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Interested in understanding the landscape of consistent theories of
guantum gravity.

A theory of quantum gravity & The dual CFT satisfies
in AdS is consistent bootstrap constraints.

Probe the boundary of the landscape using the bootstrap.

General expectation: UV consistency requires other states besides gravitons in
the spectrum (black holes, KK modes, string modes).

Concrete goal for today:

i L ook for an upper bound on the mass of the lightest non-graviton state. |

c.f. WGC [Arkani-Hamed, Motl, Nicolis, Vafa '06]

Does pure gravity exist as a fully consistent guantum theory?

A\ only gravitons and black holes in the spectrum
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SO

Our main new result:

| Theorem: Every unitary 2D CFT with ¢ > 12 contains a Virasoro
| primary (other than identity) with

C 1 ,
A< — 4+ — {

The proof uses mainly the technique of analytic functionals,

- DM *16; DM, Paulos ‘18
developed recently in the context of the correlator bootstrap. ' aulos 18]

Along the way will uncover a very close connection to the recent solution of
the sphere packing problem in dimensions 8 and 24.

[Cohn, Elkies '01; Viazovska '16; Cohn, Kumar, Miller, Radchenko, Viazovska ’16]



The Main Result

| Theorem: Every unitary 2D CFT with ¢ > 12 contains a Virasoro
| primary (other than identity) with

c 1 |
A< =+ = i

Stronger bound at large central charge

A <+ O(1)
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weakly-coupled gravity < £ads > lPlanck <& c¢>1

gravitons

), L2|Q), L_2L 5[Q),... 0) IBH)

0 Agap ~ s A
Torus partition function at zero angular potential oin

q—E¢€
A C qA_%
states primaries 77(7_)

Modular invariance ~ S: Z(r) = Z(~1/7) i Working with full-fledged

CFTs, not chiral CFTs!

A&7
Y [alr) —xal-1/m) =0 | 7
primaries / Z(T) # Z(T _I_ 1)

In general

iImpossible to satisfy with vacuum module alone
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upper bound Ay (¢), and what is the corresponding w 7
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What is the value of u 7

- 1 would prove that semi-classical pure gravity is not consistent
=12 asa guantum theory.
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N
Ansatz:  w= )Y a,802""|.—; optimize over aj

n=0
Analytics: N =1 Ay(c) < g + O(1) as ¢ — OO [Hellerman ’09]

no asymptotic improvement for any finite fixed /N. [Friedan, Keller *13]

Numerics: Indicates that the true asymptotic bound is stronger, i.e.
need to take N — oo at fixed central charge.

Conjectures based on finite-c numerics:

C
Ay (c) < 5 +0(1) as ¢ — o0 [Collier, Lin, Yin *16]
- C
AV(C) ~ 9.0 as ¢Cc — o0 [Afkhami-Jeddi, Hartman, Tajdini ’19]

A different construction of w is needed to make analytic progress.
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The Optimal Functional

The solution of the bootstrap with the maximal Agap = Ay (c)
comes together with the optimal (aka extremal) functional w .

The optimal functional must vanish on the optimal spectrum and is
non-negative above Ag,p .

w|[PAa|

60000 |-
40000}

20000

20000}

The only analytic construction of the optimal functional known so far
is for the four-point function bootstrap on a line.

Nevertheless, this will be enough to prove our main theorem.
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The solution with maximal gap is the fermionic mean-field theory.
Speotrum 2A + 1 2A + 3

Theorem: The OPE of two |dent|ca| primaries 0 in a umtary CFT aIvvays 1
| contains a non-identity conformal primary of dimensions

A <2A, +1

Proof: Construct the optimal functional. Natural ansatz: kernel is uniquely fixed

. from self-consistency
-

WGP (2) - GV ()] = sin® [7(A — 21, — 1)] / dzQa. ()G9 (2)

T» 0

dDisc ec.f. [Hartman, Jain, Kundu ’15; Caron-Huot ’17]
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Construction of the Optimal Functional  ow, raos s

Task: find P(z), Q(z) such that if

1 tioo . P()
w|F| = /dz P(2)F(z) —I—/dz Q(2)F(z) then )\
% % * QD(Z> >

Constraints: Solution:
1. P2)+P(1—-2)+Q(2)+Q(1—2)=0 A, =1/2 P(z) = 5,2(2,2(—1)1)—22
A Ve
2. 1—2)*2P e
=2l =) ( _Z) A, €N/2  [DM"16]
3. P(z)=P(1-2)
General solution for A, € R [DM, Paulos *18]
2z — 1 - (13 1
P(Z):[z(z—l)]3/2 [3F2 (—5 5 20 4 —|— Ny + 1, A; + 2; _42’(2—1))_'_
9 - (15 5 1
+162(Z —1) 31 (2’ 2’ 280+ §;AU T2:80 435 dz(z — 1)>]
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B3ack to the Torus: The Pillow Map

The torus is a double cover
of the four-punctured sphere.

L 0a(1)*
(93(7')4
Za(7) ~ (0(0)0(2)0(1)0(00)) axc Az, twist-operator: A, = g

T4+ —1/7 mapsto z<<1-—=z

The analytic functional w for the 1D bootstrap can be immediately
applied to the modular bootstrap!

. . . . 20, +1 ¢
Naive conclusion from the previous slide:  Av(e) = —— =+

DO | =

Subtlety: Virasoro characters # si(2,R) conformal blocks.

Need to check w[®yac] >0
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Surprise: w|®vac] changes sign precisely at ¢ =4 and ¢ = 12!

W[ Pyac] >0 W[ Pyac] <0 W|[Pyac] >0
i T s m m e e o o e B I I
1 1 19 c
1
ce(LHYU2,00)  Ay()<c+5  w valid but suboptimal
c € (4,12) Ay (c) > g 1 % W invalid

1
At c=4 and ¢=12, 5+ isthe optimal bound!

_ _ Ey(1) 8 free fermions with
AV(4) =1 spectrum A=1,23,... Z4(7_) — 77(7')8 a GSO projection
Ay(12) =2 spectrum A =23,4,... Zi2o(1)=j(r)—744  chiral half of the

monster CFT

These two cases will map to the solution of the sphere packing
problemin d=8 and d =24 .



Road Map

1. Virasoro Modular Bootstrap
 AdS3/CFT2 and the modular bootstrap

* Analytic functionals review

* Proof of the main theorem

2. Sphere Packing Problem

* Sphere packing review
* Bounds from linear programming
* The solution in 8 and 24 dimensions

from the analytic bootstrap
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Sphere Packing Problem

Statement: Find the densest arrangement of identical non-overlapping spheres in R4

Deep problem, connections to number theory, cryptography, etc.

d=1 trivial

d=2 the honeycomb lattice  [Toth *40]

d =3 Kepler's conjecture: FCC lattice. Proved by [Hales 98] . ol M
Computer-assisted proof took 11 years to verify. { ) 4

d>4 open, with the exception of:

d=2_8 Lg lattice is optimal \x\z =0,2,4,6,...

[Viazovska "16] self-dual lattices, spectrum:

d =24 Leech lattice is optimal z|* = O,X 4,6,...

[Cohn, Kumar, Miller, Radchenko, Viazovska ’16]

No requirement to be a lattice in general! Efficient packings in large d highly irregular.
[Torquato, Stillinger ’05]
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[Cohn, Elkies '01]

The Sphere PaCklﬂg BOOJ[SJ[I'ap [Hartman, DM, Rastelli ’19]

Idea Prove a umversal upper bound on the densﬂy of any packlng IN Rd | |

';f and show that this bound is saturated by the Lg and Leech lattice in d = 8,24 _,

Argument to derive the bound:

im|xs —ax ;| ?T

 Define the partition function of a sphere packing: Z(r) = Z ¢
(27)
« The Poisson summation formula implies Z(7) satisfies a modular
bootstrap-like identity under 7 <» —1/7.

n(T)

. .o d
* The terms in the sum are characters of U(1)“ with central charge ¢ = — .

2
Ly — L4 :
Ajj = 4 > i Ag,p =" shortest distance between sphere centers

* Use functional bootstrap to derive an upper bound on Agap,

—> upper bound on the sphere packing density
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d
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The Last Step: Using the Functional Again

0.02

sphere packing
0.01 = \/irasoro

max(Agap) — gy
.
—-0.02
-0.03
004l 1o

| | i | | | | L\
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C

The same optimal functionals which proved Ay (4) =1 and Ay (12) =2
apply also to the sphere packing bootstrap.

—> FEs and Leech lattice are optimal in 8 and 24 dimensions.

What | have described is a condensed version of Viazovska’s solution.



parameter

symmetry

partition function

scaling dimension

optimal bounds

3D quantum gravity

central charge ¢

: 2
Virasoro

Dictionary

sphere packing

dimension of space d = 2c¢

U(1)° x U(1)°

67T7:7'|$i—$j|2

Z(7) =

pairs of
spheres

n(T)®

r=+v2A

distance in R¢

FEg lattice optimal ind = 8

Leech lattice optimal in d = 24
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sSummary

The first non-identity primary in a unitary 2D CFT satisfies Agp < = + L

. 2
provided 1 <c< 4 or c¢> 12, 5

The result can be strenghtened to A,,, < f—; + O(1) at large central charge.

Via AdS/CFT, this gives a rigorous constraint on the spectrum of black
hole microstates in any 3D theory of quantum gravity in AdS.

The bounds were derived from unitarity and modular invariance using analytic
functionals.

A very similar bound constrains the density of sphere packings in RY.

In this context, the analytic functionals were discovered independently (and
earlier!) by Viazovska under the name magic functions, building on the work of
Cohn, Elkies and others. This lead to the solution of the sphere-packing
problem in 8 and 24 dimensions.
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Open gquestions

What is the true asymptotics of the Virasoro modular bootstrap bound at large ¢

Can pure gravity be ruled out, perhaps with some extra assumptions?
[Benjamin, Ooguri, Shao, Wang ’19]

What is the asymptotics of the Cohn-Elkies sphere packing bound in large
dimension? |s it better than the best bound currently known? A ~ ¢/9.795
[Kabatiansky, Levenshtein 78]

How deep is the analogy between CFTs and sphere packings?

| explained that the simplest constraint agrees on the two sides. A variety of other
constraints exists:

modular bootstrap with spin, four-point ~ ? n-point correlations between spheres,

function crossing, higher genus, ...

Hints:

Blic;g.thorlwes N quantum gravity Efficient packings in a large number of
exnibit chaos. ~ dimensions are highly disordered.
[Susskind, Shenker, Stanford, Maldacena, [Torquato, Stillinger *05]

Kitaev, Hayden, PreskKill, ...]

Large scaling dimensions (UV) ~  Large distances in the packing (IR)



Thank you!



