x2 → x1 for |(b)|2 contribution

For example, for x2 → x0:

dD−2x2

∣∣∣Im ((a))
∣∣∣2 Re

[
1− S(3)

012

]
∝ dD−2x2

(
x20

2
)3−D

Re [1− S01]

Traditional method to deal with these UV divergences:

1 Make the subtraction
[
1−S(3)

012

]
→
[
1−S(3)

012

]
−
[
1−S01

]
in σγL |qq̄g

2 Add the corresponding term to σγL |qq̄
It works, but it is far from optimal in the present case!
⇒ Let us present an improvement of that method.
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DIS at NLO in the dipole factorization: combining the pieces

UV divergences of the qq̄g contribution to σγL

UV divergences :

At x2 → x0 for |(a)|2 contribution

At x2 → x1 for |(b)|2 contribution

For example, for x2 → x0:

dD−2x2

∣∣∣Im ((a))
∣∣∣2 Re

[
1− S(3)

012

]
∝ dD−2x2

(
x20

2
)3−D

Re [1− S01]

Traditional method to deal with these UV divergences:

1 Make the subtraction
[
1−S(3)

012

]
→
[
1−S(3)

012

]
−
[
1−S01

]
in σγL |qq̄g

2 Add the corresponding term to σγL |qq̄
It works, but it is far from optimal in the present case!
⇒ Let us present an improvement of that method.
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DIS at NLO in the dipole factorization: combining the pieces

Building the UV subtraction terms

→ Let us define a UV approximation of the Fourier integral:

For |r′| → 0 : Im
(
r, r′;Q

2
, C
)
∼ ImUV

(
r, r′;Q

2
)

where

ImUV
(
r, r′;Q

2
)
≡ r′m

(
r′2
)1− D

2 i
(2π)2 Γ

(
D
2 −1

) (
2Q

(2π)2µ2|r|

) D
2 −2

K D
2 −2

(
Q |r|

)
⇒ Factorized power-like dependence on the daughter dipole vector r′

Next idea to deal with the UV divergences : make the subtraction{∣∣∣Im ((a))
∣∣∣2 Re

[
1− S(3)

012

]
−
∣∣∣ImUV(x01, x20;Q

2

(a)

) ∣∣∣2 Re
[
1− S01

]}
Cancels indeed the UV divergence at x2 → x0, but produces an IR
divergence at |x20| → +∞, absent in the original term!
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DIS at NLO in the dipole factorization: combining the pieces

Building the UV subtraction terms

→ Let us define a UV approximation of the Fourier integral:

For |r′| → 0 : Im
(
r, r′;Q

2
, C
)
∼ ImUV

(
r, r′;Q

2
)

where

ImUV
(
r, r′;Q

2
)
≡ r′m

(
r′2
)1− D

2 i
(2π)2 Γ

(
D
2 −1

) (
2Q

(2π)2µ2|r|

) D
2 −2

K D
2 −2

(
Q |r|

)
⇒ Factorized power-like dependence on the daughter dipole vector r′

Next idea to deal with the UV divergences : make the subtraction{∣∣∣Im ((a))
∣∣∣2 Re

[
1− S(3)

012

]
−
∣∣∣ImUV(x01, x20;Q

2

(a)

) ∣∣∣2 Re
[
1− S01

]}
Cancels indeed the UV divergence at x2 → x0, but produces an IR
divergence at |x20| → +∞, absent in the original term!
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DIS at NLO in the dipole factorization: combining the pieces

Building the UV subtraction terms

Final idea: subtract the IR divergence from the UV subtraction term, as{∣∣∣Im ((a))
∣∣∣2 Re

[
1− S(3)

012

]
−
[∣∣∣ImUV(x01, x20;Q

2

(a)

) ∣∣∣2
−Re

(
Im∗UV

(
x01, x20;Q

2

(a)

)
ImUV

(
x01, x21;Q

2

(a)

))]
Re
[
1− S01

]}
This difference leads to a UV and IR finite integral in x2.

⇒ The D → 4 limit is now safe to take:

→ 1

(2π)4

{
1

x2
20

[
K0

(
Q X012

)]2

Re
[
1− S(3)

012

]
−
[
x20

x2
20

·
(
x20

x2
20

− x21

x2
21

)] [
K0

(
Q

2

(a) |x01|
)]2

Re
[
1− S01

]}

Q2X 2
012 ≡

Q2

(q+)2

[
k+

0 k+
1 x2

01 + k+
0 k+

2 x2
02 + k+

1 k+
2 x2

12

]
=

qq̄g form. time

γ∗ life time
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DIS at NLO in the dipole factorization: combining the pieces

Building the UV subtraction terms

Final idea: subtract the IR divergence from the UV subtraction term, as{∣∣∣Im ((a))
∣∣∣2 Re

[
1− S(3)

012

]
−
[∣∣∣ImUV(x01, x20;Q

2

(a)

) ∣∣∣2
−Re

(
Im∗UV

(
x01, x20;Q

2

(a)

)
ImUV

(
x01, x21;Q

2

(a)

))]
Re
[
1− S01

]}
This difference leads to a UV and IR finite integral in x2.
⇒ The D → 4 limit is now safe to take:

→ 1

(2π)4

{
1

x2
20

[
K0

(
Q X012

)]2

Re
[
1− S(3)

012

]
−
[
x20

x2
20

·
(
x20

x2
20

− x21

x2
21

)] [
K0

(
Q

2

(a) |x01|
)]2

Re
[
1− S01

]}

Q2X 2
012 ≡

Q2

(q+)2

[
k+

0 k+
1 x2

01 + k+
0 k+

2 x2
02 + k+

1 k+
2 x2

12

]
=

qq̄g form. time

γ∗ life time
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DIS at NLO in the dipole factorization: combining the pieces

UV-subtracted qq̄g contribution to σγL

Subtracting both UV divergences this way:

σγL |qq̄g − σ
γ
L |UV ,|(a)|2 − σγL |UV ,|(b)|2

= 4Nc αem

∑
f e

2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

(q+)5
αsCF

π

×
∫ +∞

k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]

With:

q term = (k+
1 )2(q+−k+

1 )2

[
2−2

k+
2

k+
0 +k+

2
+ D−2

2

(
k+

2

k+
0 +k+

2

)2
] [

x20

x2
20

·
(
x20

x2
20

− x21

x2
21

)]
×
{[

K0(QX012)
]2

Re
[
1−S012

]
−
(
x2 → x0

)}
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DIS at NLO in the dipole factorization: combining the pieces

UV-subtracted qq̄g contribution to σγL

Subtracting both UV divergences this way:

σγL |qq̄g − σ
γ
L |UV ,|(a)|2 − σγL |UV ,|(b)|2

= 4Nc αem

∑
f e

2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

(q+)5
αsCF

π

×
∫ +∞

k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]
With:

q term = (k+
1 )2(q+−k+

1 )2

[
2−2

k+
2

k+
0 +k+

2
+ D−2

2

(
k+

2

k+
0 +k+

2

)2
] [

x20

x2
20

·
(
x20

x2
20

− x21

x2
21

)]
×
{[

K0(QX012)
]2

Re
[
1−S012

]
−
(
x2 → x0

)}
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DIS at NLO in the dipole factorization: combining the pieces

UV-subtracted qq̄g contribution to σγL

Subtracting both UV divergences this way:

σγL |qq̄g − σ
γ
L |UV ,|(a)|2 − σγL |UV ,|(b)|2

= 4Nc αem

∑
f e

2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

(q+)5
αsCF

π

×
∫ +∞

k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]
With:

q̄ term = (k+
0 )2(q+−k+

0 )2

[
2−2

k+
2

k+
1 +k+

2
+ D−2

2

(
k+

2

k+
1 +k+

2

)2
] [

x21

x2
21

·
(
x21

x2
21

− x20

x2
20

)]
×
{[

K0(QX012)
]2

Re
[
1−S012

]
−
(
x2 → x1

)}



Full NLO corrections for DIS structure functions in the dipole factorization formalism

DIS at NLO in the dipole factorization: combining the pieces

UV-subtracted qq̄g contribution to σγL

Subtracting both UV divergences this way:

σγL |qq̄g − σ
γ
L |UV ,|(a)|2 − σγL |UV ,|(b)|2

= 4Nc αem

∑
f e

2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

(q+)5
αsCF

π

×
∫ +∞

k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]
With:

leftover = (k+
2 )2(q+−k+

2 )2
(

x20

x2
20
· x21

x2
21

) [
K0(QX012)

]2

Re
[
1−S012

]
{}
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DIS at NLO in the dipole factorization: combining the pieces

Combining the UV terms with the qq̄ contribution to σγL

In dim. reg., the UV subtraction terms can be written as

σγL |UV ,|(a)|2 + σγL |UV ,|(b)|2

= 4Nc αem

∑
f

e2
f

∫
dD−2x0

2π

∫
dD−2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1 δ(k+

0 +k+
1 −q+)

× 4Q2

(q+)5 (k+
0 k+

1 )2
[

Q
2

(2π)2µ2x2
01

] D
2 −2 [

K D
2 −2

(
|x01|Q

)]2

×
(
αs CF

π

) [
ṼL
UV ,|(a)|2 + ṼL

UV ,|(b)|2

]
Re [1− S01]

With:

ṼL
UV ,|(a)|2 = Γ

(
D

2
−2

) (
πµ2x2

01

)2− D
2

[
log

(
k+

min

k+
0

)
+

3

4
− (D−4)

8

]
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DIS at NLO in the dipole factorization: combining the pieces

Combining the UV terms with the qq̄ contribution to σγL

In dim. reg., the UV subtraction terms can be written as

σγL |UV ,|(a)|2 + σγL |UV ,|(b)|2

= 4Nc αem

∑
f

e2
f

∫
dD−2x0

2π

∫
dD−2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1 δ(k+

0 +k+
1 −q+)

× 4Q2

(q+)5 (k+
0 k+

1 )2
[

Q
2

(2π)2µ2x2
01

] D
2 −2 [

K D
2 −2

(
|x01|Q

)]2

×
(
αs CF

π

) [
ṼL
UV ,|(a)|2 + ṼL

UV ,|(b)|2

]
Re [1− S01]

With:

ṼL
UV ,|(a)|2 = Γ

(
D

2
−2

) (
πµ2x2

01

)2− D
2

[
log

(
k+

min

k+
0

)
+

3

4
− (D−4)

8

]
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DIS at NLO in the dipole factorization: combining the pieces

Combining the UV terms with the qq̄ contribution to σγL

In dim. reg., the UV subtraction terms can be written as

σγL |UV ,|(a)|2 + σγL |UV ,|(b)|2

= 4Nc αem

∑
f

e2
f

∫
dD−2x0

2π

∫
dD−2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1 δ(k+

0 +k+
1 −q+)

× 4Q2

(q+)5 (k+
0 k+

1 )2
[

Q
2

(2π)2µ2x2
01

] D
2 −2 [

K D
2 −2

(
|x01|Q

)]2

×
(
αs CF

π

) [
ṼL
UV ,|(a)|2 + ṼL

UV ,|(b)|2

]
Re [1− S01]

With:

ṼL
UV ,|(b)|2 = Γ

(
D

2
−2

) (
πµ2x2

01

)2− D
2

[
log

(
k+

min

k+
1

)
+

3

4
− (D−4)

8

]
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DIS at NLO in the dipole factorization: combining the pieces

Combining the UV terms with the qq̄ contribution to σγL
Expanding around D = 4:

ṼL
UV ,|(a)|2 + ṼL

UV ,|(b)|2 = −2

[
1

(2−D
2 )
−Ψ(1) + log

(
π x01

2 µ2
)]

×
[

log

(
k+

min√
k+

0 k+
1

)
+ 3

4

]
− 1

2 + O(D−4)

But in the qq̄ contribution to σγL :

ṼL = 2

[
1

(2−D
2 )
−Ψ(1) + log

(
π x01

2 µ2
)] [

log

(
k+

min√
k+

0 k+
1

)
+ 3

4

]
+ 1

2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 5
2 + 1

2 + O(D−4)

⇒ Cancelation of:

the UV divergence

the k+
min dependence

the ±1/2 rational term : strong hint of UV regularization scheme
independence
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Combining the UV terms with the qq̄ contribution to σγL

Final result for the dipole-like terms:

σγL |qq̄ + σγL |UV ,|(a)|2 + σγL |UV ,|(b)|2

= 4Nc αem

∑
f

e2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1 δ(k+

0 +k+
1 −q+) 4Q2

(q+)5

×(k+
0 k+

1 )2
[
K0

(
|x01|Q

)]2 (
αs CF

π

) [
1 +

(
αs CF

π

)
ṼL
reg.

]
Re [1− S01]

With:

ṼL
reg. ≡ ṼL + ṼL

UV ,|(a)|2 + ṼL
UV ,|(b)|2

=
1

2

[
log

(
k+

0

k+
1

)]2

− π2

6
+

5

2
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DIS at NLO in the dipole factorization: combining the pieces

To do next: BK/JIMWLK resummation

1 Assign k+
min to the scale set by the target: k+

min =
Q2

0

2x0 P−
=

xBj Q
2
0

x0 Q2 q+

2 Choose a factorization scale k+
f . k+

0 , k
+
1 , corresponding to a range

for the high-energy evolution Y +
f ≡ log

(
k+
f

k+
min

)
= log

(
x0 Q

2 k+
f

xBj Q2
0 q+

)
3 In the LO term in the observable, make the replacement

〈S01〉0 = 〈S01〉Y +
f
−
∫ Y +

f

0

dY +
(
∂Y +〈S01〉Y +

)
with both terms calculated with the same evolution equation

4 Combine the second term with the NLO correction to cancel its k+
min

dependence and the associated large logs.

⇒ Works straightforwardly in the case of

the naive LL BK equation

the kinematically improved BK equation as implemented in
G.B., PRD89 (2014)

Should also work with the other implementation (Iancu et al., PLB744

(2015)), but might require a bit more work.
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Conclusions

Direct calculation of γT ,L → qq̄ LFWFs at one-gluon-loop order,
both in momentum and in mixed space

Full NLO correction to FL and FT obtained from the combination of
the qq̄ and qq̄g contributions:
UV Dim. Reg. used in both cases, in order to have the finite terms
under control.

More refined method proposed to cancel the UV divergences
between the qq̄ and qq̄g contributions:

1 Minimally transfers terms from one to the other
2 Each of the 4 terms in the final result seems well behaved

⇒ good numerical stability is expected
3 Only the q-term and the q̄-term relevant for High-Energy LL

resummation

Ambiguity in the way of cancelling UV divergences is reminiscent of the
similar issue for the cancellation of soft and collinear divergence in higher
order pQCD calculations (antenna subtraction, etc...)
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Outlook

Phenomenology outlook : All ingredients soon available for fits to HERA
data at NLO+LL accuracy, and hopefully NLO+NLL
accuracy, in the dipole factorization, including gluon
saturation.

Theory outlook : Application of the NLO γT ,L → qq̄(g) LFWFs to
calculate other DIS observables at NLO?

Extension to the case of massive quarks?

The techniques developed here should be useful for
future NLO calculations in the CGC
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