Polarized parton production in DIS at small x

Jamal Jalilian-Marian

Baruch College, New York
and
Ecole Polytechnique, Palaiseau

pQCD in pp Collisions

Collinear factorization :separation of long and short distances

pQCD in pp Collisions

Collinear factorization :separation of long and short distances

DIS at HERA: parton distributions

$$
\mathbf{Q}^{2} \equiv-\mathbf{q}^{2} \quad \mathrm{x}=\frac{\mathbf{p}^{+}}{\mathbf{P}^{+}}
$$

power-like growth of gluon and sea quark distributions with x new QCD dynamics at small x?

Gluon saturation

Leading twist pQCD: collinear factorization

DGLAP evolution of partons
number of partons increases with Q^{2} parton "size" decreases
excellent tool for high Q2 inclusive observables higher twists become important at low Q^{2}

Does not include:
shadowing
multiple scattering
diffraction
Saturation effects break collinear factorization:
multiple scattering evolution with energy (x or rapidity)

Need a new formalism

MV effective Action + Wilsonian RGE

$\mathbf{S}[\mathbf{A}, \rho]=-\frac{1}{4} \int \mathbf{d}^{4} \mathbf{x} \mathbf{F}_{\mu \nu}^{2}+\frac{\mathbf{i}}{\mathbf{N}_{\mathbf{c}}} \int \mathrm{d}^{2} \mathbf{x}_{\mathbf{t}} \mathbf{d} \mathbf{x}^{-} \delta\left(\mathbf{x}^{-}\right) \operatorname{Tr}\left[\rho\left(\mathbf{x}_{\mathbf{t}}\right) \mathbf{U}\left(\mathbf{A}^{-}\right)\right]$
Large x : color source ρ small x : gluon field $\quad \mathbf{A}^{\mu}$
$\mathbf{U}\left(\mathbf{A}^{-}\right)=\hat{\mathbf{P}} \operatorname{Exp}\left[\operatorname{ig} \int \mathrm{dx}^{+} \mathbf{A}_{\mathrm{a}}^{-} \mathbf{T}_{\mathbf{a}}\right]$
$\mathbf{Z}[\mathbf{j}]=\int[\mathbf{D} \rho] \mathbf{W}_{\mathbf{\Lambda}^{+}}[\rho]\left[\frac{\int^{\boldsymbol{\Lambda}^{+}}[\mathbf{D A}] \delta\left(\mathbf{A}^{+}\right) \mathbf{e}^{\mathbf{i} \mathbf{S}[\mathbf{A}, \rho]-\int \mathbf{j} \cdot \mathbf{A}}}{\int^{\boldsymbol{\Lambda}^{+}}[\mathbf{D A}] \delta\left(\mathbf{A}^{+}\right) \mathbf{e}^{\mathbf{i} \mathbf{S}[\mathbf{A}, \rho]}}\right]$
weight functional:
probability distribution of color source ρ at longitudinal scale Λ^{+}

static color charges ρ

classical equations of motion

$$
\mathbf{D}_{\mu} \mathbf{F}_{\mathbf{a}}^{\mu \nu}=\mathbf{g} \mathbf{J}_{\mathbf{a}}^{\nu} \quad \text { with } \quad \mathbf{J}_{\mathbf{a}}^{\mu}(\mathbf{x}) \equiv \delta^{\mu+} \delta\left(\mathbf{x}^{-}\right) \rho_{\mathbf{a}}\left(\mathbf{x}_{\mathbf{t}}\right)
$$

solution in light cone gauge $\left(A^{+}=o\right)$:

$$
\begin{aligned}
A_{a}^{-} & =0 \\
A_{i}^{a} & =\theta\left(x^{-}\right) \alpha_{i}^{a}\left(x_{t}\right) \\
\mathbf{F}^{+\mathbf{i}} & \sim \delta\left(\mathbf{x}^{-}\right) \alpha^{\mathbf{i}} \neq \mathbf{0}
\end{aligned}
$$

and

$$
\begin{aligned}
& \partial_{i} \alpha_{i}^{a}\left(x_{t}\right)=g \rho^{a}\left(x_{t}\right) \\
& \alpha_{i}=\frac{i}{g} U\left(x_{t}\right) \partial_{i} U^{\dagger}\left(x_{t}\right)
\end{aligned}
$$

solution is a 2-d pure gauge it is (LC) time-independent the only "physical" color fields $\mathbf{E}_{\perp}^{\mathbf{a}}, \mathbf{B}_{\perp}^{\mathbf{a}}$

JIMWLK evolution equation

$$
\frac{d}{d \ln 1 / x}\langle O\rangle=\frac{1}{2}\left\langle\int d^{2} x d^{2} y \frac{\delta}{\delta \alpha_{x}^{b}} \eta_{x y}^{b d} \frac{\delta}{\delta \alpha_{y}^{d}} O\right\rangle
$$

$$
\eta_{x y}^{b d}=\frac{1}{\pi} \int \frac{d^{2} z}{(2 \pi)^{2}} \frac{(x-z) \cdot(y-z)}{(x-z)^{2}(y-z)^{2}}[\underbrace{1+U_{x}^{\dagger} U_{y}}_{\text {virtual }}-\underbrace{U_{x}^{\dagger} U_{z}-U_{z}^{\dagger} U_{y}}_{\text {real }}]^{b d}
$$

probes

dense-dense (AA, ...) collisions

dilute-dense (pA, \ldots) collisions

DIS

structure functions (diffraction) NLO di-hadron/jet correlations 3-hadron/jet angular correlations

Signatures in production spectra

 multiple scattering: p_{t} broadeningx-evolution: suppression of spectra/away side peaks

DIS total cross section $\left(F_{2}, F_{L}\right)$

 $\sigma_{\text {DIS }}^{\text {total }}=2 \int_{0}^{1} \mathrm{dz} \int \mathrm{d}^{2} \mathrm{x}_{\mathrm{t}} \mathrm{d}^{2} \mathrm{y}_{\mathrm{t}}\left|\Psi\left(\mathrm{k}^{ \pm}, \mathrm{k}_{\mathrm{t}} \mid \mathrm{z}, \mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}\right)\right|^{2} \mathbf{T}\left(\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}\right)$dipole cross section

$$
\mathbf{T}\left(\mathbf{x}_{\mathbf{t}}, \mathbf{y}_{\mathbf{t}}\right) \equiv \frac{\mathbf{1}}{\mathbf{N}_{\mathbf{c}}} \operatorname{Tr}\left\langle\mathbf{1}-\mathbf{V}\left(\mathbf{x}_{\mathbf{t}}\right) \mathbf{V}^{\dagger}\left(\mathbf{y}_{\mathbf{t}}\right)\right\rangle
$$

$$
T\left(\mathbf{r}_{\mathbf{t}}\right) \sim\left[1-\mathrm{e}^{-\mathbf{r}_{t}^{2} \mathbf{Q}^{2}}\right]
$$

$\mathbf{V}\left(\mathrm{x}_{\mathrm{t}}\right) \equiv \underset{{ }^{\circ}}{ } \equiv$

$$
\sim 1+\mathbf{O}(\mathrm{g} \mathbf{A})+\mathbf{O}\left(\mathrm{g}^{2} \mathrm{~A}^{2}\right)
$$

multiple soft scatterings encoded in Wilson line V
energy (rapidity or \boldsymbol{x}) dependence via JIMWLK evolution of correlators of V 's

disappearance of back to back hadrons in pA collisions

Recent STAR measurement (arXiv:1008.3989v1):
Marquet, NPA (2007)

CGC fit from Albacete + Marquet, PRL (2010)
Tuchin, NPA846 (2010)
A. Stasto, B-W. Xiao, F. Yuan, PLB716 (2012)
T. Lappi, H. Mantysaari, NPA908 (2013)

di-hadron (azimuthal) angular correlations in DIS

LO:

$$
\gamma^{\star}(\mathbf{k}) \mathbf{T} \rightarrow \mathbf{q}(\mathbf{p}) \overline{\mathbf{q}}(\mathbf{q}) \mathbf{X}
$$

Target (proton, nucleus) as a classical color field

building block: quark propagator in the background color field solution of Dirac equation

$$
\mathrm{S}_{F}(q, p) \equiv(2 \pi)^{4} \underbrace{\delta^{4}(p-q) S_{F}^{0}(p)}_{\text {no interaction }}+S_{F}^{0}(q) \underbrace{\tau_{f}(q, p)}_{\text {interaction }} S_{F}^{0}(p) \quad \text { with } \quad S_{F}^{0}(p)=\frac{i}{\not p+i \epsilon}
$$

$$
\begin{aligned}
\tau_{f}(q, p) \equiv & (2 \pi) \delta\left(p^{+}-q^{+}\right) \gamma^{+} \int d^{2} x_{t} e^{i\left(q_{t}-p_{t}\right) \cdot x_{t}} \\
& \left\{\theta\left(p^{+}\right)\left[V\left(x_{t}\right)-1\right]-\theta\left(-p^{+}\right)\left[V^{\dagger}\left(x_{t}\right)-1\right]\right\}
\end{aligned}
$$

$\gamma^{\star}(\mathbf{k}) \mathbf{T} \rightarrow \mathbf{q}(\mathbf{p}) \overline{\mathbf{q}}(\mathbf{q}) \mathbf{X}$

$$
\begin{aligned}
i \mathcal{A} & =(i e) \bar{u}(p)\left[S_{F}^{(0)}(p)\right]^{-1} S_{F}(p, k-q) \notin(k) S_{F}(p-k,-q)\left[S_{F}^{(0)}(-q)\right]^{-1} v(q) \\
& \equiv i \mathcal{A}_{1}+i \mathcal{A}_{2}+i \mathcal{A}_{3}
\end{aligned}
$$

with

$$
\begin{aligned}
i \mathcal{A}_{1} & =(i e) \bar{u}(p) \tau_{F}(p, k-q) S_{F}^{(0)}(k-q) \notin(k) v(q) \\
i \mathcal{A}_{2} & =(i e) \bar{u}(p) \notin(k) S_{F}^{(0)}(p-k) \tau_{F}(p-k,-q) v(q) \\
i \mathcal{A}_{3} & =(i e) \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \bar{u}(p) \tau_{F}\left(p, k_{1}\right) S_{F}^{(0)}\left(k_{1}\right) \notin(k) S_{F}^{(0)}\left(k_{1}-k\right) \tau_{F}\left(k_{1}-k,-q\right) v(q)
\end{aligned}
$$

simplify: τ has two parts V and -1 , multiply out cancellation of A1, A2 with parts of A3

$$
V\left(x_{t}\right) \otimes(-1)
$$

$$
(-1) \otimes V^{\dagger}\left(y_{t}\right)
$$

di-hadron production in DIS

$\gamma^{\star}(\mathbf{k}) \mathbf{T} \rightarrow \mathbf{q}(\mathbf{p}) \overline{\mathbf{q}}(\mathbf{q}) \mathbf{X}$

$$
\begin{aligned}
& \mathcal{A}^{\mu}(k, q, p)= \frac{i}{2} \int \frac{d^{2} l_{t}}{(2 \pi)^{2}} d^{2} x_{t} d^{2} y_{t} e^{i\left(p_{t}+q_{t}-k_{t}-l_{t}\right) \cdot y_{t}} \\
& e^{i l_{t} \cdot x_{t}} \bar{u}(p) \Gamma^{\mu} v(q)\left[V\left(x_{t}\right) V^{\dagger}\left(y_{t}\right)-1\right]
\end{aligned}
$$

quadrupoles
$\Gamma^{\mu} \equiv$
$p^{+}\left[\left(p_{t}-l_{t}\right)^{2}+\not p-\not m^{2}-2 q^{+} k^{-}\right]+q^{+}\left[\left(p_{t}-k_{t}-l_{t}\right)^{2}+m^{2}\right]$
F. Gelis and J. Jalilian-Marian, PRD67 (2003) 074019 Zheng + Aschenauer + Lee + Xiao, PRD89 (2014)7, 074037

spinor helicity methods

massless quarks: helicity eigenstates

$$
\begin{aligned}
u_{ \pm}(k) & \equiv \frac{1}{2}\left(1 \pm \gamma_{5}\right) u(k) & \overline{u_{ \pm}(k)} & \equiv \overline{u(k)} \frac{1}{2}\left(1 \mp \gamma_{5}\right) \\
v_{\mp}(k) & \equiv \frac{1}{2}\left(1 \pm \gamma_{5}\right) v(k) & \overline{v_{\mp}(k)} & \equiv \overline{v(k)} \frac{1}{2}\left(1 \mp \gamma_{5}\right)
\end{aligned}
$$

helicity operator

$$
\left.\begin{array}{l}
\mathrm{h} \equiv \vec{\Sigma} \cdot \hat{p}=\left(\begin{array}{cc}
\vec{\sigma} \cdot \hat{p} & 0 \\
0 & \vec{\sigma} \cdot \hat{p}
\end{array}\right) \\
u_{+}(k)=v_{-}(k)=\frac{1}{2^{1 / 4}}\left[\begin{array}{c}
\vec{p} u_{ \pm}(p) \\
-\vec{\Sigma} \cdot \hat{p} v_{ \pm}(p)
\end{array}\right)= \pm u_{ \pm}(p) \\
u_{ \pm}(p) \\
\sqrt{k^{-}} e^{i \phi_{k}} \\
\sqrt{k^{+}} \\
\sqrt{k^{-}} e^{i \phi_{k}}
\end{array}\right] \quad u_{-}(k)=v_{+}(k)=\frac{1}{2^{1 / 4}}\left[\begin{array}{c}
\sqrt{k^{-}} e^{-i \phi_{k}} \\
-\sqrt{k^{+}} \\
-\sqrt{k^{-}} e^{-i \phi_{k}} \\
\sqrt{k^{+}}
\end{array}\right] .
$$

with $e^{ \pm i \phi_{k}} \equiv \frac{k_{x} \pm i k_{y}}{\sqrt{2 k^{+} k^{-}}}=\sqrt{2} \frac{k_{t} \cdot \epsilon_{ \pm}}{k_{t}}$

$$
n^{\mu}=\left(n^{+}=0, n^{-}=1, n_{\perp}=0\right)
$$

$$
\bar{n}^{\mu}=\left(\bar{n}^{+}=1, \bar{n}^{-}=0, \bar{n}_{\perp}=0\right)
$$

$$
\begin{aligned}
k^{ \pm} & =\frac{E \pm k_{z}}{\sqrt{2}} \\
\epsilon_{ \pm} & =\frac{1}{\sqrt{2}}(1, \pm i)
\end{aligned}
$$

spinor helicity methods

notation:

$$
\left|i^{ \pm}>\equiv\right| k_{i}^{ \pm}>\equiv u_{ \pm}\left(k_{i}\right)=v_{\mp}\left(k_{i}\right) \quad<i^{ \pm}\left|\equiv<k_{i}^{ \pm}\right| \equiv \bar{u}_{ \pm}\left(k_{i}\right)=\bar{v}_{\mp}\left(k_{i}\right)
$$

basic spinor products:

$$
\begin{array}{rlr}
<i j> & \equiv<i^{-} \mid j^{+}>=\bar{u}_{-}\left(k_{i}\right) u_{+}\left(k_{j}\right)=\sqrt{\left|s_{i j}\right|} e^{i \phi_{i j}} & \cos \phi_{i j}=\frac{k_{i}^{x} k_{j}^{+}-k_{j}^{x} k_{i}^{+}}{\sqrt{\left|s_{i j}\right| k_{i}^{+} k_{j}^{+}}} \\
{[i j]} & \equiv<i^{+} \mid j^{-}>=\bar{u}_{+}\left(k_{i}\right) u_{-}\left(k_{j}\right)=-\sqrt{\left|s_{i j}\right|} e^{-i \phi_{i j}} & \sin \phi_{i j}=\frac{k_{i}^{y} k_{j}^{+}-k_{j}^{y} k_{i}^{+}}{\sqrt{\left|s_{i j}\right| k_{i}^{+} k_{j}^{+}}}
\end{array}
$$

with

$$
\begin{array}{rlrl}
s_{i j} & =\left(k_{i}+k_{j}\right)^{2}=2 k_{i} \cdot k_{j} & & <i i> \\
& =-<i j>[i j] & \text { and } & \\
& =[i i]=0 \\
& & <i j] & =[i j>=0
\end{array}
$$

charge conjugation $<i^{+}\left|\gamma^{\mu}\right| j^{+}>=<j^{-}\left|\gamma^{\mu}\right| i^{-}>$
Fierz identity $\quad<i^{+}\left|\gamma^{\mu}\right| j^{+}><k^{+}\left|\gamma^{\mu}\right| l^{+}>=2[i k]<l j>$
any off-shell momentum $\quad k^{\mu} \equiv \bar{k}^{\mu}+\frac{k^{2}}{2 k^{+}} n^{\mu} \quad$ where \bar{k}^{μ} is on-shell $\quad \bar{k}^{2}=0$
any on-shell momentum $\quad \not p=\left|p^{+}><p^{+}\right|+\left|p^{-}><p^{-}\right|$

spinor helicity methods

$\gamma^{\star}(\mathbf{k}) \mathbf{T} \rightarrow \mathbf{q}(\mathbf{p}) \overline{\mathbf{q}}(\mathbf{q}) \mathbf{X}$

$$
\left.N \equiv \bar{u}(p) \not h \not k_{1} \notin(k)\left(\not k_{1}-\nless\right) \not\right)^{2} v(q)
$$

$$
\begin{aligned}
& P^{\mu}=P^{-} n^{\mu} \\
& k^{\mu}=k^{+} \bar{n}^{\mu}-\frac{Q^{2}}{2 k^{+}} n^{\mu}
\end{aligned}
$$

work with a given helicity: longitudinal photon, quark + , anti-quark -

$$
\begin{aligned}
& N^{L ;+-}= \frac{Q}{k^{+}}<p^{+}\left|n^{-}><n^{-}\right| \bar{k}_{1}^{+}><\bar{k}_{1}^{+}\left|n^{-}><n^{-}\right|\left(\left|\bar{k}_{1}^{+}><\bar{k}_{1}^{+}\right|-k^{+}\left|\bar{n}^{+}><\bar{n}^{+}\right|\right) \\
&\left|n^{-}><n^{-}\right| q^{+}> \\
&= \frac{Q}{k^{+}}[p n]<n \bar{k}_{1}>\left[\bar{k}_{1} n\right]<n q>\left(<n \bar{k}_{1}>\left[\bar{k}_{1} n\right]-k^{+}<n \bar{n}>[\bar{n} n]\right) \\
&=-2^{3} \frac{Q}{k^{+}} p^{+} q^{+} \sqrt{p^{+} q^{+}}=-2^{3} Q k^{+} k^{+} z(1-z) \sqrt{z(1-z)} \\
& \text { with } \quad \begin{array}{cl}
z & =p^{+} / k^{+} \\
(1-z) & =a^{+} / k^{+}
\end{array} \\
& \begin{aligned}
\text { and } \quad N^{L ;-+}=N^{L ;+-}
\end{aligned}
\end{aligned}
$$

$\gamma^{\star}(\mathbf{k}) \mathbf{T} \rightarrow \mathbf{q}(\mathbf{p}) \overline{\mathbf{q}}(\mathbf{q}) \mathbf{X}$

the rest is standard integration $\int \frac{d^{2} l_{t}}{(2 \pi)^{2}} \frac{e^{i l_{t} \cdot\left(x_{t}-y_{t}\right)}}{\left[l_{t}^{2}+z(1-z) Q^{2}\right]}=\frac{1}{2 \pi} K_{0}\left[\sqrt{z(1-z)\left|x_{t}-y_{t}\right| Q^{2}}\right]$
the amplitude is

$$
\begin{aligned}
i \mathcal{A}^{L ;+-}= & -4 i \delta\left(k^{+}-p^{+}-q^{+}\right) Q k^{+} z(1-z) \sqrt{z(1-z)} \int d^{2} x_{t} d^{2} y_{t} e^{-i\left(p_{t} \cdot x_{t}+q_{t} \cdot y_{t}\right)} \\
& K_{0}\left[\sqrt{z(1-z)\left|x_{t}-y_{t}\right| Q^{2}}\right]\left[V\left(x_{t}\right) V^{\dagger}\left(y_{t}\right)-1\right]
\end{aligned}
$$

repeat for transverse polarization

$$
\begin{aligned}
N^{\perp=+;+-}= & -2^{3} k^{+} k^{+} z \sqrt{z(1-z} \bar{k}_{1 t} \cdot \epsilon_{\perp} \\
i \mathcal{A}^{\perp=+;+-} & =4 i e \delta\left(l^{+}-p^{+}-q^{+}\right) z k^{+} z(1-z) \int d^{2} x_{t} d^{2} y_{t} e^{-i\left(p_{t} \cdot x_{t}+q_{t} \cdot y_{t}\right)} \\
& \otimes \frac{\left(\vec{x}_{t}-\vec{y}_{t}\right) \cdot \epsilon_{\perp}}{\left|\vec{x}_{t}-\vec{y}_{t}\right|} Q K_{1}\left[\sqrt{z(1-z)\left(x_{t}^{2}-y_{t}\right)^{2} Q^{2}}\right]\left[V\left(x_{t}\right) V^{\dagger}\left(y_{t}\right)-1\right]
\end{aligned}
$$

square,.... to get the inclusive di-jet production cross section
integrating over the final state momenta gives the total cross section (structure functions)

Evolution of quadrupole from JIMWLK

$$
\mathbf{Q}(\mathbf{r}, \overline{\mathbf{r}}, \overline{\mathbf{s}}, \mathbf{s}) \equiv \frac{1}{\mathbf{N}_{\mathbf{c}}}<\operatorname{Tr} \mathbf{V}(\mathbf{r}) \mathbf{V}^{\dagger}(\overline{\mathbf{r}}) \mathbf{V}(\overline{\mathbf{s}}) \mathbf{V}^{\dagger}(\mathbf{s})>
$$

radiation kernels as in dipole

Evolution of quadrupole from JIMWLK

$$
\begin{aligned}
& \frac{d}{d y}\langle Q(r, \bar{r}, \bar{s}, s)\rangle \\
& =\frac{N_{c} \alpha_{s}}{(2 \pi)^{2}} \int d^{2} z\left\{\left\langle\left[\frac{(r-\bar{r})^{2}}{(r-z)^{2}(\bar{r}-z)^{2}}+\frac{(r-s)^{2}}{(r-z)^{2}(s-z)^{2}}-\frac{(\bar{r}-s)^{2}}{(\bar{r}-z)^{2}(s-z)^{2}}\right] Q(z, \bar{r}, \bar{s}, s) S(r, z)\right.\right. \\
& +\left[\frac{(r-\bar{r})^{2}}{(r-z)^{2}(\bar{r}-z)^{2}}+\frac{(\bar{r}-\bar{s})^{2}}{(\bar{r}-z)^{2}(\bar{s}-z)^{2}}-\frac{(r-\bar{s})^{2}}{(r-z)^{2}(\bar{s}-z)^{2}}\right] Q(r, z, \bar{s}, s) S(z, \bar{r}) \\
& +\left[\frac{(\bar{r}-\bar{s})^{2}}{(\bar{r}-z)^{2}(\bar{s}-z)^{2}}+\frac{(s-\bar{s})^{2}}{(s-z)^{2}(\bar{s}-z)^{2}}-\frac{(\bar{r}-s)^{2}}{(s-z)^{2}(\bar{r}-z)^{2}}\right] Q(r, \bar{r}, z, s) S(\bar{s}, z) \\
& +\left[\frac{(r-s)^{2}}{(r-z)^{2}(s-z)^{2}}+\frac{(s-\bar{s})^{2}}{(s-z)^{2}(\bar{s}-z)^{2}}-\frac{(r-\bar{s})^{2}}{(r-z)^{2}(\bar{s}-z)^{2}}\right] Q(r, \bar{r}, \bar{s}, z) S(z, s) \\
& -\left[\frac{(r-\bar{r})^{2}}{(r-z)^{2}(\bar{r}-z)^{2}}+\frac{(s-\bar{s})^{2}}{(s-z)^{2}(\bar{s}-z)^{2}}+\frac{(r-s)^{2}}{(r-z)^{2}(s-z)^{2}}+\frac{(\bar{r}-\bar{s})^{2}}{(\bar{r}-z)^{2}(\bar{s}-z)^{2}}\right] Q(r, \bar{r}, \bar{s}, s) \\
& {\left[\frac{(r-s)^{2}}{(r-z)^{2}(s-z)^{2}}+\frac{(\bar{r}-\bar{s})^{2}}{(\bar{r}-z)^{2}(\bar{s}-z)^{2}}-\frac{(\bar{r}-s)^{2}}{(\bar{r}-z)^{2}(s-z)^{2}}-\frac{(r-\bar{s})^{2}}{(r-z)^{2}(\bar{s}-z)^{2}}\right] S(r, s) S(\bar{r}, \bar{s})} \\
& \left.\left.\left[\frac{(r-\bar{r})^{2}}{(r-z)^{2}(\bar{r}-z)^{2}}+\frac{(s-\bar{s})^{2}}{(s-z)^{2}(\bar{s}-z)^{2}}-\frac{(r-\bar{s})^{2}}{(r-z)^{2}(\bar{s}-z)^{2}}-\frac{(\bar{r}-s)^{2}}{(\bar{r}-z)^{2}(s-z)^{2}}\right] S(r, \bar{r}) S(\bar{s}, s)\right\rangle\right\} \\
& \frac{d}{d y} Q=\int P_{1}[Q S]-P_{2}[Q]+P_{3}[S S] \quad \text { with } \quad P_{1}-P_{2}+P_{3}=0 \\
& \text { J. Jalilian-Marian, Y. Kovchegov: PRD70 (2004) } 114017 \\
& \text { Dominguez, Mueller, Munier, Xiao: PLB705 (2011) } 106 \\
& \text { J. Jalilian-Marian: Phys.Rev. D85 (2012) } 014037
\end{aligned}
$$

quadrupole evolution: linear regime

$$
\mathbf{O}\left(\mathbf{A}^{\mathbf{4}}\right): \text { 4-gluon exchange }
$$

BJKP equation

$$
\begin{aligned}
\frac{d}{d y} \hat{T}_{4}\left(l_{1}, l_{2}, l_{3}, l_{4}\right)= & \frac{N_{c} \alpha_{s}}{\pi^{2}} \int d^{2} p_{t}\left[\frac{p^{i}}{p_{t}^{2}}-\frac{\left(p^{i}-l_{1}^{i}\right)}{\left(p_{t}+l_{1}\right)^{2}}\right] \cdot\left[\frac{p^{i}}{p_{t}^{2}}-\frac{\left(p^{i}-l_{2}^{i}\right)}{\left(p_{t}+l_{2}\right)^{2}}\right] \\
& \hat{T}_{4}\left(p_{t}+l_{1}, l_{2}-p_{t}, l_{3}, l_{4}\right)+\cdots \\
- & \frac{N_{c} \alpha_{s}}{(2 \pi)^{2}} \int d^{2} p_{t}\left[\frac{l_{1}^{2}}{p_{t}^{2}\left(l_{1}-p_{t}\right)^{2}}+\left\{l_{1} \rightarrow l_{2}, l_{3}, l_{4}\right\}\right] \hat{T}_{4}\left(l_{1}, l_{2}, l_{3}, l_{4}\right)
\end{aligned}
$$

BJKP is recovered from JIMWLK in the linear regime

2n-Wilson line evolution: linear regime

$\mathbf{O}\left(\alpha^{\mathbf{2 n}}\right):$ 2n-gluon exchange

Ayala, Cazaroto, Hernandez, Jalilian-Marian, Tejeda-Yeomans, PRD90 (2014) no.7, 074037

$\frac{d}{d Y} T_{\left(\prod_{k=1}^{2 n} l_{k}\right)}^{(2 n)}=-\frac{\bar{\alpha}}{2 \pi} \sum_{j=1}^{2 n} \int d^{2} p_{t}\left[\frac{l_{j}^{2}}{p_{t}^{2}\left[p_{t}^{2}+\left(p_{t}-l_{j}\right)^{2}\right]}\right] T_{\left(\prod_{k=1}^{2 n} l_{k}\right)}^{(2 n)}$
$+\frac{\bar{\alpha}}{4 \pi} \int d^{2} p_{t}\left[\frac{l_{1}^{2}}{p_{t}^{2}\left(p_{t}+l_{1}\right)^{2}}+\frac{l_{2 n}^{2}}{p_{t}^{2}\left(p_{t}-l_{2 n}\right)^{2}}-\frac{\left(l_{1}+l_{2 n}\right)^{2}}{\left(p_{t}+l_{1}\right)^{2}\left(p_{t}-l_{2 n}\right)^{2}}\right] T_{\left(l_{1}+p_{t}\right)\left(\prod_{k=2}^{2 n-1} l_{k}\right)\left(l_{2 n}-p_{t}\right)}^{(2 n)}$
$+\frac{\bar{\alpha}}{4 \pi} \sum_{j=2}^{2 n} \int d^{2} p_{t}\left[\frac{l_{j-1}^{2}}{p_{t}^{2}\left(p_{t}+l_{j-1}\right)^{2}}+\frac{l_{j}^{2}}{p_{t}^{2}\left(p_{t}-l_{j}\right)^{2}}-\frac{\left(l_{j-1}+l_{j}\right)^{2}}{\left(p_{t}+l_{j-1}\right)^{2}\left(p_{t}-l_{j}\right)^{2}}\right] T_{\left(\prod_{k=1}^{j-2} l_{k}\right)\left(l_{j-1}+p_{t}\right)\left(l_{j}-p_{t}\right)\left(\prod_{k=j+1}^{2 n} l_{k}\right)}^{(2 n)}$.
A Mathematic program that gives the equation can be downloaded from faculty.baruch.cuny.edu/naturalscience/physics/Jalilian-Marian/

quadrupole: limits

$<Q(r, \bar{r}, \bar{s}, s)>\equiv \frac{1}{N_{c}}<\operatorname{Tr} V(r) V^{\dagger}(\bar{r}) V(\bar{s}) V^{\dagger}(s)>$
line config.:

$$
r=\bar{s}, \bar{r}=s, z \equiv r-\bar{r}
$$

$$
\text { square config.: } \quad r-\bar{s}=\bar{r}-s=r-\bar{r}=\cdots \equiv z
$$

$$
Q=S^{2}
$$

Gaussian $Q_{\mid}(z) \approx \frac{N_{c}+1}{2}[S(z)]^{2 \frac{N_{c}+2}{N_{c}+1}}-\frac{N_{c}-1}{2}[S(z)]^{\frac{N_{c}-2}{N_{c}-1}}$
$Q_{s q}(z)=[S(z)]^{2}\left[\frac{N_{c}+1}{2}\left(\frac{S(z)}{S(\sqrt{2} z)}\right)^{\frac{2}{N_{c}+1}}-\frac{N_{c}-1}{2}\left(\frac{S(\sqrt{2} z)}{S(z)}\right)^{\frac{2}{N_{c}-1}}\right]$
Gaussian + large $\mathbf{N c}_{\mathbf{c}}$

$$
\begin{aligned}
Q_{\mid}(z) & \rightarrow S^{2}(z)[1+2 \log [S(z)]] \\
Q_{s q}(z) & =S^{2}(z)\left[1+2 \ln \left(\frac{S(z)}{S(\sqrt{2} z)}\right)\right]
\end{aligned}
$$

Quadrupole: $\left.\langle Q(r, \bar{r}, \bar{s}, s)\rangle \equiv \frac{1}{N_{c}}<\operatorname{Tr} V(r) V^{\dagger}(\bar{r}) V(\bar{s}) V^{\dagger}(s)\right\rangle$

Dumitru-Jalilian-Marian-Lappi-Schenke-Venugopalan:PLB706 (2011) 219

di-hadron azimuthal correlations in DIS

Electron Ion Collider...., A. Accardi et al., arXiv:1212.1701
Zheng-Aschenauer-Lee-Xiao, PRD89 (2014)7, 074037

di-hadron azimuthal correlations in DIS

Zheng + Aschenauer + Lee + Xiao, PRD89 (2014)7, 074037

something with more discriminating power

angular correlations in 3-parton production in DIS

$$
\gamma^{\star} \mathbf{T} \rightarrow \mathbf{q} \bar{q} g \mathbf{X}
$$

+ radiation from anti-quark
Ayala, Hentschinski , Jalilian-Marian, Tejeda-Yeomans; PLB761 (2016) 229
[NLO diffractive di-jets: Boussarie, Grabovsky, Szymanowski, Wallon, JHEP 1611 (2016) 149]

$1^{\text {st }}$ diagram

$$
\begin{aligned}
& \mathcal{A} \equiv-e g \bar{u}(p)[A]^{\mu \nu} v(q) \epsilon_{\mu}(k) \epsilon_{\nu}^{*}(l) \\
& A_{1}^{\mu \nu}= \gamma^{\mu} t^{a} S_{F}^{0}(p+k) \tau_{F}\left(p+k, k_{1}\right) S_{F}^{0}\left(k_{1}\right) \gamma^{\nu} S_{F}^{0}\left(l-k_{1}\right) \tau_{F}\left(l-k_{1}, q\right) \frac{d^{4} k_{1}}{(2 \pi)^{4}} \\
&= \frac{i}{2 l^{-}} \frac{\delta\left(l^{-}-p^{-}-q^{-}-k^{-}\right)}{(p+k)^{2}} \int d^{2} x_{t} d^{2} y_{t} e^{-i\left(p_{t}+k_{t}\right) \cdot x_{t}} e^{-i q_{t} \cdot y_{t}} \\
& \gamma^{\mu} t^{a} i(\not p+\not k) \gamma^{-} i \ell_{1} \gamma^{\nu} i\left(l-\not k_{1}\right) \gamma^{-} K_{0}\left[L\left(x_{t}-y_{t}\right)\right] \\
& V\left(x_{t}\right) V^{\dagger}\left(y_{t}\right)
\end{aligned}
$$

with

$$
L^{2}=\frac{q^{-}\left(p^{-}+k^{-}\right)}{l^{-} l^{-}} Q^{2} \quad k_{1}^{-}=p^{-}-k^{-} \quad k_{1}^{+}=\frac{k_{1 t}^{2}-i \epsilon}{2\left(p^{-}+k^{-}\right)} \quad k_{1 t}=-i \partial_{x_{t}-y_{t}}
$$

Diagram A1

Numerator: Dirac Algebra

$$
\left.a_{1} \equiv \bar{u}(p) \not ф^{\star}(k)(\not p+\not k) \not\right)^{\prime} \not k_{1} \notin(l)\left(\not k_{1}-\not l\right) \nsim v(q)
$$

$$
l=l^{+} \hbar-\frac{Q^{2}}{2 l^{+}} \hbar
$$

$$
a_{1}^{L ;+-+}=-\frac{\sqrt{2}}{[n k]} \frac{Q}{l^{+}}[n p]<k p>[n p]<n \bar{k}_{1}>\left[n \bar{k}_{1}\right]<n q>
$$

$$
\left(<n \bar{k}_{1}>\left[n \bar{k}_{1}\right]-l^{+}<n \bar{n}>[n \bar{n}]\right)
$$

with

$$
<n p>=-[n p]=\sqrt{2 p^{+}}
$$

transverse photons: +

$$
a_{1}^{\perp=+;+-+}=-\frac{\sqrt{2}}{[n k]}[p n]<k p>[p n]<n k_{1}>\left[k_{1} n\right]<\bar{n} k_{1}>\left[k_{1} n\right]<n q>
$$

Diagram A3

Numerator: Dirac Algebra
longitudinal photons
quark anti-quark gluon helicity: + - +

$$
\begin{aligned}
a_{3}^{L ;+-+}= & \frac{\sqrt{2} Q}{l^{+}\left[n \bar{k}_{2}\right]}[p n]\left(<n \bar{k}_{1}>\left[\bar{k}_{1} n\right]-<n \bar{k}_{2}>\left[\bar{k}_{2} n\right]\right)<\bar{k}_{2} \bar{k}_{1}>\left[\bar{k}_{1} n\right] \\
& \left(<n \bar{k}_{1}>\left[\bar{k}_{1} n\right]-l^{+}<n \bar{n}>[\bar{n} n]\right)<n q> \\
= & -2^{4} Q\left(l^{+}\right)^{2} \frac{\left(z_{1} z_{2}\right)^{3 / 2}}{z_{3}}\left[z_{3} k_{1 t} \cdot \epsilon-\left(z_{1}+z_{3}\right) k_{2 t} \cdot \epsilon\right]
\end{aligned}
$$

the rest is some standard integrals
add up the amplitudes, square.., still need to deal with products of Wilson lines: Quadrupoles
structure of Wilson lines: amplitude

3-parton kinematics

linear regime: use ugd's

$$
\begin{gathered}
z_{1}=z_{2}=0.2, z_{3}=0.6 \\
p_{t}=q_{t}=k_{t}=4 \mathrm{GeV} \\
Q^{2}=16 \mathrm{GeV}^{2}
\end{gathered}
$$

$\Delta \phi_{12}=\frac{2 \pi}{3} \quad$ vary $\quad \Delta \phi_{13}$
UGD

3-parton azimuthal angular correlations

Possible extensions to other processes?

real photons: $\quad Q^{2} \rightarrow 0$
ultra-peripheral nucleus-nucleus collisions
inclusive 3-jet production
NLO inclusive di-jet production
crossing symmetry:

$$
\gamma^{(*)} T \longrightarrow q \bar{q} g X \longrightarrow\left\{\begin{array}{l}
q T \longrightarrow q g \gamma^{(\star)} X \\
\bar{q} T \longrightarrow \bar{q} g \gamma^{(\star)} X \\
g T \longrightarrow q \bar{q} \gamma^{(\star)} X
\end{array}\right\}
$$

proton-nucleus collisions (collinear factorization in proton?)

$$
\text { di-jet }+ \text { photon production in pA } \quad p A \longrightarrow h_{1} h_{2} \gamma^{(\star)} X
$$

Possible extensions to other processes?

MPI (double/triple parton scattering)
$\gamma^{(\star)} T \longrightarrow q \bar{q} g X \longrightarrow\left\{\begin{array}{l}q \bar{q} T \longrightarrow g \gamma^{(\star)} X \\ g \bar{q} T \longrightarrow \bar{q} \gamma^{(\star)} X \\ g q T \longrightarrow q \gamma^{(\star)} X\end{array}\right\}$

$$
p A \longrightarrow h \gamma^{(*)} X
$$

if one assumes target is accurately described by CGC at small x this will tell us about DPS (proton GPD at large x)

some thoughts/ideas/dreams/..

cold matter energy loss

how important is cold matter Eloss in single inclusive production in the forward rapidity region?

> cold matter energy loss?

Kopeliovich, Frankfurt and Strikman
Neufeld, Vitev, Zhang, PLB704 (2011) 590

Munier, Peigne, Petreska, arXiv:1603.01028

$$
z \frac{d I}{d z} \equiv \frac{\frac{d \sigma a+A \rightarrow a+g+X}{d y d y^{\prime} d^{2} p_{t}}}{\frac{d \sigma a+A \rightarrow a+X}{d y d^{2} p_{t}}}
$$

the difference between a nuclear target and a proton target is the medium induced energy loss
one can use this to estimate the energy loss in single inclusive processes in the forward kinematics at RHIC and the LHC
can also do this for di-jets in DIS (3-parton production/2-parton production)

QCD kinematics phases at high energy

SUMMARY

CGC is a systematic approach to high energy collisions
it has been used to fit a wealth of data; ep, eA, pp, pA, AA

Leading Log CGC works (too) well for a qualitative/semiquantitative description of data, NLO is needed

Azimuthal angular correlations offer a unique probe of CGC
3-hadron/jet correlations should be even more discriminatory

Dipoles at large N_{c} : BK eq.

$$
\begin{aligned}
& \frac{d}{d y} \mathbf{T}\left(x_{t}-y_{t}\right)=\frac{\bar{\alpha}_{s}}{2 \pi} \int d^{2} z_{t} \frac{\left(x_{t}-y_{t}\right)^{2}}{\left(x_{t}-z_{t}\right)^{2}\left(y_{t}-z_{t}\right)^{2}} \times \\
& {\left[\mathbf{T}\left(x_{t}-z_{t}\right)+\mathbf{T}\left(z_{t}-y_{t}\right)-T\left(x_{t}-y_{t}\right)-T\left(x_{t}-z_{t}\right) T\left(z_{t}-y_{t}\right)\right]}
\end{aligned}
$$

Rummukainen-Weigert, NPA739 (2004) 183
NLO: Balitsky-Kovchegov-Weigert-Gardi-Chirilli (2007-2008)

