Free-Fermion entanglement and time and band limiting

Luc Vinet

Centre de Recherches Mathématiques
Université de Montréal
based on work done in collaboration with
Nicolas Crampé (CRM/Tours)
F. Alberto Grünbaum (UC Berkeley)

Rafael Nepomechie (U. Miami)
Alexei Zhedanov (Renmin U.)

1. Introduction

Free-Fermion chains offer exactly solvable framework to study entanglement in many-body systems - Much studied

Basically one

- Takes the chain in state $|\Psi\rangle\rangle$ (ground state)
- Divides the system in two parts
- Examines how these two parts are coupled in $|\Psi\rangle\rangle$

Goals

- Draw parallel with time and band limiting problems in signal processing
- Show how methods developed in that context allow to obtain tridiagonal matrices that commute with the hopping matrix of the Entanglement Hamiltonian

2. Outline

- Free-Fermion Hamiltonian and orthogonal polynomials
- Ground state and correlations
- Reduced density matrix and entanglement Hamiltonian
- Time and band limiting
- Bispectral problems and algebraic Heun operators
- Parallel between entanglement in free-Fermion chains and time and band limiting
- Commuting Jacobi matrices
- The uniform chain
- A non-uniform example
- Concluding remarks

3. Free-Fermion Hamiltonian and orthogonal polynomials

Open quadratic free-Fermion inhomogeneous Hamiltonian

$$
\widehat{\mathscr{H}}=\sum_{n=0}^{N-1} J_{n}\left(c_{n}^{\dagger} c_{n+1}+c_{n+1}^{\dagger} c_{n}\right)-\sum_{n=0}^{N} B_{n} c_{n}^{\dagger} c_{n}=\sum_{m, n=0}^{N} c_{m}^{\dagger} \widehat{H}_{m n} c_{n}
$$

J_{n} and B_{n} real parameters, $\left\{c_{m}^{\dagger}, c_{n}\right\}=\delta_{m, n}$
To diagonalize $\widehat{\mathscr{H}}$, first diagonalize $(N+1) \times(N+1)$ matrix $\widehat{H}=\left|\widehat{H}_{m n}\right|_{0 \leq m, n \leq N}$
In the canonical orthonormal basis $\{|0\rangle,|1\rangle, \ldots,|N\rangle\}$ of \mathbb{C}^{N+1}, the position basis, one has

$$
\widehat{H}|n\rangle=J_{n-1}|n-1\rangle-B_{n}|n\rangle+J_{n}|n+1\rangle, \quad 0 \leq n \leq N
$$

with $J_{N}=J_{-1}=0$

The spectral problem for \widehat{H} reads

$$
\widehat{H}\left|\omega_{k}\right\rangle=\omega_{k}\left|\omega_{k}\right\rangle \quad \text { with } \quad\left|\omega_{k}\right\rangle=\sum_{n=0}^{N} \phi_{n}\left(\omega_{k}\right)|n\rangle
$$

Order the $N+1$ eigenvalues $\omega_{0}, \omega_{1}, \ldots \omega_{N}$ such that $\omega_{k}<\omega_{k+1}$ Normalize $\left|\omega_{0}\right\rangle,\left|\omega_{1}\right\rangle, \ldots\left|\omega_{N}\right\rangle$ so they form an orthonormal basis of \mathbb{C}^{N+1} - the momentum basis
The eigenfunctions $\phi_{n}\left(\omega_{k}\right)$ are real, since the matrix \widehat{H} is real and its eigenvalues are non-degenerate. Hence $|n\rangle=\sum_{k=0}^{N} \phi_{n}\left(\omega_{k}\right)\left|\omega_{k}\right\rangle$

Thus eigenfunctions satisfy the orthonormality conditions

$$
\sum_{n=0}^{N} \phi_{n}\left(\omega_{k}\right) \phi_{n}\left(\omega_{p}\right)=\delta_{k p} \quad, \quad \sum_{k=0}^{N} \phi_{m}\left(\omega_{k}\right) \phi_{n}\left(\omega_{k}\right)=\delta_{m n}
$$

From tridiagonal action of \widehat{H} in position basis, deduce that $\phi_{n}\left(\omega_{k}\right)$ satisfy the recurrence relation

$$
\omega_{k} \phi_{n}\left(\omega_{k}\right)=J_{n} \phi_{n+1}\left(\omega_{k}\right)-B_{n} \phi_{n}\left(\omega_{k}\right)+J_{n-1} \phi_{n-1}\left(\omega_{k}\right), \quad 0 \leq n \leq N
$$

As known this connects chain to orthogonal polynomials:

$$
\begin{aligned}
& \text { Let } \quad \phi_{n}\left(\omega_{k}\right)=\sqrt{W_{k}} \chi_{n}(k) \quad \text { with } \quad \chi_{0}(k)=1 \quad \text { and } \quad \chi_{-1}(k)=0 \\
& \omega_{k} \chi_{n}(k)=J_{n} \chi_{n+1}(k)-B_{n} \chi_{n}(k)+J_{n-1} \chi_{n-1}(k), \quad 0 \leq n \leq N
\end{aligned}
$$

$\chi_{n}(k)$ orthogonal polynomials of discrete variable with orthogonality relation

$$
\sum_{k=0}^{N} W_{k} \chi_{m}(k) \chi_{n}(k)=\delta_{m n} \quad W_{k} \quad \text { weights }
$$

Having diagonalized \widehat{H}, we see that the Hamiltonian $\widehat{\mathscr{H}}$ can be rewritten as

$$
\widehat{\mathscr{H}}=\sum_{k=0}^{N} \omega_{k} \tilde{c}_{k}^{\dagger} \tilde{c}_{k}
$$

where the annihilation operators \tilde{c}_{k} are given by

$$
\tilde{c}_{k}=\sum_{n=0}^{N} \phi_{n}\left(\omega_{k}\right) c_{n}, \quad c_{n}=\sum_{k=0}^{N} \phi_{n}\left(\omega_{k}\right) \tilde{c}_{k}
$$

and creation operators \tilde{c}_{k}^{\dagger} obtained by Hermitian conjugation These obey

$$
\left\{\tilde{c}_{k}^{\dagger}, \tilde{c}_{p}\right\}=\delta_{k, p}, \quad\left\{\tilde{c}_{k}^{\dagger}, \tilde{c}_{p}^{\dagger}\right\}=\left\{\tilde{c}_{k}, \tilde{c}_{p}\right\}=0
$$

Eigenvectors of $\widehat{\mathscr{H}}$ given by

$$
\left.|\Psi\rangle\rangle=\tilde{c}_{k_{1}}^{\dagger} \ldots \tilde{c}_{k_{r}}^{\dagger}|0\rangle\right\rangle
$$

with $k_{1}, \ldots, k_{r} \in\{0, \ldots, N\}$ pairwise distinct
Vacuum state $|0\rangle\rangle$ is annihilated by all the annihilation operators

$$
\left.\tilde{c}_{k}|0\rangle\right\rangle=0, \quad k=0, \ldots, N
$$

The energy eigenvalues are given by

$$
E=\sum_{i=1}^{r} \omega_{k_{i}}
$$

3. Ground state and correlations

Ground state

Shall consider entanglement in ground state $\left.\left|\Psi_{0}\right\rangle\right\rangle$ constructed by filling the Fermi sea:

$$
\left.\left.\left|\Psi_{0}\right\rangle\right\rangle=\tilde{c}_{0}^{\dagger} \ldots \tilde{c}_{K}^{\dagger}|0\rangle\right\rangle
$$

where $K \in\{0,1, \ldots, N\}$ is the greatest integer below the Fermi momentum, such that

$$
\omega_{K}<0, \quad \omega_{K+1}>0
$$

K can be modified by adding a constant term in the external magnetic field B_{n}.

Correlation matrix

The 1- particle correlation matrix \widehat{C} in the ground state is the $(N+1) \times(N+1)$ matrix with entries

$$
\left.\widehat{C}_{m n}=\left\langle\left\langle\Psi_{0}\right| c_{m}^{\dagger} c_{n} \mid \Psi_{0}\right\rangle\right\rangle
$$

Using $c_{n}=\sum_{k=0}^{N} \phi_{n}\left(\omega_{k}\right) \tilde{c}_{k}$, definition of ground state, anticommutation relations and property of vacuum:

$$
\widehat{C}_{m n}=\sum_{k=0}^{K} \phi_{m}\left(\omega_{k}\right) \phi_{n}\left(\omega_{k}\right), \quad 0 \leq n, m \leq N .
$$

Since $\phi_{n}\left(\omega_{k}\right)=\left\langle n \mid \omega_{k}\right\rangle$ it is seen

$$
\widehat{C}=\sum_{k=0}^{K}\left|\omega_{k}\right\rangle\left\langle\omega_{k}\right|,
$$

i.e. \widehat{C} is projector onto subspace of \mathbb{C}^{N+1} spanned by vectors $\left|\omega_{k}\right\rangle$ with $k=0, \ldots, K$ running over filling labels

4. Reduced density matrix and entanglement Hamiltonian

To discuss entanglement need bipartition:

- Part 1: $\operatorname{sites}\{0,1, \ldots, \ell\}$
- Part 2: sites $\{\ell+1, \ell+2, \ldots, N\}$

Entanglement properties in ground state provided by reduced density matrix

$$
\left.\rho_{1}=\operatorname{tr}_{2}\left|\Psi_{0}\right\rangle\right\rangle\left\langle\left\langle\Psi_{0}\right| \quad\left(2^{\ell+1} \times 2^{\ell+1}\right)\right.
$$

Observation (Peschel, Vidal et al.):
ρ_{1} determined by "chopped" correlation matrix $C-(\ell+1) \times(\ell+1)$ submatrix of \widehat{C} :

$$
C=\left|\widehat{C}_{m n}\right|_{0 \leq m, n \leq \ell}
$$

Argument:
(1) $\left.\left|\Psi_{0}\right\rangle\right\rangle$ Slater determinant \Rightarrow all correlations expressed in terms of matrix elements $\widehat{C}_{m n}$
(2) When m, n belong to Part 1

$$
C_{m n}=\operatorname{tr}\left(\rho_{1} c_{m}^{\dagger} c_{n}\right), \quad m, n \in\{0,1, \ldots, \ell\}
$$

(3) To have factorization of correlations - given trace formula - by Wick's theorem must have

$$
\rho_{1}=\kappa \exp (-\mathscr{H}),
$$

with the entanglement Hamiltonian \mathscr{H}

$$
\mathscr{H}=\sum_{m, n \in\{0, \ldots, \ell\}} h_{m n} c_{m}^{\dagger} c_{n}
$$

The hopping matrix $h=\left|h_{m n}\right|_{0 \leq m, n \leq \ell}$ is defined so that (2) holds, one finds

$$
h=\log [(1-C) / C] .
$$

Thus see that ρ_{1}, and entanglement Hamiltonian \mathscr{H}, are obtained from the $(l+1) \times(l+1)$ matrix C.

Introduce the projectors

$$
\pi_{1}=\sum_{n=0}^{\ell}|n\rangle\langle n| \quad \text { and } \quad \pi_{2}=\sum_{k=0}^{K}\left|\omega_{k}\right\rangle\left\langle\omega_{k}\right|=\widehat{C},
$$

the chopped correlation matrix can be written as

$$
C=\pi_{1} \pi_{2} \pi_{1}
$$

To calculate entanglement entropies one has to compute the eigenvalues of C
Not easy to do numerically because the eigenvalues of that matrix are exponentially close to 0 and 1

Parallel between study of entanglement properties of finite free-Fermion chains and time and band limiting problems will indicate how this can be circumvented

5. An overview of time and band limiting

$f(t)$ signal limited to band of frequencies $[-W, W]$:

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-W}^{W} d p e^{i p t} F(p) \in B_{W}
$$

Also want signal of finite duration

$$
f \neq 0 \quad \text { for } \quad-T<t<T
$$

Impossible: $f(t) \in B_{W}$ is entire in complex t-plane
If $f(t)=0$ for any interval, it implies

$$
f(t) \equiv 0
$$

In 1970s Slepian, Landau, Pollak (Bell labs) asked:
Which band-limited signal $\in B_{W}$ is best concentrated in time interval $-T<t<T$, second best etc.?
i.e. are maximizing

$$
\begin{aligned}
\alpha^{2}(T) & =\frac{\int_{-T}^{T} f^{2}(t) d t}{\int_{-\infty}^{\infty} f^{2}(t) d t} \\
& =\frac{\int_{-T}^{T} d t \int_{-W}^{W} d p^{\prime \prime} e^{i p^{\prime \prime} t} F\left(p^{\prime \prime}\right) \int_{-W}^{W} d p^{\prime} e^{-i p^{\prime} t} F *\left(p^{\prime}\right)}{\int_{-W}^{W} d p|F(p)|^{2}} \\
& =2 \frac{\int_{-W}^{W} d p^{\prime} \int_{-W}^{W} d p^{\prime \prime}\left[\frac{\sin \left(p^{\prime}-p^{\prime \prime}\right) T}{\left(p^{\prime}-p^{\prime \prime}\right)}\right] F\left(p^{\prime \prime}\right) F^{*}\left(p^{\prime}\right)}{\int_{-W}^{W} d p^{\prime} F\left(p^{\prime}\right) F^{*}\left(p^{\prime}\right)}
\end{aligned}
$$

Well known that answer provided by eigenfunctions of integral operator

$$
G F(p)=\int_{-W}^{W} d p^{\prime} K\left(p-p^{\prime}\right) F\left(p^{\prime}\right)=\lambda F(p)
$$

with "sinc kernel"

$$
K\left(p-p^{\prime}\right)=\frac{\sin \left(p-p^{\prime}\right) T}{\pi\left(p-p^{\prime}\right)}
$$

- In principle, concentration problem solved
- However $\operatorname{spec}(\mathrm{G})$ accumulates sharply at origin
- Numerical computations intractable

Amazing result (Slepian, Landau, Pollak)
There exists a $2^{\text {nd }}$ order differential operator D that commutes with integral operator G
D arises in separating Laplacian in prolate spheroidal coordinates
Great because D has common eigenfunctions with G and $2^{\text {nd }}$ order differential operator well behaved numerically

First see how this operator D can be obtained

Consider the projectors

$$
\begin{aligned}
& \pi_{L}^{x} f(x)= \begin{cases}f(x) \quad-L<x<L \\
0 & \text { otherwise }\end{cases} \\
& =[\Theta(x+L)-\Theta(x-L)] f(x)
\end{aligned}
$$

$\Theta(x)$ step function
Let $\mathscr{F}: f(t) \rightarrow F(p)$ be the Fourier transform and \mathscr{F}^{-1} the inverse Take the projectors
$\pi_{W}^{p} \quad$ and the Fourier transformed $\quad \hat{\pi_{T}^{p}}=\mathscr{F} \pi_{T}^{t} \mathscr{F}^{-1}$
It is straightforward to see that

$$
G=\pi_{W}^{p} \hat{\pi}_{T}^{p} \pi_{W}^{p}
$$

Indeed

$$
\begin{aligned}
\pi_{W}^{p} \hat{\pi}_{T}^{t} \pi_{W}^{p} F(p) & =\pi_{W}^{p} \mathscr{F} \pi_{T}^{t} \mathscr{F}^{-1} \pi_{W}^{p} F(p) \\
& \propto \pi_{W}^{p} \int_{-T}^{T} d t e^{-i p t} \int_{-W}^{W} d p^{\prime} e^{i p^{\prime} t} F\left(p^{\prime}\right) \\
& \propto \pi_{W}^{p} \int_{-W}^{W} d p^{\prime}\left[\frac{\sin \left(p-p^{\prime}\right) T}{\left(p-p^{\prime}\right)}\right] F\left(p^{\prime}\right) \\
& =G F(p)
\end{aligned}
$$

With the remaining π_{W}^{p} ensuring that G transforms band-limited $F(p)$ onto themselves.

Finding the commuting operator D

Take D to be of the general form

$$
D=A(p) \frac{d^{2}}{d p^{2}}+B(p) \frac{d}{d p}+C(p)
$$

Consider first projector onto the semi-infinite interval [W, ∞)

$$
\tilde{\pi}_{W}^{p}=\Theta(p-W)
$$

It is easy to see that

$$
\left[D, \tilde{\pi}_{W}^{p}\right]=2 A(p) \boldsymbol{\delta}(p-W) \frac{d}{d p}+\left(-A^{\prime}(p)+B(p)\right) \boldsymbol{\delta}(p-W)=0 \text { if }
$$

$$
A(W)=0 \quad \text { and } \quad A^{\prime}(W)=B(W)
$$

Recall that

$$
\pi_{W}^{p}=\Theta(p+W)-\Theta(p-W)
$$

In this case $\left[D, \pi_{W}^{p}\right]=0$ requires

$$
A(\pm W)=0 \quad \text { and } \quad A^{\prime}(\pm W)=B(\pm W)
$$

Accomodated by

$$
\begin{aligned}
D & =\left(p^{2}-W^{2}\right) \frac{d^{2}}{d p^{2}}+2 p \frac{d}{d p}+C(p) \\
& =\frac{1}{2}\left\{\frac{d^{2}}{d p^{2}}, p^{2}\right\}-W^{2} \frac{d^{2}}{d p^{2}}+\tilde{C}(p)
\end{aligned}
$$

Recall that

$$
G=\pi_{W}^{p} \hat{\pi}_{T}^{p} \pi_{W}^{p}
$$

so if in addition $\left[D, \hat{\pi}_{T}^{p}\right]=0$, this would imply $[D, G]=0$
$\left[D, \hat{\pi}_{T}^{p}\right]=\left[D, \mathscr{F} \pi_{T}^{t} \mathscr{F}^{-1}\right]=0 \quad$ implies $\quad\left[\mathscr{F}^{-1} D \mathscr{F}, \pi_{T}^{t}\right]=0$
i.e. Fourier transform $\tilde{D}=\mathscr{F}^{-1} D \mathscr{F}$ of D commutes with a projector in t with parameter T similar to π_{W}^{p}

Under Fourier transform:

$$
p^{2} \leftrightarrow-\frac{d^{2}}{d t^{2}} \quad, \quad-\frac{d^{2}}{d p^{2}} \leftrightarrow t^{2}
$$

Reminder: $D=\frac{1}{2}\left\{\frac{d^{2}}{d p^{2}}, p^{2}\right\}-W^{2} \frac{d^{2}}{d p^{2}}+\tilde{C}(p)$
Take $\tilde{C}(p)=T^{2} p^{2}$, then
$\tilde{D}=\frac{1}{2}\left\{\frac{d^{2}}{d t^{2}}, t^{2}\right\}+W^{2} t^{2}-T^{2} \frac{d^{2}}{d t^{2}}$
which by comparison satisfies $\left[\tilde{D}, \pi_{T}^{t}\right]=0$ and hence
$D=\frac{1}{2}\left\{\frac{d^{2}}{d p^{2}}, p^{2}\right\}-W^{2} \frac{d^{2}}{d p^{2}}+T^{2} p^{2}$
commutes with G

Reasons for existence of commuting D not well understood - been traced to bispectral problems (Grünbaum, V. , Zhedanov)
$\psi(t, p)=e^{i p t}$ in Fourier transforms are solutions of

$$
-\frac{d^{2}}{d t^{2}} \psi(t, p)=p^{2} \psi(t, p), \quad-\frac{d^{2}}{d p^{2}} \psi(t, p)=t^{2} \psi(t, p)
$$

Most simple bispectral problem: $\psi(t, p)$ eigenfunctions of operator acting on t with eigenvalues depending on p and vice-versa
Consider two operators in "frequency" representation: $X=-\frac{d^{2}}{d p^{2}} \quad Y=p^{2}$ If we form the "algebraic Heun operator" out of bispectral operators X, Y :

$$
D=\{X, Y\}+\tau[X, Y]+\mu X+v Y, \quad\{X, Y\}=X Y+Y X
$$

the conditions for $[D, G]=0$ on parameters are easy to find.
In present case:
$\tau=0 \quad \mu=-2 W^{2} \quad v=-2 T^{2}$
This is what we want to apply to free-Fermion entanglement

Why the name Algebraic Heun operator?

Heun equation is Fuchsian 2nd order differential equation with four regular singularities
Standard form given by

$$
\frac{d^{2}}{d x^{2}} \psi(x)+\left(\frac{\gamma}{x}+\frac{\delta}{x-1}+\frac{\varepsilon}{x-d}\right) \frac{d}{d x} \psi(x)+\frac{\alpha \beta x-q}{x(x-1)(x-d)} \psi(x)=0
$$

where

$$
\alpha+\beta-\gamma-\delta+1=0
$$

to ensure regularity of the singular point at $x=\infty$
This equation can be written in the form

$$
M \psi(x)=\lambda \psi(x)
$$

with M the Heun operator given by

$$
M=x(x-1)(x-d) \frac{d^{2}}{d x^{2}}+\left(\rho_{2} x^{2}+\rho_{1} x+\rho_{0}\right) \frac{d}{d x}+r_{1} x+r_{0}
$$

Bispectral problems - again

Operators X and Y form bispectral pair if they have common eigenfunctions $\psi(x, n)$ such that

$$
\begin{aligned}
& X \psi(x, n)=\omega(x) \psi(x, n) \\
& Y \psi(x, n)=\lambda(n) \psi(x, n),
\end{aligned}
$$

with X acting on the variable n and Y, on the variable x
Note: Forming products of these operators must take both in same representation " n " or " x "
All hypergeometric orthogonal polynomials $p_{n}(x)$ form bispectral problem $p_{n}(x)$ solution to both

- 3-term recurrence relation $\leftrightarrow X$
- differential or difference equation $\leftrightarrow Y$
x-representation: X acts a multiplication by the variable and Y as the differential or difference operator
n-representation: X acts as a three-term difference operator over n and Y as multiplication by the eigenvalue

Jacobi Polynomials $P_{n}^{(\alpha, \beta)}(x)$
These polynomials satisfy differential equation
$D_{x} P_{n}^{(\alpha, \beta)}(x)=\lambda_{n} P_{n}^{(\alpha, \beta)}(x) \quad$ with $\quad \lambda_{n}=-n(n+\alpha+\beta+1)$
where D_{x} is hypergeometric operator
$D_{x}=x(x-1) \frac{d^{2}}{d x^{2}}+(\alpha+1-(\alpha+\beta+2) x) \frac{d}{d x}$
They also satisfy the three-term recurrence relation
$x P_{n}^{(\alpha, \beta)}(x)=P_{n+1}^{(\alpha, \beta)}(x)+b_{n} P_{n}^{(\alpha, \beta)}(x)+u_{n} P_{n-1}^{(\alpha, \beta)}(x)$
Bispectral problem with
x representation:

$$
X=x \quad Y=D_{x}
$$

n representation:

$$
X=T_{n}^{+}+b_{n} \cdot 1+u_{n} T_{n}^{-1} \quad Y=\lambda_{n} \quad \text { where } \quad T_{n}^{ \pm} f_{n}=f_{n \pm 1}
$$

Algebraic Heun operator

- Forming the most general operator W bilinear in bispectral operators of Jacobi polynomials (in x representation):
$W=\tau_{1}\{X, Y\}+\tau_{2}[X, Y]+\tau_{3} X+\tau_{4} Y+\tau_{0} \quad$ with the τ s constants
Grünbaum, V., Zhedanov found that W is standard Heun operator
- W can be defined for any bispectral problem and because of result for Jacobi OP it has been called Algebraic Heun operator
- Construct can be carried for all hypergeometric OP families.

In case of Hahn polynomials it gives a difference version of Heun equation

- q-Heun obtained from Big q-Jacobi OPs

6. Parallel between entanglement in free-Fermion chains and time and band limiting

- Picking ground (or other reference) state restricts energies - corresponds to band limiting
Projector $\quad \pi_{2}=\sum_{k=0}^{K}\left|\omega_{k}\right\rangle\left\langle\omega_{k}\right|=\widehat{C}$
- Establishing bipartition "chops" space - akin to time limiting Projector $\quad \pi_{1}=\sum_{n=0}^{\ell}|n\rangle\langle n|$
- Wish to solve eigenvalue problem for "chopped" correlation matrix $C=\pi_{1} \pi_{2} \pi_{1}$ which is full matrix
- Will look for tridiagonal Jacobi matrix T - analog of 2nd order differential operator in discrete realm
- Cast in bispectral problem framework
- Form algebraic Heun operator in terms of bispectral pair

6. Parallel between entanglement in free-Fermion chains and time and band limiting (continued)

- Determine conditions for

$$
\left[T, \pi_{1}\right]=\left[T, \pi_{2}\right]=0 \quad \Rightarrow \quad[T, C]=0
$$

For open and finite free-Fermion chains, bispectral problems provided by (truncated) hypergeometric polynomials in a discrete variable of Askey scheme
These polynomials $\chi_{n}(k)$ satisfy recurrence relations of the form

$$
\omega_{k} \chi_{n}(k)=J_{n} \chi_{n+1}(k)-B_{n} \chi_{n}(k)+J_{n-1} \chi_{n-1}(k), \quad 0 \leq n \leq N
$$

with $J_{N}=J_{-1}=0$; as well as difference relations of the form

$$
\begin{aligned}
& \lambda_{n} \chi_{n}(k)=\bar{A}_{k} \chi_{n}(k+1)-\left(\bar{A}_{k}+\bar{C}_{k}\right) \chi_{n}(k)+\bar{C}_{k} \chi_{n}(k-1), \quad 0 \leq k \leq N, \\
& \bar{A}_{k}=\bar{J}_{k} \sqrt{\frac{W_{k+1}}{W_{k}}} \quad \bar{C}_{k}=\bar{J}_{k-1} \sqrt{\frac{W_{k-1}}{W_{k}}}
\end{aligned}
$$

with $\bar{J}_{-1}=\bar{J}_{N}=0$.

7. Commuting Jacobi matrices for chains associated to

 finite hypergeometric polynomials
Strategy

- Pick J_{n} and B_{n} in the Hamiltonian so that polynomials associated via recurrence relation are bispectral
- Exploit difference equation to construct T

Since $\phi_{n}\left(\omega_{k}\right)=\left\langle n \mid \omega_{k}\right\rangle$ obeys

$$
\lambda_{n} \phi_{n}\left(\omega_{k}\right)=\bar{J}_{k} \phi_{n}\left(\omega_{k+1}\right)-\bar{B}_{k} \phi_{n}\left(\omega_{k}\right)+\bar{J}_{k-1} \phi_{n}\left(\omega_{k-1}\right), \quad 0 \leq k \leq N,
$$

can define operator \widehat{X} in basis $\{|n\rangle\}$ by

$$
\widehat{X}|n\rangle=\lambda_{n}|n\rangle,
$$

which consequently acts as follows in the $\left\{\left|\omega_{k}\right\rangle\right\}$ basis

$$
\widehat{X}\left|\omega_{k}\right\rangle=\bar{J}_{k-1}\left|\omega_{k-1}\right\rangle-\bar{B}_{k}\left|\omega_{k}\right\rangle+\bar{J}_{k}\left|\omega_{k+1}\right\rangle .
$$

We have

$$
\widehat{H}\left|\omega_{k}\right\rangle=\omega_{k}\left|\omega_{k}\right\rangle, \quad \widehat{H}|n\rangle=J_{n-1}|n-1\rangle-B_{n}|n\rangle+J_{n}|n+1\rangle
$$

and

$$
\widehat{X}\left|\omega_{k}\right\rangle=\bar{J}_{k-1}\left|\omega_{k-1}\right\rangle-\bar{B}_{k}\left|\omega_{k}\right\rangle+\bar{J}_{k}\left|\omega_{k+1}\right\rangle, \quad \widehat{X}|n\rangle=\lambda_{n}|n\rangle
$$

Introduce algebraic Heun operator:

$$
\widehat{T}=\{\widehat{X}, \widehat{H}\}+\mu \widehat{X}+v \widehat{H}
$$

It is immediate to see that \widehat{T} is tridiagonal in both the position basis

$$
\begin{aligned}
\widehat{T}|n\rangle= & J_{n-1}\left(\lambda_{n-1}+\lambda_{n}+v\right)|n-1\rangle+\left(\mu \lambda_{n}-2 B_{n} \lambda_{n}-v B_{n}\right)|n\rangle \\
& +J_{n}\left(\lambda_{n}+\lambda_{n+1}+v\right)|n+1\rangle,
\end{aligned}
$$

and the momentum basis

$$
\begin{aligned}
\widehat{T}\left|\omega_{k}\right\rangle= & \bar{J}_{k-1}\left(\omega_{k-1}+\omega_{k}+\mu\right)\left|\omega_{k-1}\right\rangle+\left(v \omega_{k}-2 \bar{B}_{k} \omega_{k}-\mu \bar{B}_{k}\right)\left|\omega_{k}\right\rangle \\
& +\bar{J}_{k}\left(\omega_{k}+\omega_{k+1}+\mu\right)\left|\omega_{k+1}\right\rangle .
\end{aligned}
$$

Let $\widehat{T}_{m n}=\langle m| \widehat{T}|n\rangle$, and define the "chopped" matrix T by

$$
\begin{equation*}
T=\left|\widehat{T}_{m n}\right|_{0 \leq m, n \leq \ell} \tag{1}
\end{equation*}
$$

T and C will commute

$$
\begin{equation*}
[T, C]=0 \tag{2}
\end{equation*}
$$

if the parameters in \widehat{T} are given by

$$
\begin{equation*}
\mu=-\left(\omega_{K}+\omega_{K+1}\right) \quad \text { and } \quad v=-\left(\lambda_{\ell}+\lambda_{\ell+1}\right) . \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \widehat{T}|n\rangle=\ldots+J_{n}\left(\lambda_{n}+\lambda_{n+1}-\lambda_{\ell}-\lambda_{\ell+1}\right)|n+1\rangle \\
& \left.\left.\widehat{T}\left|\omega_{k}\right\rangle=\ldots+\bar{J}_{k}\left(\omega_{k}+\omega_{k+1}-\omega_{K}-\omega_{K+1}\right) \mid \omega_{k+1}\right)\right\rangle
\end{aligned}
$$

\widehat{T} leaves subspace $\{|n\rangle, n=0,1, \ldots, \ell\}$ invariant $\Rightarrow\left[T, \pi_{1}\right]=0$
\widehat{T} leaves the subspace $\left\{\left|\omega_{k}\right\rangle, k=0,1, \ldots, K\right\}$ invariant $\Rightarrow\left[T, \pi_{2}\right]=0$
Since $C=\pi_{1} \pi_{2} \pi_{1}[T, C]=0$

- Since T is non-degenerate T and C have a unique set of common eigenvectors
- Since T is tridiagonal, its eigenvectors can be readily computed numerically
- Acting with C on these eigenvectors, eigenvalues of C can be easily obtained
- The eigenvalues of the entanglement Hamiltonian \mathscr{H}, and therefore the entanglement entropy of the model, can then also be easily obtained

Main result

The tridiagonal matrix

$$
T=\left(\begin{array}{cccccc}
d_{0} & t_{0} & & & & \\
t_{0} & d_{1} & t_{1} & & & \\
& t_{1} & d_{2} & t_{2} & & \\
& & \ddots & \ddots & \ddots & \\
& & & t_{\ell-2} & d_{\ell-1} & t_{\ell-1} \\
& & & & t_{\ell-1} & d_{\ell}
\end{array}\right)
$$

with

$$
\begin{aligned}
& t_{n}=J_{n}\left(\lambda_{n}+\lambda_{n+1}-\lambda_{\ell}-\lambda_{\ell+1}\right) \\
& d_{n}=-B_{n}\left(2 \lambda_{n}-\lambda_{\ell}-\lambda_{\ell+1}\right)-\lambda_{n}\left(\omega_{K}+\omega_{K+1}\right) .
\end{aligned}
$$

commutes with the correlation matrix C and the hopping matrix h of entanglement Hamiltonian \mathscr{H}

8. The homogeneous chain

Apply to obtain commuting tridiagonal matrix T for the homogeneous chain with

$$
J_{0}=\ldots=J_{N-1}=-\frac{1}{2}, \quad B_{n}=0
$$

The wavefunctions $\phi_{n}\left(\omega_{k}\right)=\left\langle n \mid \omega_{k}\right\rangle$ satisfy

$$
\omega_{k} \phi_{n}\left(\omega_{k}\right)=-\frac{1}{2} \phi_{n+1}\left(\omega_{k}\right)-\frac{1}{2} \phi_{n-1}\left(\omega_{k}\right), \quad 0 \leq n \leq N
$$

From recurrence relation

$$
2 x R_{n}(x)=R_{n+1}(x)+R_{n-1}(x), \quad n=0,1, \ldots
$$

of Chebyshev polynomials of the second kind

$$
R_{n}(x)=\frac{\sin (\theta(n+1))}{\sin (\theta)}, \quad x=\cos (\theta), \quad n=0,1, \ldots,
$$

See that $\phi_{n}\left(\omega_{k}\right)$ will be related to discretized Chebyshev polynomials Imposing the truncation condition $R_{N+1}=0$ yields

$$
2 \cos (\theta) \sin ((N+1) \theta)=\sin (N \theta)
$$

which has solutions

$$
\theta=\theta_{k}=\frac{\pi(k+1)}{N+2} \quad \text { for any integer } k
$$

Normalized eigenfunctions are

$$
\phi_{n}\left(\omega_{k}\right)=\sqrt{\frac{2}{N+2}} \sin \left(\theta_{k}\right) R_{n}\left(x_{k}\right)=\sqrt{\frac{2}{N+2}} \sin \left[\frac{\pi(k+1)(n+1)}{N+2}\right],
$$

where

$$
\omega_{k}=-x_{k}=-\cos \left(\theta_{k}\right), \quad k=0,1, \ldots, N .
$$

Note that

$$
\phi_{n}\left(\omega_{k}\right)=\phi_{k}\left(\omega_{n}\right) \quad(n \leftrightarrow k)
$$

It is immediate to obtain the difference relation for the wave function $\phi_{n}\left(\omega_{k}\right)$ from their recurrence relation by using the duality property $\phi_{n}\left(\omega_{k}\right)=\phi_{k}\left(\omega_{n}\right)$:

$$
\omega_{n} \phi_{n}\left(\omega_{k}\right)=-\frac{1}{2} \phi_{n}\left(\omega_{k+1}\right)-\frac{1}{2} \phi_{n}\left(\omega_{k-1}\right),
$$

The second bispectral operator \widehat{X} has hence eigenvalues

$$
\lambda_{n}=\omega_{n}=-\cos \left(\theta_{n}\right)
$$

in the basis $\{|n\rangle\}$
The matrix T is then given by with

$$
\begin{aligned}
t_{n} & =\frac{1}{2}\left[\cos \left(\theta_{n}\right)+\cos \left(\theta_{n+1}\right)-\cos \left(\theta_{\ell}\right)-\cos \left(\theta_{\ell+1}\right)\right] \\
d_{n} & =-\cos \left(\theta_{n}\right)\left[\cos \left(\theta_{K}\right)+\cos \left(\theta_{K+1}\right)\right]
\end{aligned}
$$

This readily recovers recent results of Eisler \& Peschl.

8. An inhomogeneous chain

Take

$$
J_{n}=\frac{1}{2} \sqrt{(N-n)(n+1)}, \quad B_{n}=-\frac{N}{2}
$$

This defines inhomogeneous chain known to possess Perfect State Transfer (PST) - Christandl, Datta, Dorlas et al.

The wavefunctions $\phi_{n}\left(\omega_{k}\right)=\left\langle n \mid \omega_{k}\right\rangle$ satisfy

$$
\begin{aligned}
\omega_{k} \phi_{n}\left(\omega_{k}\right)= & \frac{1}{2} \sqrt{(N-n)(n+1)} \phi_{n+1}\left(\omega_{k}\right)+\frac{N}{2} \phi_{n}\left(\omega_{k}\right) \\
& +\frac{1}{2} \sqrt{(N-n+1) n} \phi_{n-1}\left(\omega_{k}\right), \quad 0 \leq n \leq N
\end{aligned}
$$

Take

$$
\phi_{n}\left(\omega_{k}\right)=(-1)^{n} \sqrt{\binom{N}{n}} \sqrt{W_{k}} R_{n}(k)
$$

See that $R_{n}(k)$ satisfies

$$
-\omega_{k} R_{n}(k)=\frac{1}{2}(N-n) R_{n+1}-\frac{N}{2} R_{n}(k)+\frac{n}{2} R_{n-1}(k)
$$

which is recurrence relation of symmetric Krawtchouk polynomials

$$
R_{n}(k)={ }_{2} F_{1}\left(\begin{array}{c}
-n, \\
-N
\end{array} N^{-k}\right), \quad n=0,1, \ldots, N
$$

if $\omega_{k}=k \quad$ (this provides spectrum)
Krawtchouk polynomials known to be orthogonal wrt binomial distribution

$$
W_{k}=\left(\frac{1}{2}\right)^{N}\binom{N}{k}
$$

Observe also self-duality: $R_{n}(k)=R_{k}(n)$

The eigenfunctions $\phi_{n}\left(\omega_{k}\right)$ are given by

$$
\phi_{n}\left(\omega_{k}\right)=(-1)^{n} 2^{-\frac{N}{2}} \sqrt{\binom{N}{n}\binom{N}{k}} R_{n}(k)
$$

where $\omega_{k}=k$
The difference equation

$$
\lambda_{n} \phi_{n}\left(\omega_{k}\right)=\bar{J}_{k} \phi_{n}\left(\omega_{k+1}\right)-\bar{B}_{k} \phi_{n}\left(\omega_{k}\right)+\bar{J}_{k-1} \phi_{n}\left(\omega_{k-1}\right)
$$

is obtained from the recurrence relation

$$
\begin{aligned}
\omega_{k} \phi_{n}\left(\omega_{k}\right)= & \frac{1}{2} \sqrt{(N-n)(n+1)} \phi_{n+1}\left(\omega_{k}\right)+\frac{N}{2} \phi_{n}\left(\omega_{k}\right) \\
& +\frac{1}{2} \sqrt{(N-n+1) n} \phi_{n-1}\left(\omega_{k}\right), \quad 0 \leq n \leq N
\end{aligned}
$$

by performing $n \leftrightarrow k$ and exploiting $\phi_{n}\left(\omega_{k}\right)=(-1)^{(n+k)} \phi_{k}\left(\omega_{n}\right)$

One finds

$$
\bar{J}_{k}=-\frac{1}{2} \sqrt{(N-k)(k+1)}, \quad \bar{B}_{k}=-\frac{N}{2}, \quad \lambda_{n}=n
$$

The commuting tridiagonal matrix T

$$
T=\left(\begin{array}{ccccc}
d_{0} & t_{0} & & & \\
t_{0} & d_{1} & t_{1} & & \\
& \ddots & \ddots & \ddots & \\
& & t_{\ell-2} & d_{\ell-1} & t_{\ell-1} \\
& & & t_{\ell-1} & d_{\ell}
\end{array}\right)
$$

has therefore the entries

$$
\begin{aligned}
t_{n} & =J_{n}\left(\lambda_{n}+\lambda_{n+1}-\lambda_{\ell}-\lambda_{\ell+1}\right) \\
& =(n-\ell) \sqrt{(N-n)(n+1)} \\
d_{n} & =-B_{n}\left(2 \lambda_{n}-\lambda_{\ell}-\lambda_{\ell+1}\right)-\lambda_{n}\left(\omega_{K}+\omega_{K+1}\right) \\
& =\frac{N}{2}(2 n-2 \ell-1)-n(2 K+1)
\end{aligned}
$$

9. Concluding remarks

- Stressed parallel between study of entanglement in finite free-Fermion chains and time and band limiting problems
- Indicated that methods developed in later context could be helpful in former
- Shown that for chains associated to bispectral orthogonal polynomials, algebraic Heun operator readily provides a tridiagonal matrix that commutes with correlation matrix and hopping matrix of entanglement Hamiltonian
- The approach provides such commuting matrices for the many chains corresponding to finite discrete polynomials of Askey scheme

For details and references see
F.A. Grünbaum, L. Vinet, A. Zhedanov, Algebraic Heun operator and band-time limiting, Comm. Math. Phys. (2018) arXiv 1711.07862
N. Crampé, R. Nepomechie, L. Vinet, Free-Fermion entanglement and orthogonal polynomials, J. Stat. Mech. (2019) arXiv 1907.00044

