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The problem of computing the GWs emitted by a 
binary system is (almost) as old as GR.  
It has become increasingly relevant for testing GR 
w/ binary pulsars, for GW searches during decades, 
and, finally, for their detection @ LIGO/VIRGO out 
of the coalescence of BH-BH & NS-NS binaries. 
Tools: Effective 1 Body (EOB), numerical relativity 
Most of the time these processes are in the non-
relativistic regime, with the exception of the 
merging itself when relativistic speeds                    
(v/c ~ 0.3-0.6) can be reached. 

An unsolved textbook exercise



Much less attention has been devoted in the past 
to a more academic (but simpler?) problem.  
Consider the collision of two massless or highly 
relativistic (γ = E/m >> 1) gravitationally 
interacting particles in the regime in which they 
deflect each other by a small angle  θs  = θE

Problem: compute the GW spectrum associated 
with this collision to lowest order in  θE.  
How can it possibly be an unsolved problem?  
(Andrei Gruzinov, private conversation, 2014)
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What we do know



1. The zero frequency limit (ZFL)  
We have a solid prediction (Smarr 1977) for  

dEGW/dωd2Ω    as ω-> 0 
Obtained either by a classical or by a 
quantum argument. Latter uses a well-known 
soft graviton limit (see Part II) 
The result (2->2 after integrating over 
angles) is classical (c=1 throughout):
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NB: typical magnitude of dE/dω : Gsθs2



2. Work in the seventies 
P. D’Eath; D’Eath and Payne ~ 1978 



!

S. Kovacs and K.Thorne 1977 



!

3. Numerical Relativity 
(F. Pretorius, U. Sperhake, private comm. ~ 04.14) 

The calculation in NR is also challenging because 
the deflected particles carry with them two 
shock waves that travel (almost) as fast as the 
emitted GWs & roughly in the same direction) 
Disentangling the two becomes very tricky for 
γ’s >~ 3 and θE a bit > γ-1 

!

Hope for the future? See e.g. Pretorius & East 
(1807.11562) on BH & GW from axisymmetric 
collisions of null extended sources (beams).



es

e
q

q

1
p’

p’
2

p
2

p
1

q

b

ïJ
z

y

x

The process at hand



Outline!

!

• A classical GR approach 
• A quantum approach, comparison w/ CGR 

• Rough properties of the IR spectrum & a 
“Hawking knee” 
• Finer properties of the deep-IR spectrum 
• An unexpected bump at ωb ~ 0.5 

************ 
• A soft-theorem approach  

• Recovering the ZFL @ O(1) 
•The O(ω) correction 
• The O(ω2) correction and a check 
• IR-divergences/logs …. and the bump again 



Complementarity of two approaches
!

• The CGR approach and the quantum eikonal 
approach are limited to small-angle scattering but 
cover a wide range of GW frequencies. 
• The soft-theorem approach is not limited to 
small deflection angles but is only valid in a much 
smaller frequency region. 
• Consistency checks can be performed in the 
non-trivial overlap regime (small angle, low 
frequency) 



Complementarity  
w/ other problems/calculations!

• Grav.al bremss. from a gravital collision occurs @ 
O(G3); same as a recent calculation of the 3PM 
conservative potential/deflection angle (Bern et al. 
1901.04424, applied to EOB by Buonanno et. al. 
1901.07102) 
• An old paper (ACV90) computed (in m->0 limit) the 
3PM correction to deflection angle using analyticity 
and unitarity inputs. Consistency with Bern et al. still 
unclear (logs m, b vs J…) 
• A complete answer @ 3PM level within reach? 
Important for improving EOB (Damour, 1710.10599).



A Classical GR approach 
(A. Gruzinov & GV, 1409.4555)  

Based on Huygens superposition principle.  
!

For gravity this includes in an essential way 
the gravitational time delay in an Aichelburg-
Sexl shock-wave metric.
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Frequency + angular spectrum (s = 4E2, R= 4GE)  

Re ζ2 and Im ζ2  correspond to the usual (+,x) GW 
polarizations, ζ2, ζ*2 to the two circular ones. 
!
Subtracting the deflected shock wave (cf. P. D’Eath) is crucial!  
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Postponing the discussion of this spectrum 
let me jump to a sketch of: 

A quantum treatment in eikonal approach 
!

(Ciafaloni, Colferai & GV, 1505.06619,  
 CC&Coradeschi & GV, 1512.00281, Ciafaloni & 

Colferai, 1612.06923, 1709.08405,  
Ciafaloni, Colferai & GV, 1812.08137) 
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1. The usual soft-graviton recipe (emission from 
external legs) has to be amended since the internal 
exchanged gravitons are almost on shell. Emission 
from such internal lines is important for not-so-
soft gravitons (hence for the GW energy). 
NB. Emission from internal legs also in low-E thrms 

In CC(C)V (1505.06619 & 1512.00281) the same problem 
has been addressed at the quantum level improving on 
an earlier (ACV07) treatment.
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2. Emission from external and internal legs throughout 
the whole ladder has to be taken into account.



3. One should finally take into account the (finite) 
difference between the (infinite) Coulomb phase of 
the final 3-particle state and that of an elastic 2-
particle state. When this is done, the classical 
result of G+V is exactly recovered for hω/E -> 0! 
Indeed, using E/J conservation (see figure):
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Rough analytic properties & 
emergence of Hawking knee  



For b-1 < ω < R-1  the GW-spectrum is almost flat in ω
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 Above ω = R-1 drops, becomes “scale-invariant” 
!

 	
!

This gives a log ω* in the  “efficiency” for a cutoff at ω*

!

Below ω = b-1 it “freezes” reproducing the ZFL

Hawking!



For ω > ω* G+V argued for a G-1ω-2  spectrum which 
(extrapolating to θs ~1) turns out to be that of a time-
integrated BH evaporation!

At ω ~ R-1 θs
-2  the above spectrum becomes O(Gs θs4) i.e. 

of the same order as terms we neglected. 
Also, if continued above R-1 θs

-2, a so-called “Dyson 
bound” (dE/dt < 1/G) would be violated. Using ω* ~ R-1 θs-2  
we find (to leading-log accuracy) the suggestive result:

EGW

p
s

=

1

2⇡
✓2s log(✓�2

s )

A guess about ω*



Rough numerical results on the GW 
spectra 

M. Ciafaloni, D. Colferai, F. Coradeschi & GV,  1512.00281



θs = 10-3

M. Ciafaloni, D. Colferai & GV,  1505.06619
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ωR = 0.125ωR = 10-3

M. Ciafaloni, D. Colferai, F. Coraldeschi & GV,  1512.00281

Angular (polar and azimuthal) distribution



ωR = 8.0ωR = 1.0

Angular (polar and azimuthal) distribution

Selected for PRD’s picture gallery…



Back to analytic spectra 



suggest naive (monotonic) interpolation 
around ωb~ 1, e.g.  
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This turns out not to be the case… 
!



Finer features of  
the deep-infrared spectrum 
(Ciafaloni, Colferai & GV-1812.08137)



A careful study of the region ωR < 1, but with ωb 

generic, shows that: 
!

At ωb < (<<) 1 there are corrections of order 
ωblog(ωb), (ωb)2log2(ωb) (higher logs θs-suppressed).  
!

First noticed by Sen et al. in the context of soft 
thrms in D=4. Here they come from the mismatch 
between the two- and three-body Coulomb phase. 
!

These logarithmically enhanced sub and sub-sub 
leading corrections disappear at ωb > 1 so that the 
previously found log(1/ωR) behavior (for ωb > 1 > ωR), 
as well as the Hawking knee, remain valid. 



The ωb log(ωb) correction only appears for circularly 
polarized (definite helicity) GWs but disappear either 
for the (more standard) + and x polarizations, or after 
summing over them, or finally after integration over 
the azimuthal angle.  
!

They are in complete agreement with what had been 
previously found by A. Sen and collaborators using 
soft-graviton theorems to sub-leading order (see part 
II). These authors claim that such logarithmically 
enhanced corrections lead to observable effects on the 
gravitational wave-forms. 



The leading (ωb)2log2(ωb) correction to the total flux 
is positive and produces a bump at ωb ~ 0.5.  
!

Could not be compared to Sen et al. who only 
considered ωb log(ωb) corrections. 

!

Now confirmed by Sahoo(private comm. by AS) but… 
!

 Can be compared successfully with ABV-19 if Sen et 
al. recipe is adopted to O(ω2) (see part II). 
!

!

!

!



New numerical results  
(Ciafaloni, Colferai & GV-1812.08137)
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Beyond the ZFL via soft theorems 
(Laddha & Sen, 1804.09193;  
Sahoo & Sen, 1808.03288,  

Addazi, Bianchi & GV, 1901.10986) 

Part II 



Low-energy (soft) theorems for photons and 
gravitons (Low, Weinberg, … sixties) had a revival 
recently (Strominger, Cachazo, Bern, Di Vecchia, 
Bianchi…). In the case of a soft graviton of 
momentum q we have (for spinless hard particles)

NB: sub and sub-sub leading terms may need 
corrections at loop level & from IR sing.s @ D=4.



Recovering the ZFL (m=0 case)

sum over polarizations gives the integrand

Keeping just the leading term in the x-section:



Result does not depend on µ and is free of mass 
(collinear) divergences. For 2->2 scattering:

At small deflection angle (|t| << s):
dEGW
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When we go beyond the ZFL, i.e. to O(ω), O(ω2), we 
have to be careful about sub-leading terms “hidden” 
behind the leading one. For instance: 

gets an additional constant -4 on its r.h.s. 
Different expressions can have the same ZFL and 
yet differ at sub-leading level. 
Turns out to be important for a check to be 
discussed below.

Remark



Next-to-Leading (details)

summing over polarizations

For given i,j the relevant integral

has collinear divergences. These are nicely avoided 
through a little trick (additional terms vanish after sum)



We also add a δ(qP + 2Eω0) (w/ P the c.o.m. momentum) 
to fix the c.o.m. ω = ω0 in a covariant way. Quantity in 
sq. brackets orthogonal to pi, pj. Then we get

(note absence of singularities when latter vanishes) 
 It can be simplified further to give:

To be sandwiched (divided) between (by) Sif+Sfi



Vanishing of O(ω) correction for 2->2

Terms with i = j do not contribute.Terms with (i, j = 1, 2 
and 3,4) vanish because projector = 0. For (i,j = 1,3) the 
derivatives only contribute when acting on (p1p3): this 
produces a p1 or p3 which get killed by the contraction. 
In this last step a careful definition of the partial 
derivatives is needed…see below 
The result (recall that we summed over pol.s!) agrees 
with those obtained in the eikonal approach and also 
with Sen et al. for the log-enhanced term.



Side remark (if time allows) 
How do we define the partial derivatives?

Q: In a process 1+2 -> 3+4 + gr(q) which 4-point function 
remains after gr-emission from an external leg? 
A: If the emission is from 1 or 2 the 4-point-f. is 
evaluated at s34 =(p3+p4)2 while for emission from 3 or 4 
it is evaluated at s12 =(p1+p2)2 =(p3+p4+q)2 

In explicit examples (one to be discussed later) this 
leads to a simple recipe for the derivatives 



replace

Then apply the derivatives as if the four momenta 
were independent. This gives



These rules satisfy some desired properties such as



The sub-sub leading correction
The calculation is much more involved, but the final 
result takes a simple, elegant form

= ~�1 dE
GW
2
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Specializing to a 2->2 process 



Using again the same recipe for the partial derivatives:

The above combinations of derivatives are 
unambiguous. They act on either A(s,t) or on A’(s,u) or 
on A’’(t,u)  yielding the same result for the same 
physical amplitude.



Example I  
A tree-level 2->2 amplitude, e.g. single graviton 
exchange in a+b->a+b (w/ a ≠ b) 

A(s, t) = �su

t
=

s2

t
+ s =

u2

t
+ u

Corrections to ZFL look quantum and O(h2 ω2/Q2)  
But if we use Q = h/b they become O( ω2b2) (i.e. 
classical?) 
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This result has been checked via a long, explicit 
calculation in N=8 SUGRA. The same f(x) came out (!) 
…except for the 1 being replaced by a -1!  
The origin of the discrepancy took a while to be 
understood: it is due to that -4 I have mentioned 
earlier.



Example II : Resummed eikonal a la ACV.
Because of phase O(action/h) derivatives act, to leading 
order, on the exponent (Cf. WKB). The powers of h 
cancel and we get a classical contribution. 
Unfortunately, the infinite Coulomb phase does NOT 
drop out.

The reason is quite clear: the derivative operators in Ji 

feel the change of the Coulomb phase due to the change 
of the hard momenta. Such a change is itself  IR 
divergent. However, also the final soft graviton 
contributes an IR div. Coulomb phase which is exactly as 
needed for the cancellation (Cf. CCV18).  



The standard soft-graviton recipe misses it and should 
be amended. 
!

If we follow Sen et al’s recipe for dealing with the 
Coulomb IR logs we can match the result with the one 
obtained in CCV-18 (for the unpolarized, angle-
integrated flux).  
!

We get, like CCV18, a positive correction of order 
(ωb)2log2(ωb) (but, unlike in CCV18, with a precise 
coefficient in front) confirming the already mentioned 
bump in the spectrum around ωb = 0.5.



Summarizing 

GW’s from ultra-relativistic collisions is an interesting 
(though probably academic) theoretical problem.  

!

It is challenging both analytically and numerically, both 
classically and quantum mechanically. 

!

The ZFL (for dEGW/dω) is classical & well understood. In 
order to go beyond the ZFL two approaches have been 
followed (besides the CGR one of G+V): 



The first follows the eikonal ACV approach, is limited 
(so far) to small deflection angles, but extends to 
frequencies somewhat beyond 1/R >> 1/b 
It is free from IR infinities which, however, bring 

about logarithmic enhancements at ω < 1/b and are 
responsible for a peak in the flux around ωb = 0.5. 

!

The second goes via the soft-graviton theorems. It is 
not limited to small-angle scattering but is restricted to 
the ωb < 1 regime. 
Because of IR divergences in 4D, the non-leading soft 

terms are ill defined and need modifications. 
!

!



At sub-(and now sub-sub?)-leading level a recipe due 
to Sen and collaborators looks to be confirmed by the 
eikonal-approach-based results. 
At sub-sub-leading level that same recipe confirms 

the CCV-18 prediction of a bump in the flux @ ωb ~ 
0.5 
Eventually, one would like to extend these results to 

arbitrary masses and kinematics and to combine them 
with recent ones on the conservative gravitational 
potential at 3PM level, leading hopefully to a full 
understanding of gravitational scattering and 
radiation at that level. 
With such a motivation in mind I’m pleased to 

announce: 
!



Workshop on 
Gravitational scattering, 

inspiral, and radiation 
(GGI, May 18-July 5, 2020) 



Thank you! 



Abstract 
I will review recent developments on soft 
gravitational radiation from ultra-relativistic 
collisions. Calculations based on recent 
developments in the eikonal approach and in soft-
graviton theorems will be compared. We find 
excellent agreement (in their common region of 
applicability) and are led to predict an unexpected 
bump in the spectrum of the gravitational energy 
flux at wavelengths comparable to the impact 
parameter of the collision.
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Previous results (CCCV 1512.00281)

1/(ω R)


