Seminar Ecole Polytechnique

Tim De Meerleer
Science \& Technology, KULAK
January $16^{\text {th }} 2020$

0 - Outline

(1) Introduction to the A^{h}-model
(2) LKFT's

- Motivation
- non-Abelian Theories
- Computations
(3) Resummation
- Introduction
- Numerical
- Analytical

4 Conclusion and Future Projects

1 - General linear covariant gauge

QCD in linear covariant gauges

$$
\begin{equation*}
\partial_{\mu} A_{\mu}^{a}=\alpha b^{a} \tag{1}
\end{equation*}
$$

represented by the following gauge fixed action

$$
\begin{equation*}
S_{F P}=\int \mathrm{d}^{4} x\left(\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}+\frac{\alpha}{2} b^{a} b^{a}+i b^{a} \partial_{\mu} A_{\mu}^{a}+\bar{c}^{a} \partial_{\mu} D_{\mu}^{a b} c^{b}\right) \tag{2}
\end{equation*}
$$

Has the known properties of

- BRST symmetry,
- renormalizability,
- physical observables should be gauge invariant.

1 - The Gribov problem

Working in linear covariant gauges $\partial_{\mu} A_{\mu}^{a}=\alpha b^{a}$, an overcounting problem remains. Consider the gauge transformation

$$
\begin{equation*}
A \rightarrow A^{\prime}=A-D \omega \tag{3}
\end{equation*}
$$

which preserves $\partial_{\mu} A_{\mu}^{\prime}{ }^{a}=\alpha b^{a}$ if

$$
\begin{equation*}
\partial D \omega=0 \tag{4}
\end{equation*}
$$

Meaning that there is an overcounting problem if the FP operator ∂D has zeromodes.

- Originally introduced [1] by minimisation of the A^{2}-functional, this yields a positive FP operator.
- It can be represented by adding an extra term to the action

$$
\begin{equation*}
S_{h}=\int \mathrm{d}^{4} x\left(\tau^{a} \partial_{\mu} A_{\mu}^{h, a}+\frac{m^{2}}{2} A_{\mu}^{h, a} A_{\mu}^{h, a}+\bar{\eta}^{a} \partial_{\mu} D_{\mu}^{a b}\left(A^{h}\right) \eta^{b}\right) \tag{5}
\end{equation*}
$$

- Where A_{μ}^{h} is defined as, with $h=e^{i g \phi^{a} T^{a}}$

$$
\begin{equation*}
A_{\mu}^{h}=h^{\dagger} A_{\mu} h+\frac{i}{g} h^{\dagger} \partial_{\mu} h . \tag{6}
\end{equation*}
$$

- The minimisation $\partial A^{h}=0$ is evident from the presence of the Lagrangian multiplier τ

1 - Properties

- The minimum can be soved iteratively, yielding

$$
\begin{align*}
A_{\mu}^{h} & =A_{\mu}-\frac{\partial_{\mu}}{\partial^{2}} \partial A+i g\left[A_{\mu}, \frac{1}{\partial^{2}} \partial A\right]+\frac{i g}{2}\left[\frac{1}{\partial^{2}} \partial A, \partial_{\mu} \frac{1}{\partial^{2}} \partial A\right] \tag{7}\\
& +i g \frac{\partial_{\mu}}{\partial^{2}}\left[\frac{\partial_{\nu}}{\partial^{2}} \partial A, A_{\nu}\right]+i \frac{g}{2} \frac{\partial_{\mu}}{\partial^{2}}\left[\frac{\partial A}{\partial^{2}}, \partial A\right]+\mathcal{O}\left(A^{3}\right) .
\end{align*}
$$

- A^{h} is transversal and gauge invariant by construction
- A^{h} can be written as a (non-local) power series in g
- This formalism is BRST invariant, and proven renormalizable [1]

2 - General motivation of LKFT's

One calculates for instance the gluon propagator in some gauge.

- This is (often) computated perturbatively, meaning truncation at some order.
- This introduces an error, which might be gauge dependent.

Secondly, how can you relate a propagator calculated in a (linear covariant) gauge α to the same propagator in gauge α^{\prime} ?
Landau-Khalatnikov-Fradkin transformations can help us shed some light on these questions.

The gauge invariance of A^{h} can be exploited to calculate gauge invariant propagators, $\left\langle A^{h} A^{h}\right\rangle_{\alpha}=\left\langle A^{h} A^{h}\right\rangle_{\alpha^{\prime}}$.
The power series reduces significantly for Abelian theories, to

$$
\begin{equation*}
A_{\mu}^{h}=A_{\mu}-\frac{\partial_{\mu}}{\partial^{2}} \partial A \tag{8}
\end{equation*}
$$

and the LKFT for the photon can be found [2]

$$
\begin{equation*}
\left\langle A_{\mu} A_{\nu}\right\rangle_{\alpha}=\left\langle A_{\mu} A_{\nu}\right\rangle_{\alpha^{\prime}=0}+\alpha \frac{p_{\mu} p_{\nu}}{p^{2}} \tag{9}
\end{equation*}
$$

which is indeed the known result.

For general non-Abelian theories, the gauge invariance of A^{h} still holds. We can now find the relation of the gluon propagator through different gauges

$$
\begin{equation*}
\left\langle A_{\mu} A_{\nu}\right\rangle_{\alpha}=\left\langle A_{\mu} A_{\nu}\right\rangle_{\alpha^{\prime}=0}+\text { 'corrections' } \tag{10}
\end{equation*}
$$

Where the correction term is again a power series in g (or A).
The zeroth order in g retrieves the Abelian result, a more satifying result would be to compute the second order corrections in g. Due to the high number of diagrams we resort to a computational method in Mathematica.

2 - FeynRules

(1) Introduce the Lagrangian
(2) Model file containing all fields, vertices, and propagators

```
M$ClassesDescription = {
F[1] == {
    SelfConjugate -> False,
    PropagatorType -> Straight,
    PropagatorArrow -> Forward,
    Mass -> mq,
    Indices -> {Index[Colour]},
    PropagatorLabel -> "q" },
v[1] == {
    SelfConjugate -> True,
    Indices -> {Index[Gluon]},
    PropagatorLabel -> A,
    PropagatorType -> Cycles,
    PropagatorArrow -> None,
    Mass -> MA },
(* external sources coupled to composed operators *)
v[2] == {
    SelfConjugate -> True,
    Indices -> {Index[Gluon]},
    PropagatorLabel -> J1,
    PropagatorType -> Straight,
    PropagatorArrow -> None,
    Insertonly -> External,
    Mass -> 0 },
```

(* Couplings (calculated by FeynRules) *) mşcouplingMatrices $=$ l

C[-U[1, [elxil], U[1, [e2x1\}], V[1, [e3x2]]] == |\{gel ${ }^{+}$FRSUNF $\left.\left.[e 3 \times 2, ~ e 1 \times 1, ~ e 2 \times 1], 0\right\},\{0,0\}\right\}$,

C[-U[2, $\{e 1 \times 1]], \mathrm{U}[2,\{e 2 \mathrm{x} 1 \mathrm{f}]$, V[1, [eJx2]]] == ||ge2 TFASUNE[e $3 \times 2, e 1 \times 1, e 2 \times 1], 0\},\{0,0\}\}$,
 *FASUNE[$=3 \times 1,=1 \times 1, \in 2 \times 1], 0\},\{0,0\},\{0,0)\}$,
$\mathrm{C}[\mathrm{V}[1,\{\mathrm{e} 1 \times 2\}], \mathrm{V}[1,\{\mathrm{e} 2 \times 2\}], \mathrm{V}[1,\{\mathrm{e} \times 2\}]]==[\{-(\mathrm{gc} 4$ *FASUNE[$e 1 \times 2,=2 \times 2, \in 3 \times 2]), 0\},\{$ ge4*EASUNF $[=1 \times 2, \in 2 \times 2,=3 \times 2]$, $0)$, \{gc4^FASUNF[$=1 \times 2, e 2 \times 2, e 3 \times 2], 0\},\left\{-\left(g 4^{4} F A, S U N F[e 1 \times 2\right.\right.$, e2x2, e3x2]), 0], $\left\{-\left(g C^{*}\right.\right.$ FAguNP $\left.\left.[e 1 \times 2, e 2 x 2, ~ e 3 x 2]\right), 0\right]$, \{gc4 ${ }^{*}$ FASUNE[e1m2, $\left.\left.\left.22 \mathrm{~m} 2, ~ e 3 \times 2\right], 0\right\}\right\}$,
$C[V[1,\{e 1 \times 2)], V[1,\{-2 x 2\}], V[1,(e 3 \times 2)], V[1,\{e 4 \times 2\}]]$

$e 3 \times 2,=2 \times 2, e 4 \times 2]), 0\},\left\{I^{4} \mathrm{gC} 5^{\star}\right.$ (FASUNE $[=1 \times 2, e 2 \times 2, e 3 \times 2$,
© $4 \times 2]$ - PASUNF $[c-1 \times 2, ~ c 4 \times 2, ~ e 2 \times 2, ~ e 3 \times 2]), 0\},\{I * \operatorname{cc5}$
*(FASUNP[elx2, e3m2, e2x2, $\quad 4 \times 2]+$ FASUNF[elx2, $e 4 \times 2, ~ e 2 \times 2$, e3x21), 0\}\},

 e $2 \times 21,0\}\}$,
$\mathrm{C}[\mathrm{S}[3,\{\in 2 \times 1]], \mathrm{s}[2,\{\in 3 \times 1\}], \mathrm{v}[1,\{\in 1 \times 2\}]]==\{\{g c 7$ ©FASUNE $[-1 \times 2,-2 \times 1,-3 \times 1], 0\},\{0,0\}\}$,

Seminar Ecole Polytechnique - Tim De Meerleer

(1) Draw all topologies, eg. $1 \rightarrow 1$ up to specified order
(2) Load FeynRules model and introduce fields
(3) Create amplitudes and evaluate one-loop integral
(9) Repeat for all external fields

Seminar Ecole Polytechnique - Tim De Meerleer

Using Mathematica packages FeynCalc and FeynRules to draw and calculate all possible diagrams, and be combining these results, the 'correction' term in (10) is calculated up to g^{2} and found to be

$$
\begin{equation*}
{ }^{\prime} \text { corrections' }=-\frac{\alpha g^{2} C_{A}(\epsilon(a+2 \gamma+2)+4 \epsilon \log (p)-4)}{4 \epsilon p^{2}} P_{\mu \nu}+0 \times L_{\mu \nu} \tag{11}
\end{equation*}
$$

With $m_{A^{h}}=0$ in (5) but we introduced a mass $M \rightarrow 0$ in $\langle\tau \tau\rangle$.
In future research, in collaboration with Pietro Dall'Olio, we would like to reintroduce the mass $m_{A^{h}}$ in the action $\frac{m^{2}}{2} A_{\mu}^{h, a} A_{\mu}^{h, a}$.
With the addition of the mass this can again be linked with the Curci-Ferrari model (see work of Urko et al.), while again solving the Gribov problem.

Next, we will include fermions by addition of

$$
\begin{equation*}
S_{f}=\int \mathrm{d}^{4} x\left(\bar{\psi}\left(i \not D+m_{f}\right) \psi\right) \tag{12}
\end{equation*}
$$

and by defining the corresponding gauge invariant fermion fields

$$
\begin{equation*}
\psi^{h}=h^{\dagger} \psi \quad \bar{\psi}^{h}=\bar{\psi} h \tag{13}
\end{equation*}
$$

one can study arbitrary transformations

$$
\begin{align*}
\left\langle A_{\mu_{1}}\left(x_{1}\right) \ldots A_{\mu_{n}}\left(x_{n}\right) \bar{\psi}\left(y_{1}\right) \psi\left(z_{1}\right) \ldots \bar{\psi}\left(y_{m}\right) \psi\left(z_{m}\right)\right\rangle_{\alpha} & = \\
\left\langle A_{\mu_{1}}\left(x_{1}\right) \ldots A_{\mu_{n}}\left(x_{n}\right) \bar{\psi}\left(y_{1}\right) \psi\left(z_{1}\right) \ldots \bar{\psi}\left(y_{m}\right) \psi\left(z_{m}\right)\right\rangle_{\alpha=0} & -\mathcal{R}_{\alpha}\left(x_{1}, y_{1}, z_{1} \ldots\right), \tag{14}
\end{align*}
$$

Try to evaluate the gluon self-energy, in collaboration with Urko Reinosa.

3 - Gluon Self-Energy: τ-ladders

Take a look at diagram g. Include extra $\phi \phi \tau$-vertices, to introduce τ-ladders.

All these diagrams are IR-divergent. We try to resum these represented by the following diagram

This diagram can be translated in the following rule

$$
\begin{equation*}
Y_{a b c}^{\mu}(k, q)=Y_{a b c}^{(0) \mu}(k, q)+\alpha^{2} \int_{r} Y_{a b^{\prime} c^{\prime}}^{\mu}(k, r) X_{b^{\prime} b c c^{\prime}}(r, q, q+k) \frac{1}{r^{4}} \frac{1}{(r+k)^{4}} \tag{15}
\end{equation*}
$$

Which can be cleaned up a bit, to

$$
\begin{equation*}
q^{4} Z\left(q^{2}\right)=1-\frac{\alpha^{2} g^{2} m^{2}}{128 \pi^{2}}\left[\int_{0}^{q^{2}} \mathrm{~d} r^{2} \frac{\left(r^{2}-q^{2}\right)^{2}}{q^{4}} Z\left(r^{2}\right)+\int_{q^{2}}^{\infty} \mathrm{d} r^{2} \frac{\left(r^{2}-q^{2}\right)^{2}}{r^{4}} Z\left(r^{2}\right)\right] \tag{16}
\end{equation*}
$$

The self energy (for this diagram) is then found by closing this diagram with the $\phi \phi A$-vertex on the right, and is given by

$$
\begin{equation*}
\Pi(0)=-\frac{g^{2} m^{4} \alpha^{2}}{64 \pi^{2}} \int_{0}^{\infty} \mathrm{d} q^{2} Z\left(q^{2}\right) \tag{17}
\end{equation*}
$$

Trying to solve (16) we combined Gauss-Legendre and Gauss-Laguerre quadrature.
(1) Split the interal $0 \rightarrow 1$ and $1 \rightarrow \infty$
(2) Combine Legendre and Laguerre quadratures, eg. Legendre quadrature

$$
\begin{equation*}
\int_{0}^{1} f(x, y) Z(x) \mathrm{d} x=\frac{1}{2} \sum_{i=1}^{n_{\text {Leg }}} w_{i} f\left(\frac{x_{i}+1}{2}, y\right) Z\left(\frac{x_{i}+1}{2}\right) \tag{18}
\end{equation*}
$$

(3) Z is known on several node points $Z\left(x_{i}^{\prime}\right)$
(9) Solve this group of equations to find all $Z\left(x_{i}^{\prime}\right)^{\prime}$'s
(0) With these solutions, calculate $\Pi(0)$

We found inconsistent results $(\Pi(0)$ non-convergent), but the solutions to Z tell a story.

Figure: $Z(x)$ on the node points x_{i}, for $n_{\text {Lag }}=10$
$Z(x)$ increases as $x \rightarrow 0$. But the exact zero point $x_{i}=0$ is not included in Legendre quadrature. Switch the first integral to Lobatto quadrature, which has zero included.

3 - Results with Lobatto

Reran the computation with the new nodes x_{i} and weights w_{i} (with the constants α, g, and m fixed). We found a consistent result over all orders of $n_{\text {Lob }}$ and $n_{\text {Lag }}$, namely

$$
\begin{equation*}
\Pi(0)=-2 \tag{19}
\end{equation*}
$$

But even more interesting

We propose the following Anzatz

$$
\begin{equation*}
Z(x)=\frac{1}{c c} \delta(x) . \tag{20}
\end{equation*}
$$

which solves (16) for $c c=\frac{128 \pi^{2}}{\alpha^{2} g^{2} m^{2}}$, and

$$
\begin{equation*}
\Pi(0)=-2 m^{2} \tag{21}
\end{equation*}
$$

Exactly the numerical result, proving furthermore that the resummation (of this subsection of diagrams) yields a finite result.

3 - Conclusions of the (ladder) resummation

We met two classes of divergent diagrams.

- Diagram (g) proportional to $\frac{\alpha^{2} m^{2}}{k^{2}}$ could be resolved by this ladder resummation.
- Diagrams $\propto \log k^{2}$

The second class could not be solved by adding diagrams as you cannot add extra powers of m^{2}, meaning extra $A \xi \xi$ vertices for instance.
To solve this class we turned to Renormalisation Group.

3 - Similar conclusions using RG

Effective action takes the form of

$$
\begin{equation*}
\Pi \propto \alpha g^{2} m^{2} \ln \frac{\mu}{k} \tag{22}
\end{equation*}
$$

but we propose the following resummation

$$
\begin{equation*}
\Pi_{\text {resum }}=\sum_{n} m^{2}\left(\alpha g^{2} \ln \left(\frac{\mu}{k}\right)\right)^{n} \tag{23}
\end{equation*}
$$

which, after using the RG equation, becomes

$$
\begin{equation*}
\Pi_{\text {resum }}=\left[-1+\frac{3+\alpha}{16 \pi^{2}} N \alpha g^{2} \ln \left(\frac{\mu}{k}\right)\right]^{-\frac{3+2 \alpha}{6+2 \alpha}} \tag{24}
\end{equation*}
$$

As $\alpha \geq 0$ this result is now protected from infrared divergences.
This solves the log-divergent class of diagrams, similar reasoning can solve the other class. And it explains why resummation worked in the first class but not in the second.
Seminar Ecole Polytechnique - Tim De Meerleer

- (dynamic) CF model and introduce the operator $A^{h} A^{h}$ through source term $J A^{h} A^{h}$.
- transformation of schemes $\overline{\mathrm{MS}} \leftrightarrow \mathrm{IS}$.
- fix mass m at one scale via the effective potential and use this to predict the running of the propagators.
- Finish the work concerning LKFT's, in collaboration with Pietro Dall'Olio
- Include $m_{A^{h}}$ to the Lagrangian and rerun computations
- Include fermions and study LKFT's in this sector, which can be linked with chiral symmetry
- Investigate the connection with the Nielson identities
- Finish the work in resummation, in collaboration with Urko Reinosa and others
- Further interpreting the CF and RG results and the comparison to lattice data
- Writing the paper for the gluon self-energy, both numeric and analytic, and the relation to RG
[1] M. A. L. Capri, D. Fiorentini, M. S. Guimaraes, B. W. Mintz, L. F. Palhares and S. P. Sorella, Phys. Rev. D 94 (2016) no.6, 065009 [arXiv:1606.06601 [hep-th]].
[2] T. De Meerleer, D. Dudal, S. P. Sorella, P. Dall'Olio and A. Bashir, Phys. Rev. D 97 (2018) no.7, 074017 doi:10.1103/PhysRevD. 97.074017 [arXiv:1801. 01703 [hep-th]].
[3] J. A. Gracey, M. Peláez, U. Reinosa and M. Tissier, Phys. Rev. D 100 (2019) no.3, 034023 doi:10.1103/PhysRevD.100.034023 [arXiv:1905.07262 [hep-th]].

