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Outline

Introduction.

Recurrence relations for leading logarithms (LLs) from unitarity,
analyticity and crossing symmetry in D = 4.

Pseudofactorials and a dream of quasi-renormalizable QFTs.

Bi-quartic theory in D = 2.

000 O©060

Solutions of the recurrence relations for LLs for bi-quartic theory in
D = 2 and examples of quasi-renormalizable QFTs.

@ Summary and Outlook.

Based on

M. Polyakov, A. Smirnov, K.S. and A. Vladimirov, arXiv:1811.08449 [hep-th], accepted for
publication in Theor. Math. Phys.

J. Linzen, M. Polyakov, K.S. and N. Sokolova, JHEP 1904 (2019) 007, [arXiv:1811.12289

[hep-ph]].
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LLogs in x\PT

Lypr=Lo+Ls+....

@ 2 — 2 scattering amplitude:

E2 E4 ,u2 E®%
A(s, t) = clﬁ +F( o log = + c3 )—i—O ra
~ N—— l1—loop L; parameters
only Ly 1—loop tree—level L, parameters
parameters only

Ly parameters

Leading Logs

Power of Log
n = [number of loops +1]




Do we really have to care about LLogs in EFTs?
Renormalizable QFT

Case of xPT

A(s) = a + a?(ay log|s| + b1) + a(az log? |s| + by log |s| 4+ ¢) +
@ LlLog approximation gives leading asymptotic behavior.

@Q

~
log |s]

Als) — S s? | b s3
(S)_E+H(al og|s| + 1)+,_T
s < F?; slogls| ~s.

6(aglog2|s|+b2|0g|s|+c)+...;
interested in their resummation... But!

@ In xPT LLog can not compete with power-like corrections. No reason to be particularly




Motivation: chiral expansion of PDFs and GPDs

@ Additional dimensional parameter can make it necessary to sum up chiral logs.
@ Non-local quark-antiquark operator on the light-cone (n? = 0):

o\ =g (%)\n) Y4+q (—%)\n)

@ The dependence of GPDs on the soft momenta and/or pion mass can be controlled by
xPT N. Kivel and M. Polyakov'02.
@ Pion PDF:

) = () + 3 0n [ax o5 (- )| 5000 | e = (masanF)?

n>1
odd

Reorganization required for a, ~ x.
@ GPDs and CFFs (§ = 7 2L):

XBj

A1) = / o ”(X 0 rese, t)+ZAk 2 b log 1/,

by = |t]/4 (4nFr)?
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Transverse size of pion

@ Impact parameter distribution of quarks:

d?A :
alx ) = [ SLOVSRG

(2m

@ Chiral inflation of the pion radius |. Perevalova, M. Polyakov, A. Vall and
A. Vladimirov'11:

> x K mf’* the radius grows as X%;
i
<.

> x ~ 7= the radius grows as

2, 1
@ Gribov diffusion Ansatz: q(x, A%) = q(><)e_°‘/A log v.s. the resummation of

chiral logs:
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@ Graphs contributing to the leading singular terms:

@ Key issue: LL structure 2 — 2 scattering amplitude in massless ExT.

Some references:

@ D. Kazakov'88 and M. Buchler, G. Colangelo’04: generalization of the RG-group methods
for EFTs.

@ M. Bissegger, A. Fuhrer'07: 5-loop LLs in massless O(4)/0(3) o-model;

@ N. Kivel, M. Polyakov, A. Vladimirov'08, J. Koschinski , M. Polyakov, A. Vladimirov'10:
arbitrary-loop LLs in massless ¢*-type EFTs.
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LLs in massless EFT in D = 4: preliminaries

J. Koschinski , M. Polyakov, A. Vladimirov'10:
@ Action (¢*-type theory; all fields are massless):

1
S = /d4X [Eau(ﬁaaﬂ(ba - V(¢7 6¢) .

@ The lowest chiral order of interaction is 2x: e.g. ¢29%"$?

@ The Lagrangian is invariant under some particular global group G (isospin).

@ E.g. O(N+1)/O(N) o-model belongs to this class: G — O(N), k = 1:

L= 2 (0400t c + 0,8°0"¢%) = %amaa#qsa — 5 (67979 (¢°¢") + O(¢°),

1
=

N =

25.04.2019 8 /40




Main object of study: 2 — 2 scattering amplitude

@ Consider the PW expansion of 2 — 2 scattering amplitude:
2t
(050715~ 11670%) = 2ri(ama(.) 3 Pab“’Z(zu D (14 %) de)

) P,"”b“' are projectors on invariant isospin subspaces; Py (...) are the Legendre polynomials.

@ LlLog structure of PW amplitudes:

I T S 2 R i [ 1P
t :75 E “log' [ — ) log" ™'~ — O(NLL).
) 24421414 i 08 ( s ) o8 <—5) +O(NLL)

®

@ F is the coupling in the Lagrangian; 5= @R is the dimensionless expansion parameter.

an F)
@ Both left and right cuts in the complex s plane contribute.
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Recurrence relation for w,’w from unitarity, analyticity and crossing |

@ The LL coefficients are given by

@ Only 2-particle unitarity is relevant! 2-particle unitarity (s-channel cut):

Disc th( =|tl(s)|?.

S
) s>0

@ Implication of the s-channel cut unitarity:

n—1 1 n—1
D> (n—i- Doy = s D Wi g
i=0 2020 +1) =

25.04.2019
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Recurrence relation for w,’w from unitarity, analyticity and crossing I

@ Analyticity + crossing :

—s s —4m?2+t+s

™

1 foo sl cl’ ,
T/(s,t) = f/ ds’ < ’ + U DiscT! (s, t).
4m?2 S

@ |Isospin crossing matrices (s +» u-crossing):

! ! ’ 1
T’(s7 t,u) = Cs’L T! (u, t,s); CS/L’, = Pf’deP,b,d"C—.

d

@ 2-particle unitarity 4+ analyticity: Roy equations:

. 2 20 +1) 0 s+ 2s' 2s+s'
Disc té(s)‘Ko = Z clt . ds' Pe( s )Pe'( o )|t4{(5,)|2'
=0
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Recurrence relation for W:’v.e from unitarity, analyticity and crossing 111

@ Close form of the recurrence relation:

g
) W, erYn_k, e
200 +1

(5u5u’ + CSI#QI’;"E + CSILJI(_]_)Z+Z’QZ’€

n K-n

@ (k-n+1)x (k- n+1) matrices Q% perform the crossing for the PWs.

(55) "R (E2) = S atputa)
£'=0

z—1

@ Reminder for the indices:

‘ n: number of loops + 1;

‘ I, J : label isospin invariant subspaces;

‘Z, ¢ : PW OAM quantum numbers‘

@ |Initial conditions w,’M with £ =0, 1,...k - n come from the tree-level calculation of PWs.
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Results for O(N + 1)/O(N) o-model
The Lagrangian of the O(N + 1)/O(N) o-model:

1
8F2

1
L2 = S0u0°0S — (67679 (6%6°) + O(4°),

The projectors on 3 isospin spaces:

Pabcd _ gabged ) Pabcd _ gacgbd _ gad sbc . Pabcd _ gacgbd + gad gbe B léabécd.
0 N 2 C2 2 N
Boundary conditions from tree-level calculation: w?o =N-1; wh =1, wfo =-1

(and all others are zero).

- + —
2 9 4 144 1447 8 2700 194400 194400

w { N1 N? O 6IN 59 N3 631N 46279N 13309}
—n 1, +

How to check consistency?

@ N =1 - free theory.
@ Explicit calculation up to 3-loop = = ><
order M. Bissegger, A. Fuhrer'07. X)(\—\/ 3

@ Large N limit is well understood.

25.04.2019
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Case of renormalizable theory: O(N)-symmetric ¢*

@ Consider

@ LLog approximation can be obtained by solving 1-loop RG equation:

N+ 2

“2%’\(“2) =B = —N(12) + O(N) = A(s, t) = A\(u?) = Ao
H 8

1 — by g log(2/s)

@ Same solution comes from the recursive equations.

@ The sum of the crossing matrices %(1 + Cst + Csy) is just the 1-loop S-function
coefficient.

o 2
= A(s, t) = Z)\g log"~! (%) wn

n=1
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Simplified form of the recurrence relation

Problem formulation:

oo
f(z) = Z foz" 1
n=1

1
fn=

n—1
n—1

> A K fif, =1
=1

@ A(n, k) function: Greek “Avadpoun” for “recursion” (courtesy of N. Stefanis).
of f, for n — oco.

@ Singularities of f(z) closest to the origin play the crucial role for the asymptotic behavior




Some remarkable cases I: Catalan numbers

n—1 oo
Ci=)Y GCoik, Co=1, Aln+1,k)=n f(z2)=> Cz"=
k=0 n=0

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

[ Search | rias
(Greetings from The On-Line relopedia of Integer Sequences!]
g

4000108 Catalan numbers: C(n) = binomial(2n,n)/(a+1) = (2n)!/(n!(n+1)!). Also called Segner numbers. ¢
(Formerly M1459 N0577)
. 1,2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440,
9693845, 35357670, 129644790, 477638700, 1767263120, 6564120420, 24466267020,
91482563640, 343039613650, 1289904147324, 4861946401452, 18367353072152, 3533550916004,

@ Plenty of combinatoric applications.

@ E.g. number of rooted binary trees with n internal nodes and n + 1 external nodes
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Some remarkable cases |l: Bessel functions
A. Vladimirov, 2010:

-1
A(n, k) = h v — parameter.

@ The solution:

F(z) = lv+1Jy41(2y/z(v + 1))

L(2y/zv+1)

@ For v > —1 poles along z > 0 axis and a cut along z < 0;
@ For v < —1 poles along z < 0 axis and a cut along z > 0;
@ Nb. v= —: f(z) = M c.f. D. Kazakov: summing up UV-divergencies in the
supersymmetrlc gauge theorles (D =6, 8, 10 SYM).

Some motivation from A.A. Migdal

@ A.A.'Migdal'1977, 78: 2-point function of large-N. QCD as the sum of infinite number of
pole terms with spectrum given by roots of the Bessel functions.

@ Some motivation to revive of the approach: AdS/CFT. Same spectrum reported (see
J.Erlich et al.’2006)

v

25.04.2019 17 / 40




Padé approximation: definition and basic properties
Let f(z) be analytic function defined by its Taylor series:

oo
f(z) = Z foz" L.
n=1
Padé approximant:

Pn(2)
Qum(z)

[M/N]¢(2) = = f(z) + O(z"*N*)

@ Uniqueness;

Important class of functions:

Stieltitjes functions in a cut plane:
Im[f(z)]Im[z] > 0
@ Keep this property at any order of diagonal Padé;

@ Nice behavior of zeroes of the denominators;

@ May prove uniform convergence of diagonal Padé in the cut plane;

25.04.2019
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More remarkable examples: factorials and pseudofactorials

Case of renormalizable theory
@ A(n, k) = 1: factorial:
{an} = {fa(n—1)1} = {01, 11, 21,.. .}

Quasi-renormalizable theory 77
@ A(n, k) = (-1)1
R. Bacher and P. Flajolet’09: pseudofactorial sequence:
{an} = {fa(n— 1)1} = {1, -1, -2, 2, 16, —40, —320, 1040, ... }.

f'(z) = =f3(=z); f(0)=1.

THE ON-LINE ENCYCLOPEDIA

OF INTEGER SEQUENCES® -

founded in 1964 by N. J. A. Sloane RAMANUJAN
Mathematical Society

|| search s
(Greeti from The On-Line Ei lopedia of Inte Sequences') -
2098777 Pseudo-factorials: a(0)=1, a(n=1) = (-1)"(a=1) * Sum_{k=0..n} binomial(n.k) * a(k)*a(n-K), n>=0. *
1, -1, -2, 2, 16, -4e, -320, 1040, 12160, -52480, -742400, 3872000, 66457600, -411136000,
i 1 E ) - s 4000,

, 71281637 (list: graphy refs:
mal format)




Dixon’s elliptic functions
Dixon's elliptic functions (Dixon'189X) (elliptic = meromorphic, doubly periodic)

{sm’(z) = cm?(z)
(2)

cm’(z) = —sm?(z)

sm(0) =0; cm0=1

RY PROPERTIES

ELLIPTIC FUNCTIONS

WITH EXAMPLES

London
MACMILLAN AND €O,
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Dixon'’s elliptic functions and pseudofactorial
The equation is equivalent to (g(z) = f(—z))

{f%z)=-—g%z)

g'(z) = f(2), f(0)=1 g(0)=1.

@ This system has a simple first integral: 3(z) + g3(z) = 2.

1_11
2 =BG 3)

. . 1 3 1
Integration gives: f(z) =23sm(— — 232z),
g g (2) 5 ) eBG 3

@@ @@

0
Rez

Li3y/3r

@ Real period: w3 = 6r = 2-1/373. Invariance under rotations by i%".
@ Can be expressed through the Weierstrass p-function.

= T 9ac




Weierstrass elliptic p-function

@ |Inverse of the first kind elliptic integral:

/W(Z;EZag3) dt
z =

oo \/4t3—g2t—g3.

@ Weierstrass elliptic p-function satisfies the equation:

2 1
[0 (z: 82, 83)]" = 40° (z: 82, 83) — 820 (7 82, 83) — g3 p(z— 0ig2,83) = .
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O(N)-symmetric bi-quartic theory in D =2

Quasi-renormalizable QFT (preliminary)

We call the quantum field theory quasi-renormalizable if the generating function for the

coefficients of leading logs of 2 — 2 scattering amplitude (defined from the recurrence relation)
2

is a meromorphic function of the variable z = log (“T)

@ Important simplifications in D = 2 case: no PW expansion and related mixing problem.
@ O(N)-symmetric bi-quartic (d*-type with 4 derivatives) theory:

S= /d2x (%amaa%a — g1(8, 9?04 ?) (8, P°o¥ ) — gz(amaama)(a%bawb)) .

@ LL-approximation of the O(N)-symmetric bi-quartic theory is infrared finite in D = 2.

25.04.2019 23 /40



LLog coefficients in D = 2 bi-quartic theory |

@ Transition “T" and reflection “R" 2 — 2 scattering amplitudes:

(Pc(p3)Pa(pa)lS — 1|®a(p1)Pp(p2)) =
= i(2m)? 5 [5(61 ~ Pa)6(p2 — P3)MIea(5) + 5(p1 ~ P3)5(2 — Pa) Moy

> Transition: t =0, u = —s;
> Reflection: u =0, t = —s;

@ Isotopic decomposition:
2
T,R / I, T,R
Mabcd(s) = Z Pabch (5)
1=0

@ Llog contribution into “T" and “R"” amplitudes:

=S} s 2 n—1
M”{T’R}‘LL(S)ZSQZw,I,’{T’R} {— log (N—>} .

n=1

4r s

e

.M. Semenov-Tian-Shansky xact Summation of Chiral Logs in 2D: Qua 25.04.2019 24 / 40



LLog coefficients in D = 2 bi-quartic theory Il

@ Explicit form of recurrence relations in D = 2:

2
LT _ " i VT T "R 1", R\ .
T = iy o 3 (3~ () (ol Tl L)

2
IR _ ( "wo_ n Il')( I, T I',R IR I',T
wyy 1 -1)"C, w w +w, "w .
n 2(n—1) Z )" Cat k n—k K n—k

@ Initial conditions (n = 1) from the tree-level calculation:

w0 T = w0 R = (2g1(N + 1) + g2(N +3));

WL T = LR (g og),;
W2 T = W2 R (2g, 1 3gy).

@ For n > 1 only particular combination of couplings occurs in LL-coefficients:

1/F? =2g + g.

25.04.2019 25/ 40




Diagonalization of the recurrence system |
@ The system for wl =0T

is equivalent to

n—1

-l

1

Z(Ao+( 1)"Av + (~1) A2 ) fify

The coefficients A; read

h=1.

1 .
(N+2)(N—1)

N+1 2
Ap = D Ay =
(N+2)(N — 1) (N +2)(N
@ Forn>2

—1)

. ((N+2)(N—1)

)




Diagonalization of the recurrence system II

@ Generating function:

@ |/ = 0 transition amplitude in LL-approximation:

MIZOT| (9) = 2 2N +1) + £2(N+3)] + 55 O

@ All other M’ TR are expressed through the same Q(z).

25.04.2019 27 / 40




How to solve the recurrence system |

@ We introduce the generating function

@ The recurrence system for f, is equivalent to the differential equation:

%f(z) = A f(2)> + A f(—2)2 — Ay f(2)f(—2z), f(0)=1.

@ N.b. A; = Ay = 0 same form as the RG-equation in a renormalizable QFT:

d 1
—f(z) = A f2(z); f(z) = ——— : single Landau pole.
dz 1— Aoz
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How to solve the recurrence system Il

@ Even and odd parts of the generating function: f(£z) = u(z) £ v(z)

e o] oo
u(z) = Z fz" L v(z) = Z foz" 1
=1 =2

odd even

@ We need to address the system:

u'(z) = 2(Ag — Ar)u(z)v(z);

{v’(z) = (ot A= A)wP(@) + (Ao + A+ A2 o0y o

@ The system possesses the following first integral A. Smirnov:

—A A A Ao—AL
o + 3 1+ A2 V2(Z)) _ (U(Z))A0+A1+A2 )
Ao+ AL — Az

(uZ(z) +

25.04.2019
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Equivalent mechanical system Il

@ New variables: 1

=1z

@ Use of the first integral:

1 1 d

V&) = =3 — A 1) &2

1(z).

@ Final form of the equation for /(z):

a1 [I'(2))]? = a0l (z) — ap;  1(0) = 1.

23 ) _N+2
(N—-1)2(N+2)’ B

ag = —

25.04.2019
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Equivalent mechanical system Ill

@ The problem is equivalent to a 1D motion of a mechanical system:
s oL N .
> “time’: t = W=V %
> ‘“coordinate”: q(t) =1 (W t).

m 4(t)?

> ta®)’ =1 q(t=0)=1

> “mass’: m= =i;

2N2!
> exponent of the “potential”: v = N+2
LL-amplitude through g
(N-1)(N+2) (1 N—-1 d
Qz)= —24—~ "~ [ 1) - —= —
(2) N a2 SN o, esla@)-

M. Semenov- Tian-Shansky xact Summation o iral Logs in 2D: Qua 25.04.2019 31/ 40



Equivalent mechanical system Il

2
@ Dual “mechanical” system: q(t) = r(t)2-7:

> “mass’: M =

2 .
N—22°
> exponent of the “potential”: § = 72—7

-2




Remarkable solutions |

@ N — oo; (y =0, m— 0) — “motion under constant force”:

q(t) =1~ (Ne)?;

N.b. LL-amplitude possesses a single Landau pole; assuming g; ~ 1/N, theory is
equivalent to a renormalizable QFT.

@ N=2(yv=2, m= %) — “harmonic oscillator”:

q(t) = cos(4t); Q(z) = _2 +tan(4z) — 2

cos(4z)

First example of a quasi-renormalizable theory!
> Poles and residues:

m _ T __3
z, = 3 (4k+1), k ez, iezs(l)ﬂ(z) ==y
1
22 = g(4k +3), keZ  Res Q(z)= .

25.04.2019
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Remarkable solutions 11

@ N->0(6=2 M= %) — “inverted harmonic potential”:

r(t) = cosh(2t);

Q(z) = — log[cosh(2z)] — tanh(2z)

Another example of a quasi-renormalizable theory!

» Poles and residues:

zi=i~(2k+1), k€Z, Res Qz)=—=.
4 z=2z) 2

1

25.04.2019
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Remarkable solutions Il

® Case N =1 (y=3, m=}) - (Bacher&Flajolet's pseudofactorial):
3p (V3t;0,— 2 ) —

q(t) = ( 27)

3p

2
A

(ﬁt;o,—%) 1




Remarkable solutions 1V

© (%z; —-1,0) — ¢’ (%z; —1,0) +2

4
Q(z) =
NS EET




Qualitative general analysis

@ Case N >0or N < —2: "particle” moves to the left from g =1 to g = 0. This point is
reached in finite “time” and with finite “velocity”: pole singularity of Q(z):

VT (14 %)

Zpole = .
1 N
2nT (3 + )

> N = ﬁ (p € N) “particle” oscillates in the “potential” g2(P™1). Q(z) has an
infinite number of equidistant poles separated by:

_(mr+nw?r(y+zﬁﬂ)

Az = 1 1 , peN.
2" (5 + 2(p+1))
> Known elliptic solutions for N = %, %

@ Case —2 < N < 0: “particle” moves to the right from g = 1 and never reaches g = 0. No
singularities on the real axis for Q(z).

VT (s 3
2Nr(—JL)'

Zpranch = i
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Conclusions and Outlook |

@ First examples of quasi-renormalizable theories:
> All order summation of LLs in the O(2)-symmetric bi-quartic theory in D = 2:

QV=2(z) = + tan(4z) — 2.

2
cos(4z)

» N — 1 limit case. LL-amplitude in terms of Dixon’s functions.

@ Can one find further field theoretical models corresponding to (doubly)periodic solutions
of the recurrence relations for LL coefficients?

@ s it possible to have a non-trivial example of the exactly solvable quasi- renormalizable
theory in D = 27

@ A the connection between the LL-approximation of EFTs and the properties of general
non-perturbative solution related to the underlying fundamental QFT. Can we learn
something on the spectrum?

@ Can we understand how recurrence relations work at the diagram level? A. Connes and
D. Kreimer linear space of graphs? D. Kazakov insight from SYM?
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Outlook 11

@ Mixed O(N)-symmetric theory with renormalizable and non-renormalizable interactions:
possible applications in solid state physics.

1
L= %(autba“d)) + E(wm)(«ba%) + g1(0p PO" ) (9, ©0” ) + g2(9, 9" (0, PO ®)

Weak-localization theory: role of higher derivatives in the nonlinear sigma-model
V.E. Kravtsov,|.V. Lerner,andV.l. Yudson

Spectroscopy Institute, USSR Academy of Sciences
(Submitted 8 December 1987)
Zh. Eksp. Teor. Fiz. 94, 255-263 (July 1988)

Itis shown that additional vertices containing higher powers [ (dQ) >, n>2] of the gradients of
the field @, which appear in the microscopic derivation of the Q-functional of the nonlinear sigma
model, have a positive anomalous dimensionality proportional to n* — n. By the same token,
these vertices turn out to be substantial for sufficiently large n, notwithstanding their negative
normal dimensionality — 2n + 2.Itturns out that it is precisely these vertices which determine
the asymptotic behavior of the distribution function of the mesoscopic fluctuations, as well as the
long-time asymptotic behavior of the relaxation currents in disordered conductors. In particular,
allowance for these vertices leads to a change of the variance in the logarithmic normal asymptote
of the distribution function of the conductivity-fluctuations.
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Where we are?
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