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Slide 0 of 29Bootstrap idea
Bootstrap: making predictions for physical observables from general principles of symmetry and quantum 
mechanics.
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Slide 0 of 29Basic ingredients for conformal field theory
Assumption 1, Conformal Symmetry

Fields should form representation of conformal group. Our fields are labelled by two quantum numbers: ℓ 
(spin), Δ (conformal weight).

Conformal symmetry fixes the form of 2pt and 3pt function up to a constant.

For example for scalar:
〈ϕ(x) ϕ(y)〉 = 1

x-y2Δϕ

〈ϕ1(x) ϕ2(y) ϕ3(z)〉 = λ123
1

x-yΔ1+Δ2-Δ3 y-zΔ2+Δ3-Δ1 z-xΔ3+Δ1-Δ2
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Slide 0 of 29Basic ingredients for conformal field theory
Assumption 2: Operator Product Expansion (OPE)

ϕi(x) ϕ j(y) = ∑kλi j k ( sth. depends on x - y and ∂y) 𝒪k(y) where 𝒪k is primary field

The key point is that the structure in (...) is fixed by conformal symmetry. Let’s write

ϕi(x) ϕ j(y) = ∑aλi j k Ck(x - y, ∂y) 𝒪k(y)  (summation over primary field)

Conformal partial wave decomposition:

〈ϕ(x1) ϕ(x2) ϕ(x3) ϕ(x4)〉
=λ12𝒪

2Ca(x1 - x2, ∂2)Cb(x3 - x4, ∂4) 𝒪a(x2) 𝒪b(x4)

≡ ∑𝒪λ12𝒪
2 x12

-Δϕ x34
-Δϕ gΔ,ℓ(u, v)

where
u = x12

2 x34
2

x13
2 x24

2 , v = x14
2 x23

2

x13
2 x24

2

gΔ,ℓ(u, v) ≡ x12
Δϕ x34

Δϕ Ca(x1 - x2, ∂2)Cb(x3 - x4, ∂4) 𝒪a(x2) 𝒪b(x4) is the conformal block for operator 𝒪 with 
conformal weight Δ and spin ℓ.
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Slide 0 of 29Basic ingredients of conformal field theory
Assumption 3: Crossing symmetry
(the OPE is associative)

ϕ (x1) ϕ (x2) ϕ (x3) ϕ (x4) = ϕ (x1) ϕ (x3) ϕ (x2) ϕ (x4)

u-Δϕ ∑𝒪∈ϕ×ϕλϕϕ𝒪
2 gΔ,ℓ(u, v) = v-Δϕ ∑𝒪∈ϕ×ϕλϕϕ𝒪

2 gΔ,ℓ(v, u)

Define convolved conformal block F±,Δ,ℓ = uΔϕ gΔ,ℓ(u, v) ± vΔϕ gΔ,ℓ(v, u) .

We have the bootstrap equation ∑𝒪∈ϕ×ϕλϕϕ𝒪
2 F-,Δ,ℓ(u, v) = 0
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Slide 0 of 29Unitarity in CFTs
Unitarity: all the states in Hilbert space have positive norm.

Fact 1: Unitarity bound
For ℓ = 0, Δ ≥ dim

2
- 1 or Δ = 0

For ℓ > 0, Δ ≥ dim + ℓ - 2

Fact 2: For non-unitary CFT, some operators has negative norm. If we insist to normalize 
〈ϕ(x) ϕ(y)〉 = 1

x-y2Δϕ
 (we did this in defining the conformal block), then some OPE coefficient λ2 is negative.

For unitary CFT, λ2 ≥ 0 .
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Slide 0 of 29Basic logic of conformal bootstrap
∑𝒪∈ϕ×ϕλϕϕ𝒪

2 FΔ,ℓ(u, v) = 0

Let a linear functional α satisfy

α(F0,0(u, v)) = 1
α(FΔ,ℓ=0(u, v)) ≥ 0 for Δ ≥Δ0

α(FΔ,ℓ(u, v)) ≥ 0 for ℓ > 0 , Δ ≥Δunitary

Note: this problem depends on two numbers that we choose: Δ0, Δϕ  (and spacetime dimension)

If I found such α ...

Assume there is CFT with first scalar in ϕ×ϕ OPE has dimension Δ >Δ0. Applying α to both side of the 
bootstrap equation, we will found LHS > 0 but RHS = 0.

Therefore the lowest operator must have dimension lower then Δ0 . We call this method Feasibility Test / 
Positivity Test .

This problem can be approximated by semidefinite program (SDP). We can use the software SDPB to solve 
it.
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Slide 0 of 293D Ising model
Let’s rename Δ0 to be Δϵ and Δϕ to be Δσ . Do this feasibility test in 3D:
 

(From El Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi arXiv:1203.6064)
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Slide 0 of 29Working with mixed correlator system
Consider CFT with ℤ2 symmetry (parity). Assuming σ is ℤ2 odd, ϵ is ℤ2 even.

Exchanging 1st and 3rd operators in the correlator, we have following equations:

(1), 〈σσσσ〉 :
∑𝒪λσσ𝒪

2 F-,Δ,ℓ
σσ,σσ = 0

(2), 〈ϵϵϵϵ〉 :
∑𝒪λϵϵ𝒪

2 F-,Δ,ℓ
ϵϵ,ϵϵ = 0

(3), 〈σϵσϵ〉 :
∑𝒪λσϵ𝒪

2 F-,Δ,ℓ
σϵ,σϵ = 0

(4), 〈ϵσσϵ〉 :
∑𝒪λϵσ𝒪 F±,Δ,ℓ

ϵσ,σϵ λσϵ𝒪 ∓ λσσ𝒪 F±,Δ,ℓ
σσ,ϵϵ λϵϵ𝒪 = 0

In matrix form:

( λσσ𝒪 λϵϵ𝒪 )
F-,Δ,ℓ
σσ,σσ 0
0 0

 λσσ𝒪
λϵϵ𝒪

 + λσϵ𝒪
2( 0 ) = 0

( λσσ𝒪 λϵϵ𝒪 )
0 0
0 F-,Δ,ℓ

ϵϵ,ϵϵ  λσσ𝒪
λϵϵ𝒪

 + λσϵ𝒪
2( 0 ) = 0

( λσσ𝒪 λϵϵ𝒪 ) 
0 0
0 0   λσσ𝒪

λϵϵ𝒪
 + λσϵ𝒪

2F-,Δ,ℓ
σϵ,σϵ = 0

( λσσ𝒪 λϵϵ𝒪 )
0 1

2
F±,Δ,ℓ
σσ,ϵϵ

1
2
F±,Δ,ℓ
σσ,ϵϵ 0

 λσσ𝒪
λϵϵ𝒪

 ∓ (-1)ℓ λσϵ𝒪
2F±,Δ,ℓ

ϵσ,σϵ = 0

Let’s define 

V
→
+,Δ,ℓ =

F-,Δ,ℓ
σσ,σσ 0
0 0

0 0
0 F-,Δ,ℓ

ϵϵ,ϵϵ

 0 0
0 0 

0 1
2
F-,Δ,ℓ
σσ,ϵϵ

1
2
F-,Δ,ℓ
σσ,ϵϵ 0

0 1
2
F+,Δ,ℓ
σσ,ϵϵ

1
2
F+,Δ,ℓ
σσ,ϵϵ 0

, V
→
-,Δ,ℓ =

0
0

F-,Δ,ℓ
σϵ,σϵ

(-1)ℓ F-,Δ,ℓ
ϵσ,σϵ

-(-1)ℓ F+,Δ,ℓ
ϵσ,σϵ

∑𝒪+ ( λσσ𝒪 λϵϵ𝒪 )V
→
+,Δ,ℓ 

λσσ𝒪
λϵϵ𝒪

 + ∑𝒪- λσϵ𝒪
2 V

→
-,Δ,ℓ = 0

Then positivity constrains can state as: find a linear functional α
→
= (α1, α2, α3, α4, α5) such that

α·V+ ≥ 0
α·V- ≥ 0
( with respect to certain assumption on spectrum )

Note: α·V+ is a 2×2 matrix.  α·V+ ≥ 0 means the matrix is semi-positive, i.e.

( λσσ𝒪 λϵϵ𝒪 ) α ·V+ 
λσσ𝒪
λϵϵ𝒪

 ≥ 0 for arbitrary λσσ𝒪, λϵϵ𝒪

Again this problem can be solved by SDPB.
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Slide 0 of 293D Ising island from mixed correlators
Assume there is only one relevant parity even scalar (ϵ), and only relevant parity odd scalar (σ).

 

 (Kos, Poland, Simmons-Duffin arXiv:1406.4858)
 (Simmons-Duffin, arXiv:1502.02033)
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Slide 0 of 29The OPE scan
The term involves external operator looks like

Vext = ( λσσϵ λϵϵϵ )V+(Δ = Δϵ) 
λσσϵ
λϵϵϵ

 + λσϵσ
2 V-(Δ = Δσ)

This is a 2*2 matrix spanned by λσσϵ, λϵϵϵ .

As Slava suggested in arXiv:1406.4858, we may not have an uniform α that α.Vext > 0 for any θ = λσσϵ /λϵϵϵ . 
But there could be a situation that given a specific θ = λσσϵ /λϵϵϵ there is always an αθ such that αθ.Vext > 0 .
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Slide 0 of 29Ising island with OPE scan
Let’s define θ = tan-1(λϵϵϵ /λσσϵ) . For a given (Δσ, Δϵ) , there might not exist a functional α that satisfy all 
positivity condition. But it is possible for any given θ, there exist a corresponding αθ satisfy all positivity 
conditions.

At Λ = 43 , scan over θ space, then project down to (Δσ, Δϵ) plane:

 

 (Kos, Poland, Simmons-Duffin, Vichi arXiv:1603.04436)
 
OPE scanning is more than “shrinking the island”. In many cases, it is necessary for non-trivial mixed correla-
tor bootstrap.
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Slide 0 of 29O(N) island with OPE scan
θ = tan-1λϵϵϵ λϕϕϵ

 (Kos, Poland , Simmons-Duffin, Vichi arXiv:1603.04436)
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Slide 0 of 29What do we want to do next?
1, We want to improve precision.

In O(N), dimension of T  (traceless symmetric tensor) ΔT  is smaller than Δs , thus probably has an important 
contribution to the bootstrap equation.

We need to mix v, s, t .

16     Nng-Su-LPTHE_slides-19.9.2019.nb



Slide 0 of 29What do we want to do next?
2, We want to find island for more complicated critical point.

How do we find island? Why we have island for Ising/O(N) in the first place?

The island is a reflection of state decoupling.

Let’s take 3D 𝒩 = 1 SCFT with SN symmetry as an example.

ℒ= ∫ⅆθ2 - 1
2
Dα Φi Dα Φi +𝒲(Φi) with 𝒲 = 1

6
di j k Φi Φ j Φk

The Φi is parity odd boson and fundamental representation of SN.

EOM tells us di j k Φi Φ j  (in ℬ+,ℓ=0), become descendant of Φk.

For S3 symmetry, let’s bound dimension of di j k Φi Φ j v.s. Φi :

0.55 0.60 0.65 0.70 0.75

1

2

3

4

5

6

7

ΔΦ

Δ
d i

jk
Φ
j Φ

k

(Junchen Rong, Ning Su, to appear)

Take 3D Ising/O(N) as an example:

EOM in ϕ4 theory : ϕ = ϕ3

For generalized free theory, if Δϕ~0.5 , we expect Δϕ ' ≈ 3Δϕ ≈ 1.5 .

But for Ising/O(N), this operator decouple from the primary spectrum, thus we expect a large gap between 
Δϕ and Δϕ.

How about more complicated CFTs?

3D QED, cubic models (ℒ= ∂ϕi ∂ϕi + λ1 ϕ2 ϕ2 + λ2 ∑iϕi ϕi ϕi ϕi).

We need to mix more operators.

Nng-Su-LPTHE_slides-19.9.2019.nb     17



Slide 0 of 29Generic challenges for multi-operators bootstrap
If we do not scan OPE :
(1), the island is large.
(2), the mixing system might be trivial (in the sense the functional α

→
 scale away some of the equations).
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Slide 0 of 29Generic challenges for multi-operators bootstrap
If we do OPE scan :

In 3D Ising, assume we want to mix σ, ϵ, ϵ ' . The term involve external operators are spanned by

λσσϵ, λσσϵ, λϵϵϵ, λϵϵϵ ', λϵϵ ' ϵ ', λϵ ' ϵ ' ϵ '

Includes Δσ, Δϵ, Δϵ ' , totally it’s 9 dimensional space.

Assume to sample a 2D island, we need about 200 points, i.e. about 200 ≈ 14 points for one dimension. 
Then estimation for 9D space would be

149 = 20000000000

In the old method, each point took 10*32 cpu hours. Each cpu hour=0.01 usd.

Total cost : 6.4 × 1010 = 6 billion USD ! And we still do not know if there is an allowed point between 
two disallowed points!
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Slide 0 of 29The new techniques
The new OPE scan algorithm :
1, Computation time is linear to number of OPEs.
2, It is deterministic : if there is a feasible point in OPE scan, we have (almost) 100% certainty to find it. The 
time about log(volume of OPE space).

Hot-start SDPB :
Save 70% computation time without OPE scan.
Save much much more when combined with OPE scan algorithm.

New version of SDPB:
Capable of running huge SDP problem. The α

→
 can have 5566 components!
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Slide 0 of 29Hot-start
In 3D Ising σ ϵ mixed correlator bootstrap :
 

0.518 0.519 0.520 0.521 0.522
Δσ

1.410

1.415

1.420

1.425

1.430

1.435

Δϵ

How to effective do hot-start ? How different are the functionals when we vary points?

3D Ising single correlator 〈σσσσ〉 :

Δσ



0.510 0.515 0.520 0.525 0.530

1.36

1.38

1.40

1.42

1.44

1.46

Same thing happen in OPE space.

For Ising σ,ϵ mix, fix a point (Δσ, Δϵ) on the island, plot “angle between functionals” v.s. θ = λσσϵ /λϵϵϵ :

0.96 0.97 0.98 0.99 1.00 1.01
θ

10

20

30

40

50

60

70

Angle

Each functional α
→
 actually does not only exclude that specific point, but also a region around it !
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Slide 0 of 29The OPE scan algorithm

1, Use SDPB to do feasibility test on a point λ
→

1 in OPE space. Assume this point is disallowed, we get a 
functional α1

→
.

2, From λ
→

1.α1
→
·Vext.λ

→
1 < 0 , we found a quadratic inequality that constrains OPE space.

3, We choose a good point λ
→

2 in the region that is not excluded, and repeat step 1&2. Until : (1) we found a 
feasible point. (2) the entire region is excluded.

For N number of disallowed points, we have N number of quadratic inequalities. This is quadratically con-
strained feasibility problem. In general it is very hard, but for conformal bootstrap, we can solve it.

i

Show[emptyplot, plotlist〚8〛, Epilog → {Text[Step 8, {1.416, 3.7}], Text[Cut ratio : arealist[[9]]
1 - -------------

arealist[[8]], {1.559, 2.513}]},
PlotRange → {{0, 2.1}, {0, 20}}, AxesOrigin → {0, 0}, ImageSize → 300]
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Slide 0 of 29Result : 3D O(2)
Chester, Simmons-Duffin, Liu, Poland, Su, Vichi, Walter, to appear.
 

Green box : Campostrini, Hasenbusch, Pelissetto, Vicari 2006
Experiment : Lipa, Nissen, Stricker, Swanson, Chui, Phys.Rev. B68 (2003) 174518.

0.5190 0.5191 0.5192 0.5193 0.5194 0.5195 0.5196
Δϕ

1.5110

1.5115

1.5120

1.5125
Δs

Λ = 19
Λ = 27
Λ = 35
Λ = 43
MC+HT (CPHV '06)
MC (XSLD '19)

Red box : Xu, Sun, Lv, Deng 2019

The convergence continue to Λ = 43 .
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Slide 0 of 29The software “Bootstrapper”
The entire process is automatized !

Autoboot → Bootstrapper → SDPB

You can easily reproduce our result. You just need to specify the representation.

Nng-Su-LPTHE_slides-19.9.2019.nb     27



Slide 0 of 29Other ongoing and future works
Ongoing work with Chester, Simmons-Duffin, Liu, Poland, Vichi, Walter.

Cubic model v.s. O(3), which one is stable ?

O(3) : ℒ= ∂ϕi ∂ϕi + λ1 ϕ2 ϕ2

Cubic : ℒ= ∂ϕi ∂ϕi + λ1 ϕ2 ϕ2 + λ2 ∑iϕi ϕi ϕi ϕi

If the rank 4 tensor operator in O(3) is relevant, it will drive O(3) to flow to cubic. We can bootstrap S, V, T 
mixed correlator system to detect this operator.

 

 
MC : (Δϕ, Δs) : Calabrese, Pelissetto, Vicari 2002 . 
ΔT  : Campostrini, Hasenbusch, Pelissetto, Rossi, Vicari 2002 (arXiv:cond-mat/0611353)

The rank 4 tensor is about 2.999 (not certain yet) .
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Slide 0 of 29Other ongoing and future works
Ongoing work with Simmons-Duffin, Rong, Vichi.

Ising model σ,ϵ,ϵ’ mixed correlator bootstrap:
 

: 3 ops Λ=19 with more gap assumption
: 2 ops Λ=43

0.5181475 0.5181480 0.5181485 0.5181490 0.5181495 0.5181500 0.5181505

1.412610

1.412615

1.412620

1.412625

1.412630

1.412635

1.412640

1.412645

Δσ

Δ
ϵ

Viral current appear in ϵ×ϵ ' : 10.5
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Slide 0 of 29Other ongoing and future works
3D 𝒩=1 super-Ising model:

ℒ= 1
2
(∂μϕ)2 +

1
2
ψ ∂/ ψ + λ

2
ϕψ ∂/ ψ + λ2

8
ϕ4

ψ : 2-component Majorana fermion, labeled by α ∈ {1, 2}

This action is invariant under ⅇⅈQ ϵ with Qα ϕ = -ⅈ ψα, Qα ψα = 4 ⅈ F

Bootstrapping 〈ϕϕϕϕ〉 :

0.58435 0.58440 0.58445 0.58450 0.58455
2.84

2.85

2.86

2.87

2.88

2.89

2.90

Δσ

Δ
σ
′

Λ = 19,27,35,43,51

(Atanasov, Hillman, Poland, Rong, Su, to appear)

We would do σ,σ’ mix coorelator bootstrap.
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Can we find an effective algorithm in Δ space? There must be an effective algorithm in Δ space.
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For 3D Ising and super-Ising model, there are about 10 analytic expressions compatible with current preci-
sion for Δσ .

My favorite choice:

Ising: Δσ =
Γ 1

6
+4

Γ 1
24
-5

= 0.5181488085872788360

Super-Ising: Δσ =
Γ 5

24
-4

Γ 1
3
-2

= 0.584441859926329008

0.58435 0.58440 0.58445 0.58450 0.58455
2.84

2.85

2.86

2.87

2.88

2.89

2.90

Δσ

Δ
σ
′

Λ = 19,27,35,43,51

: 3 ops Λ=19 with more gap assumption
: 2 ops Λ=43

0.5181475 0.5181480 0.5181485 0.5181490 0.5181495 0.5181500 0.5181505

1.412610

1.412615

1.412620

1.412625

1.412630

1.412635

1.412640

1.412645

Δσ

Δ
ϵ

There is a beautiful mathematical structure behind Γ 
24
 : all Γ 

24
 can be expressed in terms of 

Γ 1
3
, Γ 1

4
, Γ 1

8
, Γ 1

24
 by reflection formula and Gauss multiplicative formula. They are also related to elliptic 

integral (arXiv:0403510).
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Thank you!
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SetOptions[SelectedNotebook[], PrintPrecision → 8];

plotlist = 

, , , , , , ,

;

arealist = {400, 23.61329547581043`, 11.600326905499319`,
5.623841730221956`, 2.6882727344280077`, 1.433533220394531`,
0.703822207729859`, 0.36562213080118644`, 0.12624419421018349`};

emptyplot = ;

ani1 = AnimateShowemptyplot, plotlist〚i〛, Epilog → 

Text["Step " <> ToString[i], {1.416, 3.7}],

Text"Cut ratio : " <> ToStringNumberForm1 -
arealist〚i + 1〛

arealist〚i〛
, {2, 2},

{1.559, 2.513}, PlotRange → {{0, 2.1}, {0, 20}},

AxesOrigin → {0, 0}, ImageSize → 300, {i, 1, 8, 1}

i

Show[emptyplot, plotlist〚3〛, Epilog → {Text[Step 3, {1.416, 3.7}], Text[Cut ratio :
1 - -------------

arealist[[3]], {1.559, 2.513}]}, PlotRange → {{0, 2.1}, {0, 20}}, AxesOrigin → {0, 0},
ImageSize → 300]
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