Phase structure and thermodynamics of strongly-interacting matter

Rainer Stiele

in collaboration with

Pedro Costa, Eduardo S. Fraga, Lisa M. Haas, Hubert Hansen, Tina K. Herbst, Bruno W. Mintz, Mario Mitter, Jan M. Pawlowski, Rudnei O. Ramos, Jürgen Schaffner-Bielich & Andreas Zacchi

CPHT, École polytechnique; 28/09/2017

Introduction

2 Theoretical framework

3 Results

4 HIC phenomenology

6 Challenges

Rainer Stiele

Phase structure of the strong interaction

$$\mathcal{L}_{\text{QCD}} = \overline{\boldsymbol{q}} \left[i \gamma_{\mu} \left(\partial^{\mu} - i g A^{\mu} \right) - m + \gamma_0 \mu_f \right] \boldsymbol{q} - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

GSI Helmholtzzentrum für Schwerionenforschung

- low temperature & density: phase of confined, massive constituent quarks
- high temperature and/or density: phase of 'massless', deconfined quarks and gluons

Introduction

HIC phenomenology

Challenges

Conclusions

Observations on the Phase Diagram of QCD

Probed in

- Early universe at small density and high temperature
- · Compact star matter at small temperature and high density
- Relativistic heavy-ion collisions at LHC, RHIC, NICA, FAIR, ...

4

Theoretical Insights to the Phase Diagram of QCD

$$\mathcal{L}_{\text{QCD}} = \overline{\boldsymbol{q}} \left[i \gamma_{\mu} \left(\partial^{\mu} - i g A^{\mu} \right) - m + \gamma_0 \mu_f \right] \boldsymbol{q} - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

→ Effective model capturing the major properties ~ chiral and centre symmetry

Phase diagram of the Polyakov-Quark-Meson model

RS and J. Schaffner-Bielich, Phys. Rev. D 93, 094014, 2016

→ There is a (small) region of a first order phase transition at large chemical potentials

Phase structure and thermodynamics of strongly-interacting matter 5

Rainer Stiele

Phase diagram of the Polyakov-Quark-Meson model

RS, E. S. Fraga and J. Schaffner-Bielich, arXiv:1307.2851v1 [hep-ph]

→ There is a (small) region of a first order phase transition at large chemical potentials . . . which shrinks with increasing isospin imbalance

Effective Model for QCD

Major properties of strongly interacting matter $\,\, \sim \,\,$ symmetries

- Dynamical mass-generation of constituent quarks: spontaneous chiral symmetry breaking
- Deconfinement: spontaneous centre symmetry breaking Order parameter: Polyakov loop Φ
 ↔ Free energy of a test quark: Φ ~ exp(-F_q/T)
- → low temperature & density: chiral symmetry broken, centre symmetric high temperature and/or density: chiral symmetry restored, centre symmetry broken

 \Rightarrow Polyakov-loop Quark-Meson model, PNJL model

Ingredients of the Polyakov–Quark-Meson model

$$\mathcal{L}_{PQM} = \bar{q} \left[i \gamma_{\mu} \left(\partial^{\mu} - i A^{\mu} \delta_{\mu 0} + \mu_{f} \delta^{\mu 0} \right) - g \frac{\lambda_{a}}{2} \left(\sigma_{a} + i \gamma_{5} \pi_{a} \right) \right] q \\ + \frac{1}{2} \left(\partial_{\mu} \sigma_{a} \partial^{\mu} \sigma_{a} + \partial_{\mu} \pi_{a} \partial^{\mu} \pi_{a} \right) - U \left(\sigma_{a}, \pi_{a} \right) - \mathcal{U} \left(\Phi \left[A_{0} \right], \bar{\Phi} \left[A_{0} \right]; T \right)$$

Ingredients:

- constituent quarks
- scalar and pseudoscalar mesons $\langle ar{q}q
 angle$
 - → generation of constituent quark masses by meson exchange (Yukawa coupling): $m_f = g\sigma_f$
 - + vector mesons
- gauge fields \leftrightarrow Polyakov loop: $\Phi \sim \exp\left(i\int_0^\beta d\tau A_0\right)$ \rightarrow confinement (of quarks)
- → scalar fields: order parameters for chiral symmetry breaking
 → Polyakov-loop: order parameter for confinement

Rainer Stiele

Constraining the Phase diagram of the PQM model

RS, E. S. Fraga and J. Schaffner-Bielich, arXiv:1307.2851v1 [hep-ph]

HIC phenomenology

Constraints from the lattice @ $\mu = 0$

Order parameters

Centre symmetry

Challenges

L. Haas, RS, J. Braun, J. Pawlowski and J. Schaffner-Bielich, Phys. Rev. D 87, 076004, 2013 T. K. Herbst, M. Mitter, J. Pawlowski, B.-J. Schaefer and RS. Phys. Lett. B 731, 248-256, 2014

- Quantitative agreement in the chiral sector
- Polyakov loop of effective model $\Phi[\langle A_0 \rangle]$ upper limit of lattice $\langle \Phi \rangle$:

Rainer Stiele

 $\begin{array}{l} \Phi\left[\left\langle A_{0}\right\rangle\right]\geq\left\langle\Phi\left[A_{0}\right]\right\rangle\\ \textit{J. Braun, H. Gies and J. Pawlowski, Phys. Lett. B 684, 262-267, 2010\\ Phase structure and thermodynamics of strongly-interacting matter \end{array}$ 9

HIC phenomenology

Challenges

Constraints from the lattice @ $\mu = 0$

L. Haas, RS, J. Braun, J. Pawlowski and J. Schaffner-Bielich, Phys. Rev. D 87, 076004, 2013 T. K. Herbst, M. Mitter, J. Pawlowski, B.-J. Schaefer and RS. Phys. Lett. B 731, 248-256, 2014

Quantitative agreement or at least within the trend of lattice data

Seems to capture the important physics

Rainer Stiele

Constraining the Phase diagram of the PQM model

RS, E. S. Fraga and J. Schaffner-Bielich, arXiv:1307.2851v1 [hep-ph]

Results

HIC phenomenology

Challenges Conclusions

Constraints from the lattice $(Q) \mu \lesssim T_c$

RS, J. Schaffner-Bielich, Phys. Rev. D 93, 094014 (2016)

Curvature of the phase transition line: $T_{\rm c}(\mu) \propto \mu^2$ for $\mu \lesssim T_{\rm c}$

Comparison to chemical freeze-out of hadrons in relativistic HICs

\Rightarrow Within the lattice uncertainty, and consistent with experimental results (?)

 \rightarrow Impact on curvature: coupling strength of vector mesons

Constraining the Phase diagram of the PQM model

RS, E. S. Fraga and J. Schaffner-Bielich, arXiv:1307.2851v1 [hep-ph]

Constraints from Compact Star Masses and Radii

Calculate the equation of state within the model and solve the GR equations to gain the mass-radius relation.

A. Zacchi, RS, J. Schaffner-Bielich; Phys. Rev. D 92 (2015) 4, 045022

- Precise mass measurements
- Currently large uncertainties on radius constraints, high precision with future x-ray and gravitational wave measurements

Rainer Stiele

Constraining the Phase diagram of the PQM model

RS, E. S. Fraga and J. Schaffner-Bielich, arXiv:1307.2851v1 [hep-ph]

Input to HIC phenomenology

· Medium dependence of quark and meson masses

R. Marty and J. Aichelin, Phys. Rev. C 87, 034912 (2013)

- \rightarrow elastic scattering and hadronisation cross-sections
- → input to transport calculation
 - · transverse momentum and rapidity distributions
 - · elliptic flow as function of transverse momentum and rapidity
- \rightarrow transport coefficients:

shear & bulk viscosity, thermal conductivity

A. Abhishek, H. Mishra, S. Ghosh, arXiv:1709.08013 [hep-ph]

Rainer Stiele

Input to HIC phenomenology

Medium dependence of quark and meson masses
 → elastic scattering and hadronisation cross-sections

R. Marty, E. Bratkovskaya, W. Cassing and J. Aichelin, Phys. Rev. C 92, 015201 (2015), R. Marty and J. Aichelin, Phys. Rev. C 87, 034912 (2013)

- \rightarrow input to transport calculation
 - · transverse momentum and rapidity distributions
 - · elliptic flow as function of transverse momentum and rapidity
- → transport coefficients:

shear & bulk viscosity, thermal conductivity

A. Abhishek, H. Mishra, S. Ghosh, arXiv:1709.08013 [hep-ph]

Rainer Stiele

Input to HIC phenomenology

- Medium dependence of quark and meson masses
 - \rightarrow elastic scattering and hadronisation cross-sections
 - \rightarrow input to transport calculation
 - · transverse momentum and rapidity distributions
 - · elliptic flow as function of transverse momentum and rapidity

R. Marty, E. Bratkovskaya, W. Cassing and J. Aichelin, Phys. Rev. C 92, 015201 (2015), R. Marty and J. Aichelin, Phys. Rev. C 87, 034912 (2013)

→ transport coefficients: shear & bulk viscosity, thermal conductivity

A. Abhishek, H. Mishra, S. Ghosh, arXiv:1709.08013 [hep-ph]

Introduction Theoretical framework Results HIC phenomenology (Challenges) Conclusions **A closer look to the Polyakov-loop potential** $\mathcal{L}_{QCD} = \bar{q} \left[i \gamma_{\mu} \left(\partial^{\mu} - i g A^{\mu} \right) + \gamma_{0} \mu_{f} - m \right] q - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$

$$\mathcal{L}_{PQM} = \bar{q} \left[i \gamma_{\mu} \left(\partial^{\mu} - i A^{\mu} \delta_{\mu 0} + \mu_{f} \delta^{\mu 0} \right) - g \frac{\lambda_{a}}{2} \left(\sigma_{a} + i \gamma_{5} \pi_{a} \right) \right] q \\ + \frac{1}{2} \left(\partial_{\mu} \sigma_{a} \partial^{\mu} \sigma_{a} + \partial_{\mu} \pi_{a} \partial^{\mu} \pi_{a} \right) - U \left(\sigma_{a}, \pi_{a} \right) - \mathcal{U} \left(\Phi[A_{0}], \bar{\Phi}[A_{0}]; T \right) \\ \mathcal{U} \left(\Phi, \bar{\Phi}; T \right) \leftrightarrow G_{\mu\nu} G^{\mu\nu} : \qquad \text{gluon interaction}$$

Parametrised Polyakov-loop potential fitted to pure gauge / Yang-Mills simulations

 $\Rightarrow \mathcal{U}_{\text{YM}}$: pure gauge / Yang-Mills / quenched Polyakov-loop potential !

 \rightarrow How does it change in the presence of dynamical quarks?

Unquenching the Polyakov-loop potential

Yang-Mills and QCD glue potential in the Functional Renormalisation Group

 $\Rightarrow \mathcal{U}_{glue}(t, \Phi) = \mathcal{U}_{YM}(t_{YM}(t), \Phi), \quad t_{YM}(t_{glue}) \simeq 0.57 t_{glue}$

L. Haas, RS, J. Braun, J. Pawlowski and J. Schaffner-Bielich, Phys. Rev. D 87, 076004, 2013

20

Impact of unquenching: $\mathcal{U}_{\text{YM}} \rightarrow \mathcal{U}_{\text{glue}}$

L. Haas, RS, J. Braun, J. Pawlowski and J. Schaffner-Bielich, Phys. Rev. D 87, 076004, 2013 T. K. Herbst, M. Mitter, J. Pawlowski, B.-J. Schaefer and RS, Phys. Lett. B 731, 248-256, 2014

→ smoothens the transition

Results with different parameterisations ... differ

Different parameterisations ... differ already in YM

L. Haas, RS, J. Braun, J. Pawlowski and J. Schaffner-Bielich, Phys. Rev. D 87, 076004, 2013 RS et al., in preparation

Input to construct consistent P.-loop potentials

Polyakov-loop potential in continuum calculations

 $V(T, r_3, 0)/T^4$

U. Reinosa, J. Serreau, M. Tissier and N. Wschebor, Phys. Rev. D 93 (2016) 105002

Compare parameterisations and calculations

→ Calculated potentials flatter at t < 0⇒ Effect in PQM/PNJL qualitatively as unquenching

 \rightarrow Small height of barrier at phase transition

Introduction Theoretical framework Results HIC phenomenology Challenges Conclusions

- Conclusions
 - PQM/PNJL: Effective model to describe chiral symmetry breaking and confinement aspects
 - · Constrain framework and test improvements
 - against lattice data at vanishing density, small density and nonzero isospin density
 - astrophysics observations at large density, zero temperature
 - Make predictions on the existence and location of a CEP
 - Can serve as input to HIC phenomenology
 - Gauge sector requires revision: use input of ab-initio continuum calculations

HIC phenomenology

Challenges

Conclusions

Thank You for your attention!

- POM/PNJL · Effective model to describe chiral symmetry breaking and confinement aspects
- Constrain framework and test improvements
 - against lattice data at vanishing density, small density and nonzero isospin density
 - astrophysics observations at large density, zero temperature
- Make predictions on the existence and location of a CEP
- Can serve as input to HIC phenomenology
- Gauge sector requires revision: use input of ab-initio continuum calculations

