SÉMINAIRE du GROUPE THÉORIE

INSTITUT DE PHYSIQUE NUCLÉAIRE Groupe de Physique Théorique Bât. 100, F-91406 ORSAY CEDEX Tél (33)-(0)1-6915-7330 - Fax (33)-(0)1-6915-7748

G. Blanchon

CEA

Gogny-Based Optical Potential

We present a nucleon elastic scattering calculation based on Green's function formalism in the random-phase approximation. The finite-range Gogny effective interaction is used consistently throughout the whole calculation to account for the complex, nonlocal, and energy-dependent optical potential. Effects of intermediate single-particle resonances are included and found to play a crucial role in the account for measured reaction cross sections. Double counting of the particle-hole second-order contribution is carefully addressed. The resulting integro-differential Schrödinger equation for the scattering process is solved without localization procedures. The method is applied to neutron and proton elastic scattering from 40Ca and 48Ca. A successful account for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to 30 MeV. Discrepancies at higher energies are related to a much-too-high volume integral of the real potential for large partial waves. This work opens the way to simultaneously assess effective interactions suitable for both nuclear structure and reactions.

Mercredi 20 Déc. 2017, 11h30 IPN, Bât. 100, Salle A015