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I Topologically twisted theories are over 30 years old by now
but we still have many things to learn about them. This is
important because of

I their mathematical implications (topological invariants)

I the fact they allows us to extract exact results

I There is a lot of recent activity in the world of
I Kapustin-Witten theory (the N = 4 GL-twist)

I Vafa-Witten theory (I might have something to say in the end)

I Donaldson-Witten theory (the N = 2 twist)

I This talk is about some new techniques and results on the
Donaldson-Witten (DW) theory [Witten 1988]



Ultimately I am interested in calculating VEVs of various operators
in DW theory.

But first I need to make a detour and give motivation and
background.



Notation and motivation



Cohomological field theories are defined on arbitrary Riemanian
manifolds X in d = 2, 4, 6...

They are QFTs whose physical observables belong to the
cohomology of X

observables ∈ H•(X)



Our theory of interest is defined on any 4-manifold X but we will
make some restrictions for simplicity

X compact Kähler surface with quadratic form

Q : H2(X)→ Z

and bilinear form

B : H2(X)×H2(X)→ Z

B(a, b) ≡
∫
X
a ∧ b



Example: Hirzebruch surface Fl



E → X a holomorphic vector bundle of rank 2 equipped with
connection 1-form A



Also we denote

I J Kähler form

I The moduli space of instantons over X

M(c1, c2) :=
{

gauge fields A | F+
A = 0 modulo gauge equiv.

}

I M(c1, c2) is an appropriate compactification of M(c1, c2)



We can now construct Donaldson’s polynomial invariants using
homology of X

They are integrals of cohomology classes of M(c1, c2) that can be
interpreted as correlation functions of topologically twisted

theories.



I Donaldson map µ : Hi(X)→ H4−i(M(c1, c2))

I Donaldson invariant of degree d = 4l + 2m

PX,d
c2 (p,x) =

∫
M(c1,c2)

µ(p)l ∧ µ(x)m

p ∈ H0(X) and x ∈ H2(X)



We can package the various PX,dc2 (p,x) into a generating function

Φc1(p,x) =
∑
c2

qc2
∑
d

PX,dc2

(
pl

l!
,
xm

m!

)
albm

=
∑
c2

qc2
∫
M(c1,c2)

eµ(ap+bx)



If b+2 (X) > 1 Donaldson invariants are true invariants of the
smooth-structure of the 4-manifold X.

They are independent of the metric we equip X with.



Now let me tell you something interesting that Göttsche and
Göttsche and Zagier discovered.

If b+2 (X) = 1 then Donaldson invariants are only piece-wise
smooth invariants, they depend on the choice of J

Φc1(p,x) −→ ΦJ
c1(p,x)



Consider C+ := H2(X,R)+ , that is the positive cone of X



I This is exactly the case we are interested in. This is how the
physics of the Coulomb branch B plays a role.

I For b+2 (X) > 1 the contribution of the Coulomb branch
vanishes - left only with SW invariants

I This is due to Witten’s [1988] physical formulation of
Donaldson theory and Moore-Witten’s [1997] formulation of
the u-plane integral.



Donaldson theory in physics arises as following:

I Consider pure N = 2 topologically twisted SYM on X with
gauge group SU(2) or SO(3)

I Twist results to all fields being differential forms on X
(including the supercharges)

I The theory contains a BRST-like supercharge Q whose
cohomology provides the physical observables of the theory

Q = εȦḂQ̄ȦḂ



I Physical observables (descent formalism) of the theory belong
to the

Q− cohomology

I Correlation functions of such observables localize to integrals
over

M(c1, c2)

I Witten: for G = SU(2) such correlation functions compute
Donaldson invariants (also for G = SO(3))



Greg’s favorite comutative diagram

H∗(X) H∗(field space,Q)

H∗(M(c2))

descent formalism

µ-map
localization



Aside

What happens for other N = 2 theories with matter?

M(c1, c2) gets replaced by M

where M is the moduli space of the so-called (generalized)
Seiberg-Witten equations

F+ = MM̄

/DM = 0

[Labadista, Marino 1998] [Losev, Shatashvili, Nekrasov 1998] also [Moore, Nidaiev 2017]



Back to the pure theory



I The fields in the IR are:

bosons: gauge field A, scalar fields a, ā, auxiliary field D
fermions: 0-form η, 1-form ψ, self-dual 2-form χ

I In the low energy effective theory, the gauge group is broken
down to U(1) and the order parameter is

u = 〈Tr(φ2)〉 = 2a2

We study the theory in the context of Seiberg-Witten theory.



The quantum moduli space of the theory, that is parametrized by
this u ∈ H∗G(pt.) is

B := CP1\{−1, 1,∞}

the Coulomb branch over which is fibered a local system of
elliptic curves Σu.





Recall that we can map B to H/Γ0(4) (Riemann uniformization theorem)



The partition function of the low energy DW theory reads

ZDW =

∫
[da dā dAdD dη dψ dχ] e−SDW



We can consider the partition function with the insertion of some
observables

ZDW(p,x) =

∫
[da dā dAdD dη dψ dχ] e−SDW+2pu+I−+x2G(u)

p ∈ H0(X) and x ∈ H2(X)



ZDW(p,x) =

∫
[da dā dAdD dη dψ dχ] e−SDW+2pu+I−+x2G(u)

I From the descent proceedure we have the 2-observable

I−(x) = − i

4π

∫
x

du

da
(F− +D)

I From the RG flow we get the contact term

G(u) =
1

24

(
8u− E2

(du
da

)2
)



Moore and Witten after a LOT of work showed that this
reproduces the generating function of Donaldson invariants

ZDW(p,x) = ΦJ
c1(p,x)



But in CohFT we can include any Q-exact insertions to the path
integral since their vev must vanish [Witten 1988]



Let us include the following Q-exact surface observable
[G.K., Manschot 2017]

I+(x) :=

∫
x

{
Q, dū

dā
χ

}
Remark: this operator appears in [Moore, Nekrasov, Shatashvili] in

a slightly different context

I Does the vev of this Q-exact observable vanish?

I What are the benefits of including it in ΦJ
µ(p,x)?



Does the vev of this Q-exact observable vanish?

I Witten says it should [1988]

I Witten and Moore et. al. say maybe not [1992]

I quote from Kapustin’s lectures on the N = 4 GL-twisted theory [2007]:

[...], one considers only observables which are annihilated by Q
(and are gauge-invariant) modulo those which are Q-exact. This is
consistent because any correlator involving Q-closed observables,
one of which is Q-exact, vanishes.



Does the vev of this Q-exact observable vanish?

Yes. At least in DW theory. But it is completely non-trivial.

[G.K., Manschot, Moore, Nidaiev, in preparation]

I will come back to this point.



What are the benefits of including it in ΦJ
µ(p,x)?

I localization of Coulomb branch integral to the boundary of B

I no need for lattice reduction

I evaluation for any J ∈ H2(X,R)

I connection to mock modular forms and moonshine

I Q-exact operator is a good new operator for other
quasi(?)-topological theories like the Nf = 4 theory and the
topologically twisted AD3 theory



Let us look at the Coulomb branch integral



I We are interested in this correlator

ΦJ
µ(p,x) =

∫
[da dā dAdD dη dψ dχ] e−SDW+2pu+I−+I++x2G(u)

I And after some work it can be shown that for π1(X) = 0 it
equals

ΦJ
µ(p,x) =

∫
H/Γ0(4)

dτ ∧ dτ̄ ν(τ)e2pu+x2G(u)ΨJ
µ(τ,ρ)

I Where we have
I τ ∈ H and ρ ∈ H2(X,C)⊗M(1,0)(Γ

0(4))

I ν(τ) a holomorphic function that depends only on the
topology of X and the elliptic curve Σu

I Ψµ(τ,ρ) is a sum over Pic(X)



Let us take a closer look at the Siegel-Narain theta function
ΨJ
µ(τ,ρ). It explicitly reads

ΨJ
µ(τ,ρ) := e−2πiyb+

∑
k∈Λ+µ

∂τ̄

(√
2y B(k, J)

)
(−1)B(k,KX)e−πiτ̄k

2
+−πiτk2

−−πiB(k+,ρ̄)−2πiB(k−,ρ)

with

I k = [F ]/4π ∈ H2(X,Z) are the U(1) magnetic fluxes

I ρ = du
da

x
2π and b = Im(ρ)/y

I KX = c1(Ωtop
X )



Although the function ΨJ
µ(τ,ρ) above is the one relevant for

Donaldson invariants we can look into more general such functions
in the context of Donaldson-Witten theory. Let us consider

ΨJ
µ[K](τ,ρ) := e−2πyb2

+

∑
k∈Λ+µ

K(k)(−1)B(k,KX)

× e−πiτ̄k2
+−πiτk2

−πiB(k+,ρ̄)−2πiB(k−,ρ)

where K(k) is a generic kernel for now (some function of the
magnetic fluxes k).



Integrals of the form

ΦJ
µ[K] =

∫
H/Γ0(4)

dτ ∧ dτ̄ ν(τ)ΨJ
µ[K]

can be solved by relating them to integrals over τ ∈ H/Γ0(4) and
write the integrands as total derivatives

d

dτ̄
Ĥµ[K] = ν(τ) ΨJ

µ[K̂](τ, τ̄)

where Ĥµ[K] transforms as a modular form of weight (2, 0).



Let us assume that b2 > 1 and let us require the existence of an
empty chamber w.r.t to the null vector J ′.

Then we can write ΨJ
µ[K] as a total derivative using Zwegers’

completed indefinite theta function with kernel K̂

Θ̂JJ ′
µ [K̂] =

∑
k∈Λ

K̂(k)(−1)B(k,KX)q−
k2

2

Then ĤJJ ′µ [K̂] takes generically the form

ĤJJ ′µ [K] = ν Θ̂JJ ′
µ [K̂]

with K and K̂ related as

d

dτ̄
K̂(k) = K(k)e−2πyk2



Interlude



Let me say very few words on the indefinite theta functions and
mock modular forms that were first discovered by Ramanujan.



Zwegers’ indefinite theta function is a (famous) example of a
mock modular form. It is a map

Θ : H→ C

which can be expressed as a convergent holomorphic q-series over
a lattice Λ of indefinite signature. Such a function fails to be
modular.

The way to go around this is to add a non-holomorphic function R
with argument a function (the shadow of Θ)

g : H× H̄→ C

such that
Θ̂ = Θ +R(g(τ, τ̄))

transforms as a non-holomorphic modular form.



Back to the Coulomb branch integral...



Exactly due to the equation

d

dτ̄
Ĥµ[K] = ν(τ) ΨJ

µ[K̂](τ, τ̄)

which makes Ĥ have the generic form

Ĥµ[K] = ν(τ) Θ̂JJ ′
µ [K̂](τ, τ̄)



...our integral localizes to the boundaries of the Coulomb branch B
that map to the boundaries of H/Γ0(4). As a result we have

ΦJ
µ[K] =

∑
∂(H/Γ0(4))

∮
dτ Ĥ[K]



...and the contribution from the three cusps therefore reads

ΦJ
µ[K](p,x) = 4

[
Ĥ[K](τ, τ̄)

]
q0

+
[
SF∞

]
q0

+
[
T 2SF∞

]
q0

where F∞ is the fundamental domain of SL(2,Z).

The q0 coefficients of this modular form then easily gives us the
Donaldson invariants if we include p and x.



Example. Let X = Fl with quadratic form QFl
=

(
−l 1
1 0

)
.

These are the Hirzebruch surfaces which can be viewed as a
fibration

π : Fl → C

with fiber f ∼= CP1 over the base C ∼= CP1.



By setting J ′ = f we can evaluate ΦJ
µ(p,x) for Fl using the kernel

K̂(k) = −du
da

πiB(k,x)

2

{
E(
√

2yB(k, J))− sgn(B(k, J ′))
}

−du
da

iB(x, J)

2
√

2y
e−2πyk2

+

and the result of the u-plane integral [actually for all Kähler
surfaces of Kodaira dimension −∞ and K2

X > 0] is

ΦJ
µ(p,x) = 4

[
ν(τ)e2pu+x2G(u)Θ̂JJ ′

µ (τ,ρ)
]
q0



Only the cusp at i∞ contributes in the case of Fl and we arrive at
the expression

ΦJ
µ(p,x) = 32i

[
(u2 − 1)

da

du
e2pu+x2G(u)Θ̂Jf

µ (τ,ρ)

]
q0

The expression for ΘJf
µ (τ,ρ) can be written as a generalized

Appell sum that skipping a lot of details looks like

ΘJf
µ (τ,ρ) =

∑
m∈Λ+µ

B(m+b,J)/B(f ,J)∈[0,1)

(−1)B(m,K`)q−m
2/2e−2πiB(ρ,m)

1− q−B(f ,m)e−2πiB(ρ,f)



Wall-crossing formula is obtained readily with this technique :)

∆ΦJ1J2
µ (p,x) = 4

[
ν(τ)Θ̂J1J2

µ (τ,ρ)e2pu+x2G(u)
]
q0

+ modular transf.

for arbitrary polarizations J1 and J2.



We have seen how the inclusion of the Q-exact observable I+(x)
yields these useful formulae which allow an explicit computation of

the u-plane integral for any polarization.

I+(x) =

∫
x

{
Q, dū

dā
χ

}

But some questions arise.



Is this operator well-defined ?

Is the integrand single-valued?

Does the vev of this operator vanish?

〈I+〉 = 0 ?



Is this operator well-defined ? Yes!

Is the integrand single-valued? Yes!

Does the vev of this operator vanish? Yes!

〈I+〉 = 0 !



CohFT rules say that for a Q-exact observable O we should have

〈O〉 =

∫
[DX ] e−SCohFT[X ]O = 0

Naively our integral 〈I+〉 is divergent!



In upcoming work together with Jan Manschot, Greg Moore and
Iurri Nidaiev we show that this is not the case.

We derive a subtle regularization of such naively diverging integrals
generalizing on work of mathematicians on regularization of

Petersson inner products.



Applying this regularization to the vev of our Q-exact operator

I+(x) =

∫
x

{
Q, dū

dā
χ

}

we find that indeed

∫
[DX ] e−SDWI+(x) = 0

as required by the CohFT rules set by Witten



Ramified Donaldson-Witten theory



Finally let me mention a rather simple extension to theories with
surface defects .



I X is again a Kähler surface

I S ↪→ X is an embedded complex curve of genus g

A surface operator amounts to a prescribed singular behavior of
the gauge field restricted on NS

A = αdθ + regular

where the normal coordinate to a plane on S is

dθ = i
dz

z

and with α ∈ t specifying the type of surface operator. Actually
α ∈ T and the type of surface operator is defined by a choice of lift
from T ∼= t/Λcochar. to t.



The curvature of the gauge field modies to

F = 2παδS

We can interpret the theory of the surface operator as the theory
of an extended vector bundle with connection whose curvature is

F = F − 2παδS

For flat space BPS condition gives

F = 0

while for compact 4-manifold X

F+ = 0

which corresponds to the so-called ramified instantons.



Performing a similar analysis as before ( following the works of
[Moore, Witten 1997] and [Tan 2009]) by including the Q-exact
operator I+(x) we find [G.K. 2018]

Φ̃J
µ(p,x,S) = 4

[
ν(τ)e2pu+x2G(u)+S̃

2
H(u)Υ̂JJ ′

µ (τ,ρ;α)
]
q0

+ [SF∞]q0 + [T 2SF∞]q0



Υ̂JJ ′
µ (τ,ρ) =

∑
k̃∈Λ+µ

{
E(
√

2yB(k̃ + b, J))− sgn(
√

2yB(k̃ + b, J ′))
}

× (−1)B(k̃,KX)q−k
2/2e−2πiB(k̃,ρ)

k̃ := k − α

2
δS

lim
α,η→0

Υ̂JJ ′
µ = Θ̂JJ ′

µ

.



Modularity of the integrand of imposes the allowed charges of the
surface operator.

η

α

η

α



The ramified Donaldson invariants can be expressed in terms of the
classical Donaldson invariants, thus they do not provide any new
information for smooth 4-manifolds. [Mrowka, Kronheimer]

Still, it is nice to be able to explicitly compute these correlators in
the ramified theory as well.



Summary



I Still many things to understand about CohFTs

I Q-exact insertion in DW theory yields new surprising results
and connections to mock modular forms

I DW seems to be somewhat special; vevs of Q-exact insertions
seem to vanish

I These techniques apply for the ramified DW theory as well
(surface defects)



Some cool ideas



I Higher rank theories? First steps at [G.K., Manschot] but also
previous work by [Moore, Mariño]

I Other surfaces? E.g. CP2#7CP2
, Enriques surface?

I Other theories?



I Take the example of Fl and try to understand precisely what
happens when the fiber shrinks to zero. The resulting function
should be the generator of the quantum cohomology of the
moduli space of flat connections on CP1

I Consider π1(X) 6= 0. Reduce the theory to 2d. Can you
compute this quantum cohomology without lattice reduction
but with the techniques desribed above? [Bershadsky et. al. 1995]

I What about a ramified version of Vafa-Witten theory? That
is, study the partition function of the VW theory with
embedded divisors and its modular properties. Will there be
any surprises?


	Motivation

