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eikonal scattering in pA collisions

o relaxing the eikonal approximation: finite width target

o from pA to pp

non-eikonal single and double inclusive gluon production in pp

azimuthal harmonics from non-eikonal double inclusive gluon
production in pp
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High energy scattering in QCD
High energy scattering in QCD
e hY

"hard” scattering

"soft” scattering
— large momentum exchange — small momentum exchange
— weakly coupled — strongly coupled
— perturbative — non-perturbative
DIS in QCD :

Three Lorentz invariant quantities :
electron
quark

proton

@ ¢ = —@? = virtuality of the incoming photon
_ @ _
Q x=5355=

longitudinal momentum fraction carried by the parton
Q s~ 2P - Q = energy of the colliding v — p system

increasing the energy (s = Q?/x) of the system:
Bjorken limit fixed x, @* — co

Regge-Gribov limit fixed Q2, x — 0
o density of partons decreases.
@ system becomes more dilute!

o density of partons increases.
@ evolution is given by DGLAP.

@ system becomes dense!
@ causes saturation !
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Color Glass Condensate (CGC)

High energy scattering in QCD:

o Regge-Gribov limit : x — 0

o at small x — saturation!

o Qs = saturation scale
= a5 X (gluon density per unit area)

@ o Qs is a measure of the strength of the gluon
interaction processes that may occur when

the gluon density becomes large.

o 0> Naco ~ EBREEHRIRE
A mQ?

bon

[ McLerran, Venugopalan - hep-ph/9309289 / hep-ph/9311205]
In the saturation regime the prescription of scattering process: Color Glass Condensate (CGC)

CGC description of a process: "effective degrees of freedom” with respect to a cut off A*

o fast partons : kT > AT — described by color sources: J/(x) = 6" p(x~, x1)
o slow partons: k™ < AT — described by color fields A*(x)

interaction between fast and slow partons: [ d*xJ/(x)A,(x)
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Dilute-Dense Scattering within CGC

o dilute-dense scattering : saturated target / CGC formalism
o can be applied to: DIS on A, pA collisions, forward particle production in pp.

High energy pA scattering within the CGC :

@ Semi-classical approximation :

o dense target = classical background field A%(x) = O (é) at weak coupling g
o dilute projectile = color charge J¥(x) = O(g)

o Eikonal approximation:

o take the high energy limit s — oo.

o drop power-suppressed contributions.

In the semi-classical approximation, the eikonal limit can be obtained by either boosting the projectile
or the target or both...
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Dilute-Dense Scattering

Boosting the target:

- A7 > Al AT i
A (%)(4_7 <, x) o A A T in a generic gauge
@ in the light-cone gauge:
AL = AT (x5 x) Al (x) = 0 5(x)A; (x)
target is localized at x* =0
A, (’Yt x*, XW? ) X ) independent of x~

Boosting the projectile :
e -
20 (2, e x)

JE(x) =< JF (% VoX s x)

JE> Ul ur

slow xT dependence due to Lorentz time dilation
5 (x) o< H16(x7)p?(x)

i ojectile is localized at x~ =
J,(%’ o x) projectile i iz X 0
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Corrections beyond eikonal accuracy

At the level of the background field, the eikonal approximation amounts to
0 Ab(x) ~ A7 (x)
Q@ AL(x) ~ A5(x,x)
Q@ A5(x) o 0(xT)

Relaxing any of these approximations will give correction to the strict eikonal limit! Three sources of
corrections to eikonal approximation:

@ other components of the target background field A4 (x)
@ dynamics of the target : x~ dependence of A5(x)

@ Finite width L of the target along x*

When the target is a large nucleus, the dominant contribution beyond the eikonal accuracy is
obtained by relaxing the 3rd approximation because of the A3 nuclear enhancement of the finite
width target!

A = 54 5(x) A (x) = A = 04 A (xF %) |
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Finite width target: relaxing the eikonal approximation

[ T.A., N. Armesto, G. Beuf, M. Martinez, C.A. Salgado - 2014 ]
[ T.A., N. Armesto, G. Beuf, A. Moscoso - 2015 ]

Consider a fi

PHC]

nite width target :

B. [—%)"m"m""""m Kok The target — A*(x) = 5~ A7 (xT,x)

The projectile — j4(x) oc 3#T6(x~) p?(x — B)

0 Lt

The single inclusive gluon cross section for pA:

Tolga Altinoluk

(2w)3(2k+)dkfadzk /d2B > << )\2>p>A

A phys.

gluon production amplitude
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Properties of the background retarded gluon propagato

M3 kA,B = + +
A(7 ) "b%""""'mmmm %%"mum\ %'m\

at LO in g, LSZ reduction formula = M3 (k, B) = &\ [ d*x e [0, A2(x)

power counting : dense target = A7 (xT,x) = O(1/g)
dilute projectile = j(x) = O(g)

perturbative expansion of the classical field : A% (x) = A% (x) + a4 (x) + O(g3)

—i [d*y GE™(x,¥)ab Ji (¥)

In the LC gauge : AT =0 & 7" =0 = &i" A2(x) = —eia]

c)\a
M3 (k,B) =&l (2k*) lim d?x [ dx~ e d*y Gl (%, ¥)ab i (¥)
x+~>+oo

Gﬁ"(ny)ab is the background retarded gluon propagator

[ F. Gelis, R. Venugopalan - 2004 / Y. Mehtar-Tani - 2007 ]
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Properties of the background retarded gluon propagato

A3 (x*,x) is independent of the x™, so it is convenient to introduce the 1-d Fourier transform of
Gfgl/(x: y)ab

dkt

GR (%, ¥)ab = e YT G (xiy)an

27 2(k++l€)

Conveniently, the (i—) component of the the background retarded propagator can be written in terms
of the scalar background propagator:

. dkt i -
G (Xﬁy)ab:/?e ik (x——y )ng+( ¥)ab

gk+(K Z) b — a g;d(ﬁ X)

k++/

g;‘z (x; y) satisfies the scalar Green's eq. whose solution can be written formally as a path integral

" rz(xT)=x
Gt (xiy) =0(x"~y") /(

2(yt)=y

ikt
Dz(z") exp {L
2 Jy+

X+ a2t i2(z+):| Uab(X+7y+’ [Z(Z+)D

with the Wilson line

uab(x+ﬁy+, [z(z"')}) = Prexp {ig /yjr dzt T- A" (z‘*‘}z(z*—))}

following the Brownian trajectory z(zT).

ab

AIM: Perform an eikonal expansion of gif(g; X)'
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Expanding the background propagator

(i) discretize the background propagator.

(ii) Perturbative expansion around free classical path:

eikonal limit : 5= > Q2 in the problem
— large k™ limit (classical free path!)

= perturbative expansion around the free classical path:
2, =25 +u, with 28 =y + n(x=y)

(iii) Expansion around the initial transverse position:

The first expansion is performed for fixed initial and final
positions.

In the large k™ limit , the result has to be re-expanded since
2%(z*) — y is small at each step.
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Background scalar propagator at NNE accuracy

After all:
[ x e G2t i) = 0~y ) €T Uy )

xT=y™)[ i i
+ (,(73)['( Uy (xFyty) + 5“[1.0](X+yy+VY)}

ab
)2 - P _ 1 _
+% {k'kju[é_g](x‘-)/‘?Y)Jféku[m](x‘# ;Y)*szf[z.o](x‘w ;Y)}}

e U(xT,yT,y) = standard Wilson lines that appears only at the eikonal level as expected.

° Z/{[a,,g](x*,y*,y) = decorated Wilson lines that only appears beyond eikonal accuracy.

@ The subscripts
o « stands for the order of the expansion around the classical path.

o (3 stands for the order of the expansion around the initial transverse position.
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Structure of the decorated Wilson lines

Uy ox  —————
o1 at 2zt yt
u B u u B u B U
HE"I? x + + + + + + +
z Yy x 2] E Yy
Ui u_ B U UB U B U UnB uUB uUB U
11 X + +
zt P yt oot P 2y A - S R A
with
i+ = — (>t

B'(z",y) = igT 0uA (z7y),

Bi(zty) = igT 0,0,A (z",y),

Bi(z*,y) igT - 0, ;Oyj[“)y:A*(z*, y),
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Total amplitude at next-to-eikonal accuracy

I"h'%,"’”"’nnmnm+ %%mm+ %’%

strict eikonal term!

7

ﬂib /dzy e~ i(k-a) { [— - :—} (L*,0;y)

) ) ab
LM .q L+ g L 2
+k—+[6172?k] [01](L+ 0;y) — —éu[l,o](L+,O;y)+O <<k+ dl>

N\ Ve

Next-to-eikonal corrections!!!
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Squared amplitude at next-to-eikonal accuracy

By defining the new operators as

Sa(r,b) = <tr[Z/{T(L+Ob——)U(L+,O;b+%)}>
A

Ofo,l](r"b) = ﬁ <tr [Z/{T (LT,0;b— %) U, 0.1 (L*,0;b+ %)

0[170](r,b) = ﬁ <tr |:Z/{T (L+ 0; b — %) Z/{[l.O] (L+,0; b + %) :|>

Square of the reduced amplitude then reads

A

A

1 A2 Vi 1 —i(k—q)-r

R (M) MY k@), = (e /., (-1 {4 (k—a)*Sa(r. b)
L+ o )

+kj[f(k'7q/)[0fo‘1](" b) + Ofo y(=r.0)] +g(k,a)[ Op g)(r, b) — 0[1.0](*T-b)]}

Vanish upon integration over b due to rotational symmetry

do 1 [ d%q o [ iteare Lt 5\?
k+m:p./ 202 vp(a) (k—qa) ./h.ré‘ (=) Sa(r,b) + O (kjfﬂ)

Well known k, factorization formula!!

The first correction appears at NNEik order.
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Dilute target limit and the modified Lipatov vertex

[ T.A., A. Dumitru - 2015 ]

go from pA — pp:

e dilute limit of the target:
expand the standard & decorated Wilson lines to first order in the background field.

e Standard Wilson line: Usp(x) ~ 1+ igTg, [+ g e A (xt, q)

e the first decorated Wilson line:

, u B U

Upp, + + +

x l z l y

1 1
X +

j,ab -yt _

Ugn(xtyty) = /+ drt o [igTo0 A (2, y)]
vy

e the second decorated Wilson line:

o U BIU . _UBuU B u
0.2 zt l P l yt ozt 2 ﬂ 2 y*
1 : ol ¥
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Dilute target limit and the modified Lipatov vertex

[ T.A., A. Dumitru - 2015 ]

e summing up all the NEik and NNEik terms in the dilute target limit, one gets

(k—a)f K1f R L 1R N
MCX[(qu)z @ 1+/2k+x 5\ 3pFx

e O(1) term — eikonal Lipatov vertex.

k—q

i X _ i i
Li(k.q) Li(k,q) = (k—q) K

o we get NEik and NNEik corrections to the Lipatov vertex.

o the form suggests exponentiation. However, we do not know the corrections beyond NNEik accuracy!

Tolga Altinoluk Effect of non-eikonal corrections on two particle correlations 17/37



Dilute target limit and the modified Lipatov vertex
[ P. Agostini, T.A., N. Armesto - 2019 |

o calculate the diagrams by keeping the phase e x" which is taken to be 1 in the eikonal limit.

The total amplitude reads

: " dq
i(Ma+ Mp+ Mc) x WL(

k. q)e™ L AL (k™. g)e

with Li(k, q) is the standard Lipatov vertex

i k — i kr'
Ll(kvq) = ﬁ - K2

and the non-eikonal Lipatov vertex being

. k—q) k'l .-
Lip(k, g;x*) = [7( 4) ] et

— _ K
k_Z

[ U. A. Wiedemann - 2000 / Y. Mehtar-Tani, C. A. Salgado, K Tywoniuk - 2011]
Tolga Altinoluk
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Noneikonal single inclusive gluon production

Single inclusive gluon production in pA collisions (eikonal accuracy):

i [, DA AE ) (70 (U UL - U,

o projectile averaging: in x-space — (p?(x)p?(y))p = 62212(x, y)
in p-space — (p?(k)p"(p))p = 6°°p2(k, p) = 53"T<%> Fl(k+p)R]

T — transverse momentum dependent distribution of the color charge densities
F — soft form factor which is peaked when its argument vanihes

Single inclusive gluon production in pp collisions (eikonal accuracy):

o dilute target limit — Uap(x) ~ 1+ igTg, [y e AZ (x*, q)

do
d2kdn

x / Lk, qu) L'(k, a2) 12 [k — q1. k — 2] <AZ(><1+, @Az (% qz)>
dilute X% q1qe T

e go from eikonal to non-eikonal: L'(k,q) — Lip(k, q;xT)

k= (k*, k)
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Noneikonal single inclusive gluon production

target averaging:
e Adopt a modified expression for the correlator of two target fields:

Since the target has finite longitudinal length, the target fields can be located at two different longitudinal
positions. We consider a generalization of the MV model in which the two color fields are located at
different longitudinal positions.

1

SO0 — I =i 1) 2020 a1 — )la(a)?

(A (4 a)Az (67, @2)) 7 = 6%n(x")

e AT = color correlation length in the target (A" < LT)
e n(xT) = 1-d target density along longitudinal direction
(n(x™) = ng for 0 < x* < L™ and 0 elsewhere)

e a(q) = functional form of the potential in p-space

It is Yukawa type — |a(q)|? = > with 1 is Debye screening mass.

s
(2 +47)

In the limit \* — 0 together with a constant potential |a(q)|? and constant 1-d target density, the
correlator goes to standard MV model one.
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Noneikonal single inclusive gluon production

When we plug this back in the X-section we get

NE At

do

4 i (g —x)
Pkdn dg et

) ) 1 : "
2 2 _ _ ! ! - 2
h /q\a(q)\ w[k = q,q = k| L'(k, q)L' (k. q) no 53 /0 # /x;w

dilute

e The NE Lipatov vertex is incorporated in the phase.
e The f-function in the correlator provides the integration limits.
e The 1-d target density is taken to be constant for 0 < xfr <Lt

e integration over xfr gives a factor of (ngL™) which corresponds to number of scattering centers in
inside the finite length L*. Since in the dilute target limit we only take into account a single scattering
in the amplitude and c.c. amplitude, this factor can be set to 1.
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Noneikonal single inclusive gluon production

After all said and done:

do NE

d2kdn

o GYE(k™5 A7) /u2 [k —q,q — k] L/(k, q)L/(k, q)|a(q)[*

dilute q

the function that encodes the non-eikonal effects

GY"(kiA") =

sin(k~AT)

1
k=t

in the eikonal limit:

li NEG— Aty =1
(o9 (K7

A'=08.5 fm

1.00
0o //

8

2 0.90

5 — p.=1GeV

p,=2 GeV
085 p,=2.5GeV
0.80
0.0 05 1.0 15 20 25 1.0 15 20 25 3.0 3.5 4.0
p.[GeV] n

(Ne =3, p7 = 0.2 GeV, p2(k, q) = 6@ (k + q) with a projectile size Sp = 4GeV/~2.)
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Double inclusive gluon production and glasma graphs

Same procedure can be adopted to calculate the double inclusive gluon production.

The double inclusive gluon production X-section for dilute-dense scattering:

do /
5, X
d2 kl d7]1 d2 k2 2 Z1Z0X1X0Z122)1 )2

</)x1p><2pylpyz> <[UZI - Xllalc[U;l - in]Cbl[Uzz - sz]EZd[U;Q - Uyrg]dbz>7_

elila—2)tik(2=2) Al — 2)Al(Z — ) A (0 — 2)4 (22 — 1)

e projectile averaging: pair wise Wick contraction:

(o) e = (pan) ooty ) p + oyt ) p(0rgi) p + (P )2 p(P20Y ) b

e projectile averaging: use the same two color charge correlator:
in x-space = (p?(x)p?(y))p = 671%(x, )

in p-space — (p*(K)o®(p))p = 3%81i3(k, p) = 6% T (%52 F[(k + p)R]
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Double inclusive gluon production and glasma graphs

x*,q)
e go from eikonal to non-eikonal: L(k,q) — Lxg(k, q; xT)

o dilute target limit — Uap(x) 1+ igTg, [y el AZ(

e target averaging: pair wise Wick contraction

(A5 0" @A, (0 a2)AC (7 @Ay (5 aa)) L = (A7 (7 @A () (A2 05 as)Ag 0 e))
+(A3 06" AT 06 a0)) (AZ06 a)A; (@) + (AT 07, @Az (o aa)) (A5 (0 q2)Ag (. au))

e target averaging: use the same two field correlator:

(A (5 @Az (5. 42)) ¢ = 3Cn(x] )2i+e(x*—|x1 —x1)(2m)*6® (g1 — q2)la(q0)?

The dilute limit with non-eikonal corrections:

do NE

d2k1 d7]1d2k2'r]2

' 5, — 5, — 1
= [ \a(q1)|2|a(q2>|29¥ﬂ(k1;mgf’ﬂ(kz;m{lé?H [+ /“)]}
192

I 2 _ 2tr ltr
dilute Nz -1
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Glasma graphs / two particle correlations

In our set up:

e k1 — g1 and ka — g2: momenta of the two gluons in the projectile.

e ki and ky: momenta of the two gluons in the final state.

e g1 and g»: momenta transferred from the target to the projectile during the interaction.

In such a set up:

o (forward/backward) Bose enhancement of the gluons in the projectile = F[|(k1 — q1) F (k2 — 42)|R]
o (forward/backward) HBT correlations of the final state gluons = F|[|k1 F k2|R]

o (forward/backward) Bose enhancement of the gluons in the target = F[|q1 F q2|R]
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Glasma graphs / two particle correlations

identification of the terms:
1 = (#2k = a0 = k] Uk )k a) ) (12 [ke = a2 02 = ko] ke, @2) U ke, a2) )

o Square of the single inclusive production / uncorrelated production.

/2(12 = {9;\‘ (ky ko L) i [k — g1, g2 — k] 12 [ke — @2, g1 — ko)

X Lk, @)L (ke @2) U ke, @2) U ke, 1)} + (kp = ko)
o k= (kt k)
o 12[k1 — q1,q2 — ki] o F[|g1 — q2|R] = Bose enhancement of the target gluons.

e A new function appears that accounts for non-eikonal effects:

NI _ 2 . (kf—k{)
Gy (kg ky i L )7{(kf—k2*)L+sm[ 5 L*]}

e in the eikonal limit:
lim GyF(ky kyiLT) =1
Jim G5 (ki ky i L)
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Glasma graphs / two particle correlations

identification of the terms:

/1(12 = {”2 [ki — q1. 2 — ko] 1P [ko — 2. g1 — ki) L(ka, 1)L (k. q1) U (Ko, q2) L (Ko, G2)
o 1 R
+ G (kg L) [#Z[kl —qu,q1 — ko) 1P [ke — @2, @2 — ka] + 5;12 [k — a1 ke — q2] 12 [q2 — ki, g1 — ko] )

x L(ky, qu)L (ki, @2) U (ko q1) L (K, Q2)} + (ky = —ky)

o 12[k1 — q1,q2 — k2] o F[|(k1 — q1) — (k2 — q2)|R] = Bose enhancement of the projectile gluons
(forward peak).

. uz [Iq —q1,q1 — kz} x F[\kl - kQ‘R} = HBT correlations of the produced gluons.

. ;zz[kl —qr. ke — q2] F[\(kl —q1)+ (ko — qg)\R} = Bose enhancement of the projectile gluons
(backward peak).
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The nature of GXE(k; , ky; LT)

In the double inclusive production X-section:

e certain terms are accompanied by GNP (k;, ky i L)

e and their mirror images given by (k, — —k,) are accompanied by GY*(k; , —k; ; L™).

o k= = K2/2k*

o GYE(ki, ky; L) is not symmetric under (k, — —ko)!!

In certain kinematics the behavior of g;li(k;. ky s L™) differs completely from g}§'13(k;, —ky  LT):

e in the region where k;” ~ k, we get

9Bk ki L) > Y (k ki L)
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Dilute limit ikonal double inclusive X-section

e This asymmetry created by the non-eikonal effects immediately reminds the asymmetry between the
forward and backward peaks of the ridge structure observed in two particle production.

A'=0.5 fm, n1=1;=2 and ky=1 GeV 2A7=8.5 fm, 11=1,-2, ky=1 GeV and k,=1.2 GeV

0.94

00120
0.92 g oot1s ~— Non-Eikonal
s
0 0.90 £ o010 Eikonal
S E
2 088
N B 00105
0.86 = A=0. 5
Ag=rr £ 0.0100
084 s 2
0.82 T S U S S 0.0095
00 05 10 15 20 25 30 00 05 10 15 20 25 30
P [GeV] i)
e[t =6fmand N, =3
o u7 =02 GeV

o translational invariance: p2(k,q) = 6@ (k + g) with a projectile size S| = 4GeV 2.

o regulate the denominators that give rise to infrared divergencies by substituting the corresponding
squared transverse momenta /> — /2 + up where we have used the numerical value pp = 0.2 GeV.

X-section is completely symmetric with respect to A¢ = /2 in the eikonal case, while an asymetric
behavior is seen for the non-eikonal case.
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Accidental symmetry of the CGC

Eikonal double inclusive X-section is symmetric under (ko — —ko)!

do 1 1 1
99 - _c k "y -
Pladk; /m {d(‘“’d(‘”) ["’ Tzt e 1e ’4 k= 2)} * O(ossL)

symmetry under (ko — —kp) : "accidental symmetry of the CGC” = vanishing odd harmonics

e breaking the accidental symmetry with the density corrections to the projectile:
[Kovner, Lublinsky, Skokov - arXiv:1612.07790] / [Kovchegov, Skokov - arXiv:1802.08166]

e T el X

o

ANevenodd (e ) 1 (dN(ki)[ f] dN(-k,)
3 Rhdy

== ———p = non-vanishing odd harmonics.
Ehdy 2\ "By * [ﬂp,pf]) g

e Non-eikonal double inclusive X-section:

do NE

d?kydm d?konp

0</ {[f(khlh,kz,qz) +GYE(ky ks s L*)g(kh%kz.qz)] + (ky — —Kz)}
q192

dilute

non-eikonal corrections seem to be breaking the accidental symmetry!!
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the non-eikonal corrections?

[ P. Agostini, T.A., N. Armesto - 2019]
Can we generate non-zero odd harmonics from the non-eikonal corrections?

e The difference between the peaks at A¢ = 0 and at A¢ = 7 is a sign of generating non-zero odd
harmonics.

1.00 F

0.99

0.98

0.97

OnelOe

0.96

0.95

0.94

o [T =6 fm in the rest frame and we scale it with the y factor for different energies.
o u7 =0.4 GeV and pup = 0.2 GeV (these are the values that maximize v3).
e =0—Anp=1m & k1 =1 GeV and kp = 1.2 GeV.

With increasing energy the difference between the peaks gets smaller — non-eikonal corrections gets
smaller.

the asymmetry exists in an interval of roughly two units of rapidity.
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the non-eikonal corrections?

Vsww =20 GeV; N =0

0.0350
0.0345 2

o
o
@
=
S

0.0335

alized multiplic

o The difference between the peaks is max for An =0 (max. v3 as well).
e The difference between the peaks vanishes after two units of rapidity.
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Azimuthal harmonics

dN NE

d2k1d7]1d2k2d7]2

o0
= N(ki, ko, Ad) = ao(ku, k2) +Zan Ky, ko) cos(nAAg)
n=1

dilute
Following the literature

N(ky, ko, ) = ag(ku, ko) |1+ 2Vaa(ky, k) cos(nArg)

n=1
where ‘
™ N(ki, ko, A Ad) dA
2VnA(k1,k2):3n(k1.k2):2fo U, ko, A9) cos(nsg) dAG
ao(ki, k2) TN (ke ko, AG) dg

o We set k; = p’Ef and ky = pr. Then, the azimuthal harmonics are defined as

VnA(PT pclgf)
Vaa (P’ PF)

va(pT) =

[T. Lappi, B. Schenke, S. Schlichting, R. Venugopalan - 2015 |
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Azimuthal harmonics from non-eikonal production

A side remark:

even harmonics do not depend on Lt but odd harmonics do.
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Vp/Vn(1.5 fm)

14
12
10

N B O

—— v Vsw =20GeV;n=15
—_ 3
Va4
Vs
1 2 3 4 5 6
L™ [fm]
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Summary / Remarks / Discussions

"y ~ \/Snn/2 & eikonal parameter : (pr Lt e

o At LHC energies /Syy > 2 TeV = 4 ~ 1000 = L+ ~ 1072 GeV !

o LHC small pr (0-3 GeV): (i) vanishing odd harmonics
(i) GN® — 1 = Non-eikonal expressions — eikonal ones.

o LHC high pr (3-10 GeV): Does Q%VE — 17 = Non-eikonal terms might be still important.

o At RHIC energies v/Syy < 200 GeV = v < 100 = Lt > 0.3 GeV ™!

e RHIC small pr (0-3 GeV): (i) difference between the peaks
(ii) non-vanishing odd harmonics

o RHIC high pr (3-10 GeV): (i) no difference between the peaks.

(i) G (ky gy, LT) = Gk, —ky , LT)
(iii) vanishing odd harmonics
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Summary / Remarks / Discussions

o With the change of the azimuthal angle from A¢ =0 to A¢ = m the magnitude of the
non-eikonal parameter is changing — breaks the accidental symmetry of the CGC and generates
non-zero odd harmonics.

@ Other corrections to the eikonal limit may carry a similar effect:
o including the transverse component of the background field will bring k™ dependence.
o the dynamics of the target: x~ dependence of the target field ?7

@ Non-eikonal effects alone can not explain the odd-harmonics HOWEVER there is a contribution
originating from these effects for certain kinematic region.
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