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1 � General linear covariant gauge 3/25

QCD in linear covariant gauges

∂µA
a
µ = αba (1)

represented by the following gauge �xed action

SFP =

∫
d4x

(
1

4
F aµνF

a
µν +

α

2
baba + iba∂µA

a
µ + c̄a∂µD

ab
µ c

b

)
, (2)

Has the known properties of

I BRST symmetry,

I renormalizability,

I physical observables should be gauge invariant.
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1 � The Gribov problem 4/25

Working in linear covariant gauges ∂µA
a
µ = αba, an overcounting problem

remains. Consider the gauge transformation

A→ A′ = A−Dω (3)

which preserves ∂µA
′
µ
a = αba if

∂Dω = 0 (4)

Meaning that there is an overcounting problem if the FP operator ∂D has
zeromodes.
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1 � The Ah model 5/25

I Originally introduced [1] by minimisation of the A2-functional, this
yields a positive FP operator.

I It can be represented by adding an extra term to the action

Sh =

∫
d4x

(
τa∂µA

h,a
µ +

m2

2
Ah,aµ Ah,aµ + η̄a∂µD

ab
µ (Ah)ηb

)
, (5)

I Where Ahµ is de�ned as, with h = eigφ
aTa

Ahµ = h†Aµh+
i

g
h†∂µh . (6)

I The minimisation ∂Ah = 0 is evident from the presence of the
Lagrangian multiplier τ
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1 � Properties 6/25

I The minimum can be soved iteratively, yielding

Ahµ = Aµ −
∂µ
∂2
∂A+ ig

[
Aµ,

1

∂2
∂A

]
+
ig

2

[
1

∂2
∂A, ∂µ

1

∂2
∂A

]
(7)

+ ig
∂µ
∂2

[
∂ν
∂2
∂A,Aν

]
+ i

g

2

∂µ
∂2

[
∂A

∂2
, ∂A

]
+O(A3) .

I Ah is transversal and gauge invariant by construction

I Ah can be written as a (non-local) power series in g

I This formalism is BRST invariant, and proven renormalizable [1]
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2 � General motivation of LKFT's 7/25

One calculates for instance the gluon propagator in some gauge.

I This is (often) computated perturbatively, meaning truncation at some
order.

I This introduces an error, which might be gauge dependent.

Secondly, how can you relate a propagator calculated in a (linear covariant)
gauge α to the same propagator in gauge α′?
Landau-Khalatnikov-Fradkin transformations can help us shed some light on
these questions.
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2 � Abelian result 8/25

The gauge invariance of Ah can be exploited to calculate gauge invariant
propagators,

〈
AhAh

〉
α

=
〈
AhAh

〉
α′ .

The power series reduces signi�cantly for Abelian theories, to

Ahµ = Aµ −
∂µ
∂2
∂A (8)

and the LKFT for the photon can be found [2]

〈AµAν〉α = 〈AµAν〉α′=0 + α
pµpν
p2

(9)

which is indeed the known result.

Seminar Ecole Polytechnique � Tim De Meerleer



2 � Gluon LKFT 9/25

For general non-Abelian theories, the gauge invariance of Ah still holds. We
can now �nd the relation of the gluon propagator through di�erent gauges

〈AµAν〉α = 〈AµAν〉α′=0 + 'corrections' (10)

Where the correction term is again a power series in g (or A).
The zeroth order in g retrieves the Abelian result, a more satifying result
would be to compute the second order corrections in g. Due to the high
number of diagrams we resort to a computational method in Mathematica.
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2 � FeynRules 10/25

1 Introduce the Lagrangian

2 Model �le containing all �elds, vertices, and propagators
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2 � FeynCalc 11/25

1 Draw all topologies, eg. 1→ 1 up to speci�ed order
2 Load FeynRules model and introduce �elds
3 Create amplitudes and evaluate one-loop integral
4 Repeat for all external �elds

A ξ

ξτ

A ξ

τξ

A

ξ

ξ

τ

A

ξ

c

c

A

ξ

η

η

A

ξ

τ

ξ A

A

ξ

ξ τ

τ A

A

ξ

ξ τ

τ ξ

A

ξ

A

Aτ

A

ξ

Aξ

Aτ

A → ξ
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2 � Results 12/25

Using Mathematica packages FeynCalc and FeynRules to draw and calculate
all possible diagrams, and be combining these results, the 'correction' term
in (10) is calculated up to g2 and found to be

′corrections′ = −αg
2CA (ε(a+ 2γ + 2) + 4ε log(p)− 4)

4εp2
Pµν+0×Lµν (11)

With mAh = 0 in (5) but we introduced a mass M → 0 in 〈ττ〉.
In future research, in collaboration with Pietro Dall'Olio, we would like to
reintroduce the mass mAh in the action m2

2 A
h,a
µ Ah,aµ .

With the addition of the mass this can again be linked with the Curci-Ferrari
model (see work of Urko et al.), while again solving the Gribov problem.
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2 � Fermionic Extentions 13/25

Next, we will include fermions by addition of

Sf =

∫
d4x
(
ψ̄(i /D +mf )ψ

)
, (12)

and by de�ning the corresponding gauge invariant fermion �elds

ψh = h†ψ ψ̄h = ψ̄h (13)

one can study arbitrary transformations

〈Aµ1(x1) . . . Aµn(xn)ψ̄(y1)ψ(z1) . . . ψ̄(ym)ψ(zm)〉α =

〈Aµ1(x1) . . . Aµn(xn)ψ̄(y1)ψ(z1) . . . ψ̄(ym)ψ(zm)〉α=0 −Rα(x1, y1, z1 . . . ),

(14)
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3 � Gluon Self-Energy 14/25

Try to evaluate the gluon self-energy, in collaboration with Urko Reinosa.
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3 � Gluon Self-Energy: τ -ladders 15/25

Take a look at diagram g. Include extra φφτ -vertices, to introduce τ -ladders.

All these diagrams are IR-divergent. We try to resum these represented by
the following diagram
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3 � Analytic form 16/25

This diagram can be translated in the following rule

Y µ
abc(k, q) = Y

(0)µ
abc (k, q)+α2

∫
r
Y µ
ab′c′(k, r)Xb′bcc′(r, q, q+k)

1

r4
1

(r + k)4
(15)

Which can be cleaned up a bit, to

q4Z(q2) = 1−α
2g2m2

128π2

[∫ q2

0
dr2

(
r2 − q2

)2
q4

Z
(
r2
)

+

∫ ∞
q2

dr2
(
r2 − q2

)2
r4

Z
(
r2
)]

(16)
The self energy (for this diagram) is then found by closing this diagram with
the φφA-vertex on the right, and is given by

Π(0) = −g
2m4α2

64π2

∫ ∞
0

dq2 Z
(
q2
)

(17)

Seminar Ecole Polytechnique � Tim De Meerleer



3 � Numerical Method 17/25

Trying to solve (16) we combined Gauss-Legendre and Gauss-Laguerre
quadrature.

1 Split the interal 0→ 1 and 1→∞
2 Combine Legendre and Laguerre quadratures, eg. Legendre quadrature∫ 1

0
f(x, y)Z(x) dx =

1

2

nLeg∑
i=1

wif

(
xi + 1

2
, y

)
Z

(
xi + 1

2

)
(18)

3 Z is known on several node points Z(x′i)

4 Solve this group of equations to �nd all Z(x′i)'s

5 With these solutions, calculate Π(0)
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3 � Intermediate results and problem 18/25

We found inconsistent results (Π(0) non-convergent), but the solutions to Z
tell a story.

5 10 15 20 25 30

1

2

3

4

Figure: Z(x) on the node points xi, for nLag = 10

Z(x) increases as x→ 0. But the exact zero point xi = 0 is not included in
Legendre quadrature. Switch the �rst integral to Lobatto quadrature, which
has zero included.
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3 � Results with Lobatto 19/25

Reran the computation with the new nodes xi and weights wi (with the
constants α, g, and m �xed). We found a consistent result over all orders of
nLob and nLag, namely

Π(0) = −2 (19)

But even more interesting
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3 � Analytic Method 20/25

We propose the following Anzatz

Z(x) =
1

cc
δ(x). (20)

which solves (16) for cc = 128π2

α2g2m2 , and

Π(0) = −2m2 (21)

Exactly the numerical result, proving furthermore that the resummation (of
this subsection of diagrams) yields a �nite result.
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3 � Conclusions of the (ladder) resummation 21/25

We met two classes of divergent diagrams.

I Diagram (g) proportional to α2m2

k2
could be resolved by this ladder

resummation.

I Diagrams ∝ log k2

The second class could not be solved by adding diagrams as you cannot add
extra powers of m2, meaning extra Aξξ vertices for instance.
To solve this class we turned to Renormalisation Group.
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3 � Similar conclusions using RG 22/25

E�ective action takes the form of

Π ∝ αg2m2 ln
µ

k
(22)

but we propose the following resummation

Πresum =
∑
n

m2
(
αg2 ln

(µ
k

))n
(23)

which, after using the RG equation, becomes

Πresum =

[
−1 +

3 + α

16π2
Nαg2 ln

(µ
k

)]− 3+2α
6+2α

(24)

As α ≥ 0 this result is now protected from infrared divergences.
This solves the log-divergent class of diagrams, similar reasoning can solve
the other class. And it explains why resummation worked in the �rst class
but not in the second.
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3 � Work planned during this stay 23/25

I (dynamic) CF model and introduce the operator AhAh through source
term JAhAh.

I transformation of schemes MS↔ IS.

I �x mass m at one scale via the e�ective potential and use this to
predict the running of the propagators.
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4 � Conclusion and Future Projects 24/25

I Finish the work concerning LKFT's, in collaboration with Pietro
Dall'Olio

Include mAh to the Lagrangian and rerun computations

Include fermions and study LKFT's in this sector, which can be linked

with chiral symmetry

Investigate the connection with the Nielson identities

I Finish the work in resummation, in collaboration with Urko Reinosa and
others

Further interpreting the CF and RG results and the comparison to lattice

data

Writing the paper for the gluon self-energy, both numeric and analytic,

and the relation to RG
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