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Introduction and Review

• The partition function of a 2D CFT is:

Z(τ, τ̄) = tr qL0− c
24 q̄L̄0− c

24 , q = e2πiτ

• Operator/path-integral equivalence implies Z(τ, τ̄) = path
integral on torus with modular parameter τ :

• The torus has global diffeomorphisms given by PSL(2,Z):

τ → γτ ≡ aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z)

• Hence the partition function must be modular invariant:

Z(γτ, γτ̄) = Z(τ, τ̄)
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• CFT’s are often invariant under additional chiral algebras,
such as Kac-Moody and W -algebras.

• We can have superconformal algebras too, but the rules
change due to double-valuedness of fermion fields. I will
not discuss them here, though they are very interesting.

• When there is a larger chiral algebra, the definition of a
primary state is suitably modified. For example in a
Kac-Moody-Virasoro-W (3) theory, a primary satisfies:

Ln|φ〉 = Jan|φ〉 = W (3)
n |φ〉 = 0, n > 0

• If there is a larger chiral algebra then generically there will
be a smaller number of primary fields under it.
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• Rational Conformal Field Theories (RCFT) have a finite
number of primary fields under the full algebra.

• Their partition function is of the form:

Z(τ, τ̄) =

p−1∑
i=0

|χi(τ)|2

where χi(τ) is the character associated to a given primary:

χi(q) = triq
L0− c

24

Here, tri is the trace over holomorphic descendants of the
ith primary under the full chiral algebra.

• Often, multiple primaries have the same character. For
example in the SU(3) Kac-Moody algebra, primaries in the
3 and 3̄ representations have the same character.
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• Characters are holomorphic in the interior of moduli space
but can diverge on the boundary τ → i∞ (q → 0):

χi(q) = q−
c
24

+hi(ai0 + ai1q + ai2q
2 + · · · )

• For this expansion to correspond to a spectrum of
descendant states, each coefficient ain must be a
non-negative integer.

• To have a modular-invariant partition function, the
characters must be vector-valued modular functions:

χi (γτ) =

p−1∑
j=0

Mij(γ)χj(τ), γ ∈ SL(2,Z)

with M †M = 1.
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• Physics motivations for RCFT:

• Useful for string compactifications because potentially have
small number of moduli (e.g. Gepner models).

• Quantum/stringy version of AdS3/CFT2, or take a large-c
limit to irrational CFT.

• Critical exponents in statistical physics. Sometimes we find
(hi, h̄i) > 1 and theory tends to be more stable (perfect
metals, [Plamadeala-Mulligan-Nayak 2014]).

• Related to non-abelian anyons, fractional quantum Hall
effect (e.g. [Moore-Read 1991]).

• Relevant for topological quantum computing (e.g.
[Freedman-Kitaev-Larsen-Wang 2003, Tener-Wang 2017]).

• They are also interesting to mathematicians:

• RCFT characters are vector-valued modular functions with
non-negative integral coefficients.

• These theories often have exotic discrete symmetries
(Monster, Baby Monster, Mathieu...).
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• Using null vectors of the chiral algebra, infinite sets of CFT
have been classified and their correlation functions and
partition functions computed.

• For c < 1 there cannot be any chiral algebra beyond the
Virasoro algebra. Moreover this is the range where the
Virasoro algebra has (infinitely many) null vectors.

• Decoupling null vectors, [Belavin-Polyakov-Zamolodchikov 1984]

found RCFT’s for specific values of the central charge:

c = 1− 6(p− q)2

pq

where p, q are co-prime positive integers.

• The resulting theories, called Virasoro minimal models,
have 1

2(p− 1)(q − 1) primary fields and are solvable:
critical exponents, correlators, partition function.
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• This idea was generalised to extended chiral algebras
[Knizhnik-Zamolodchikov 1984].

• For positive integer Kac-Moody level k, one finds a series of
Wess-Zumino-Witten (WZW) models. These have
c < dim G.

• There are finitely many integrable Kac-Moody primaries.
The correlation functions and partition functions can be
determined.

• Similarly the W (p) algebras etc. have their own minimal
series.

• Finally using the coset construction on Kac-Moody
algebras, one can obtain vast families of RCFT.
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• Though useful, this approach has its limitations. For
example, the number of characters in each minimal series
grows rapidly and only the first few are of practical interest.

• It is not clear that this method generates all RCFT’s. It
even misses large classes of simple theories.

• In our alternative approach, we will classify RCFT by their
“simplicity”: the number of primaries/characters.

• Thus, we ask how to classify RCFT with one character,
two characters, etc.

• This requires a completely different starting point.
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Meromorphic CFT

• This is the case of one character. The only primary is the
identity, so no critical exponents! The partition function
has the form:

Z(τ, τ̄) = |χ(τ)|2

Hence χ(τ) has to be modular invariant upto a phase.

• It is a well-known mathematical fact that this is only
possible if:

χ(τ) = j
α
3 P (j)

where α ∈ (0, 1, 2), P (j) is a polynomial, and j(q) is the
Klein j-invariant:

j(q) = q−1 + 744 + 196884q + 21493760q2 + · · ·
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• This gives c = 8n for some integer n.

• For example:

c = 8 : χ = j
1
3 E8 (unique)

c = 16 : χ = j
2
3 E8 × E8, Spin32/Z2

c = 24 : χ = j +N free boson, Niemeier lattice

c = 32 : χ = j
1
3 (j +N ) free boson, even unimodular 32d lattice

• The above examples correspond to c free bosons
compactified on a torus Rc/Γ, where Γ is an even,
unimodular lattice – but there are more general
possibilities when c ≥ 24.

10 / 49



• This gives c = 8n for some integer n.

• For example:

c = 8 : χ = j
1
3 E8 (unique)

c = 16 : χ = j
2
3 E8 × E8, Spin32/Z2

c = 24 : χ = j +N free boson, Niemeier lattice

c = 32 : χ = j
1
3 (j +N ) free boson, even unimodular 32d lattice

• The above examples correspond to c free bosons
compactified on a torus Rc/Γ, where Γ is an even,
unimodular lattice – but there are more general
possibilities when c ≥ 24.

10 / 49



• This gives c = 8n for some integer n.

• For example:

c = 8 : χ = j
1
3 E8 (unique)

c = 16 : χ = j
2
3 E8 × E8, Spin32/Z2

c = 24 : χ = j +N free boson, Niemeier lattice

c = 32 : χ = j
1
3 (j +N ) free boson, even unimodular 32d lattice

• The above examples correspond to c free bosons
compactified on a torus Rc/Γ, where Γ is an even,
unimodular lattice – but there are more general
possibilities when c ≥ 24.

10 / 49



• However not all admissible characters lead to genuine CFT.

• For example at c = 24 the character is just j +N where
N ≥ −744 and otherwise arbitrary. But [Schellekens 1992]

has argued that there are just 71 theories.

• Some of these theories belong to WZW minimal series, for
example E8,1 × E8,1 × E8,1. But most do not, rather they
are special linear combinations of WZW characters that
happen to be modular-invariant (up to a phase).

• Most values of N do not give a CFT. One can prove this
by extracting the dimension of the current algebra (which
is N + 744) and noting that for too large N , the central
charge cannot be as low as 24.

• For c > 24, there are huge numbers of meromorphic RCFT
but no complete classification.
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• The most sensational discovery in this context was the
c = 24 CFT with character χ(q) = j(q)− 744.

• This is the Monster CFT [Conway-Norton 1979,

Frenkel-Lepowsky-Meurman 1988, Borcherds 1992].

• It has no Kac-Moody algebra and does not belong to any
minimal series.

• However its states fall into representations of the largest
discrete group, the Monster group, of order:

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000

• A hypothetical class of generalisations of the Monster CFT
was proposed in [Witten 2007] to be holographically dual to
pure gravity in AdS3. However the proposed theories may
not exist, and this proposal is also no longer believed to
hold.
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• From these examples we learn a general lesson. To classify
RCFT using modular invariance, one must address two
distinct problems:

(I) Find all possible characters consistent with modular
invariance and positive integrality of the q-series
(“admissible”).

(II) Find which of these really corresponds to a CFT.

• For the one-character case, Problem (I) was effectively
solved by Klein in the 19th century. Problem (II) is solved
only for c ≤ 24.

• At c = 32 there are already around 1010 even unimodular
lattices and there should be a corresponding number of
orbifolds etc.
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MLDE method

• This classification method is due to [Mathur-Mukhi-Sen 1988].

• Key insight:

1. The partition function is modular invariant, but not
holomorphic.

2. The characters are holomorphic, but not modular invariant.

3. However, the characters solve a Modular Linear Differential
Equation on moduli space that is both holomorphic and
modular invariant.
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• It is easily shown that any p-component vector-valued
modular function χ(q) satisfies an MLDE of the form:(

Dpτ + φ1(q)Dp−1
τ + · · ·+ φp(q)

)
χ(q) = 0

where Dτ = ∂
∂τ −

iπr
6 E2(τ) · · · is a covariant derivative.

• Here r is the weight of the modular form on which it acts,
and E2(τ) is the second Eisenstein series, which transforms
as a connection.

• The coefficient functions φj(q) are modular of weight
2(p− j).

• In general they can be meromorphic, although the
characters themselves are holomorphic.
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• We classify differential equations by the maximum number
of poles of the φj .

• This takes the form `
6 where ` = 0, 2, 3, 4, · · · is the

Wronskian index.

• For given ` there is a finite basis of functions of the
Eisenstein series E4, E6 from which the φj are built. Hence
the differential equation has finitely many parameters.

• Thus the general case is labelled (p, `) where p is the
number of characters and ` is the Wronskian index.
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• The Riemann-Roch theorem gives an important relation
between the critical exponents, the number p of characters
and the Wronskian index `:

p−1∑
i=0

(
− c

24
+ hi

)
=
p(p− 1)

12
− `

6
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• For two and three characters, the MLDE takes the form:(
D2
τ + φ2(τ)Dτ + φ4(τ)

)
χ = 0(

D3
τ + φ2(τ)D2

τ + φ4(τ)Dτ + φ6(τ)
)
χ = 0

where φ2, φ4, φ6 are modular forms of weight 2, 4, 6
respectively.

• The simplest cases arise for ` = 0, where:

φ2 = 0, φ4 = µE4, φ6 = µ′E6

where E4, E6 are the Eisenstein series and µ, µ′ are
parameters.

• The next simplest case is ` = 2 where, for example,
φ2 ∼ E6

E4
.
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• Solutions of the differential equation are, by construction,
vector-valued modular functions, and have an expansion of
the form:

χi(τ) = q−
c
24

+hi(ai0 + ai1q + ai2q
2 + · · · )

where h0 = 0.

• The coefficients ain are rational functions of the parameters
in the equation (e.g. µ, µ′) but generically they are not
integers.

• The methodology to find “admissible” characters is then:

(i) Vary the parameters in the equation until the first few
coefficients ain are non-negative integers.

(ii) Verify that the ain continue to be non-negative integers to
very high orders in q. Then we have an “admissible
character”.
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• (p = 2, ` = 0). Just 9 admissible solutions. With some
caveats, all correspond to RCFT [Mathur-Mukhi-Sen 1988].

• Thus in this case, Problems (I) and (II) are both solved.

• These theories are simple and well-known. However they
occurred all together for the first time here. Several years
later [Pierre Deligne 1996] observed that the same Lie algebras
form a series with special properties.
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• The first case with c = 2
5 , h = 1

5 looked consistent but gives
negative fusion rules.

• On interchanging the two characters, c = −22
5 , h = −1

5 .
This is the famous non-unitary Lee-Yang edge singularity
CFT.

• The second-last line with c = 38
5 and 190 currents, also has

negative fusion rules. This time on exchanging the two
characters we get a 57-fold degenerate identity character.
Therefore we rejected this case in 1988.
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• However after Deligne’s work, a “hole” was found by
[Landsberg-Manivel 2004] between E7 and E8. Notably the
dimension of this “intermediate Lie algebra” is 190.
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• Thereafter it was proposed that there are generalised
CFT’s called “Intermediate Vertex Operator Algebras”
whose identity is degenerate. The first two examples are
the ones at c = 2

5 ,
22
5 .
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• (p = 2, ` = 2). Again, just 9 solutions [Naculich 1989,

Hampapura-Mukhi 2015].

m1 c h

410 82
5

6
5

323 17 5
4

234 18 4
3

188 94
5

7
5

140 20 3
2

106 106
5

8
5

88 22 5
3

69 23 7
4

59 118
5

9
5

Here 16 < c < 24.

This series has central charges 24− c
and conformal dimensions 2− h
relative to the (p = 2, ` = 0) series.

“Almost perfect” metals, since the
primaries have ∆ = 2h > 2, but the
m1 Kac-Moody currents are relevant
operators.

For nearly three decades it remained
unclear whether these admissible
characters were really CFT’s
(“Problem (II)”).
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• (p = 3, ` = 0). Now there are infinitely many admissible
solutions [Mathur-Mukhi-Sen 1989].

• Ising model M3,4, M2,7, M2,5 ×M2,5, SU(2)2, SU(4)1,
SU(5)1, SO(N)1 are the straightforward examples.

• Just from MLDE, it is hard to enumerate all solutions.
Recently some mathematicians [Franc-Mason 2019] provided a
classification (not claimed to be complete) by combining
MLDE and the theory of monodromy representations.

• Their list is just the above series, plus a series of “exotic”
theories with:

c = 27
2 ,

29
2 , · · ·

45
2 ,

47
2

• As I will shortly explain, all these theories (plus a few
more) were already found by us in 2016 using the Novel
Coset Construction.

26 / 49



• (p = 3, ` = 0). Now there are infinitely many admissible
solutions [Mathur-Mukhi-Sen 1989].

• Ising model M3,4, M2,7, M2,5 ×M2,5, SU(2)2, SU(4)1,
SU(5)1, SO(N)1 are the straightforward examples.

• Just from MLDE, it is hard to enumerate all solutions.
Recently some mathematicians [Franc-Mason 2019] provided a
classification (not claimed to be complete) by combining
MLDE and the theory of monodromy representations.

• Their list is just the above series, plus a series of “exotic”
theories with:

c = 27
2 ,

29
2 , · · ·

45
2 ,

47
2

• As I will shortly explain, all these theories (plus a few
more) were already found by us in 2016 using the Novel
Coset Construction.

26 / 49



• (p = 3, ` = 0). Now there are infinitely many admissible
solutions [Mathur-Mukhi-Sen 1989].

• Ising model M3,4, M2,7, M2,5 ×M2,5, SU(2)2, SU(4)1,
SU(5)1, SO(N)1 are the straightforward examples.

• Just from MLDE, it is hard to enumerate all solutions.
Recently some mathematicians [Franc-Mason 2019] provided a
classification (not claimed to be complete) by combining
MLDE and the theory of monodromy representations.

• Their list is just the above series, plus a series of “exotic”
theories with:

c = 27
2 ,

29
2 , · · ·

45
2 ,

47
2

• As I will shortly explain, all these theories (plus a few
more) were already found by us in 2016 using the Novel
Coset Construction.

26 / 49



• (p = 3, ` = 0). Now there are infinitely many admissible
solutions [Mathur-Mukhi-Sen 1989].

• Ising model M3,4, M2,7, M2,5 ×M2,5, SU(2)2, SU(4)1,
SU(5)1, SO(N)1 are the straightforward examples.

• Just from MLDE, it is hard to enumerate all solutions.
Recently some mathematicians [Franc-Mason 2019] provided a
classification (not claimed to be complete) by combining
MLDE and the theory of monodromy representations.

• Their list is just the above series, plus a series of “exotic”
theories with:

c = 27
2 ,

29
2 , · · ·

45
2 ,

47
2

• As I will shortly explain, all these theories (plus a few
more) were already found by us in 2016 using the Novel
Coset Construction.

26 / 49



• (p = 3, ` = 0). Now there are infinitely many admissible
solutions [Mathur-Mukhi-Sen 1989].

• Ising model M3,4, M2,7, M2,5 ×M2,5, SU(2)2, SU(4)1,
SU(5)1, SO(N)1 are the straightforward examples.

• Just from MLDE, it is hard to enumerate all solutions.
Recently some mathematicians [Franc-Mason 2019] provided a
classification (not claimed to be complete) by combining
MLDE and the theory of monodromy representations.

• Their list is just the above series, plus a series of “exotic”
theories with:

c = 27
2 ,

29
2 , · · ·

45
2 ,

47
2

• As I will shortly explain, all these theories (plus a few
more) were already found by us in 2016 using the Novel
Coset Construction.

26 / 49



• The cases (p = 2, ` ≥ 4) have been classified [Chandra-Mukhi

2018a] and I will discuss those later. This gives a complete
classification of admissible characters for p = 2.

• The cases (p = 3, ` ≥ 2) have never been investigated.

• There is one mathematics paper discussing special cases of
(p = 4, ` = 0) [Arike-Nagatomo-Sakai 2016].

• p ≥ 4 characters have been studied via the
Contour-Integral Representation [Mukhi-Panda-Sen 1989,

Mukhi-Poddar-Singh 2019] which I will discuss.

• For p ≥ 6 the number of modular forms grows faster than
the degree of the equation. The MLDE method has not
been so useful in these cases (though no one has really
tested it).
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Novel Coset Construction

• In [Gaberdiel-Hampapura-Mukhi 2016], we proposed a novel
coset construction to address a particular problem: the
existence of (p = 2, ` = 2) admissible characters.

• We found they are cosets of the meromorphic c = 24
theories of [Schellekens 1992] by a (p = 2, ` = 0) WZW theory.

C =
S

WZW

• This explains why the two sets have the same number of
members, and the matching pattern of central charges and
conformal dimensions.

• More importantly it provides a definition of the
(p = 2, ` = 2) characters as genuine RCFT.
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(p = 2, ` = 0) (p = 2, ` = 2)

No. c h m1 Algebra c̃ h̃ m̃1 m1 + m̃1 Example KM algebra

1 1 1
4

3 A1,1 23 7
4

69 72 (A1,1)23

2 2 1
3

8 A2,1 22 5
3

88 96 (A5,2)2C2,1A2,1

3 14
5

2
5

14 G2,1
106
5

8
5

106 120 E6,3(G2,1)2

4 4 1
2

28 D4,1 20 3
2

140 168 (D4,1)5

5 26
5

3
5

52 F4,1
94
5

7
5

188 240 E7,2B5,1

6 6 2
3

78 E6,1 18 4
3

234 312 A11,1D7,1

7 7 3
4

133 E7,1 17 5
4

323 456 D10,1E7,1

Table: Characters with ` = 0 and ` = 2.

• The ` = 2 theories are simple but not previously known
from any other construction. As seen in the table, they
have non-simple Kac-Moody algebras but are not WZW
models.
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• If we take the coset of a meromorphic theory with c = 8N
by a (p, `) theory with exponents (c, hi), the resulting
theory has (p, `C) and exponents (cC , hCi ) where:

cC = 8N − c

`C = p2 + (2N − 1)p− 6

p∑
i=1

ni − `

where ni = hi + hCi .

• Next we apply the coset construction to (p = 3, ` = 0)
theories. We find some very interesting coset pairs relative
to the c = 24 meromorphic CFT’s.

• From the above formula, the coset duals in this case also
have ` = 0. Here is a table:
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• Thus in particular we found new theories with central charges
31
2 ,

35
2 ,

37
2 ,

39
2 ,

41
2 ,

43
2 ,

45
2 . Moreover in a subsequent paper

[Hampapura-Mukhi 2016], we found a c = 47
2 CFT associated to

the Baby Monster group. This accounts for most of the
Franc-Mason exotic list. We also found c = 14, 15, 17, 19, 20, 21
theories which seem to be missing from their list.
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Quasi-characters

• Last year [Chandra-Mukhi 2018a] we found a powerful method
to classify the admissible characters for (p = 2, ` ≥ 6).

• We showed how to construct infinitely many admissible
characters in all these cases, and proved that our method is
complete [thanks to Ashoke Sen, ISM 2018].

• We also proposed a strategy to solve Problem (II), and
showed how it works for a number of examples with ` = 6.
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• We already saw that there are only 9 admissible solutions
of the MLDE for (p = 2, ` = 0).

• Our new insight, using previous works of mathematicians
[Kaneko, Zagier, Koike, Nagatomo ...], was that there are
infinitely many quasi-character solutions. These still have
integral coefficients in their q-series, but they are not
necessarily positive.

• One can think of admissible characters as special cases of
quasi-characters.

• Example: at c = 25, there is a pair of quasi-characters
whose identity character looks like:

χ0 = q−
25
24 (1−245q+142640q2 +18615395q3 +837384535q4 + · · · )

and all higher coefficients are positive.

• Clearly quasi-characters cannot directly describe a CFT:
what sense does a degeneracy of −245 make?
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• By adding quasi-characters within the same fusion class
and adjusting coefficients to cancel negative signs, the
result is a pair of admissible characters in the same fusion
class. Also, ` jumps in multiples of 6.

• In our previous example, we can add:

χ0 = q−
25
24 (1− 245q + 142640q2 + 18615395q3 + 837384535q4 + · · · )

N1 χ
′
0 = N1 q

− 1
24 (1 + 3q + 4q2 + 7q3 + · · · )

• The pairs χi, χ
′
i have the same modular transformation

matrix S. Hence, as long as N1 ≥ 245, the sum χi +N1χ
′
i

is an admissible pair of characters.

• The sum has c = 25, h = 5
4 from which one finds ` = 6.
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No. c h Character sum

1 122
5

6
5 χn=10

LY +N1χ
n=0
LY

2 25 5
4 χn=4

A1
+N1χ

n=0
A1

3 26 4
3 χn=6

A2
+N1χ

n=0
A2

4 134
5

7
5 χn=11

LY +N1χ
n=1
LY

5 28 3
2 χn=2

D4
+N1χ

n=0
D4

6 146
5

8
5 χn=12

LY +N1χ
n=2
LY

7 30 5
3 χn=7

A2
+N1χ

n=1
A2

8 31 7
4 χn=5

A1
+N1χ

n=1
A1

9 158
5

9
5 χn=13

LY +N1χ
n=3
LY

Table: ` = 6 pairs obtained by addition of quasi-characters
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• We have constructed complete families of quasi-characters
for ` = 0, 2, 4.

• The central charges for ` = 0 are:

c = 6r + 1, A1 class

c = 4r + 2, r 6= 2 mod 3 A2 class

c = 8r + 4 D4 class

c = 2(6r+1)
5 , r 6= 4 mod 5 Lee-Yang class

Similar formulae hold for ` = 2, 4.

• By repeated addition of the ` = 0, 2, 4 quasi-characters we
generate admissible characters for all ` = 6m, 6m+ 2,
6m+ 4.

• Thus our procedure generates all admissible characters for
all even ` ≥ 6. Completeness can be proved by a simple
inductive argument.
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• Given these new infinite families of admissible characters,
which of them are actual CFT? (Problem (II)).

• Our proposed method to construct CFT’s relies on the
Novel Coset Construction.

• This time we consider even, unimodular lattices with
c = 32. Each one defines a meromorphic CFT. There are
over 1010 such theories, but 132 of these have complete
root systems. These are called Kervaire lattices.

• By a general formula that we saw earlier, if we take the
coset of Kervaire lattice theories by a (p = 2, ` = 0) CFT,
we find (p = 2, ` = 6) CFT and we can characterise them.

• The coset construction lets us compute the undetermined
constant N1 in the previous table and ensures the existence
of a CFT for that value of N1.
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• Recently [Mukhi-Poddar-Singh 2020] we have been able to find
quasi-characters for (p = 3, ` = 0).

• The pattern is quite different. We find the central charges:
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• We are able to show that adding them to each other can
generate admissible characters with ` = 6m.

• The status of ` = 6m+ 1, 6m+ 2, 6m+ 3, 6m+ 4, 6m+ 5
remains unclear for 3-character theories. Possibly some are
ruled out. Currently we don’t have a single example of
admissible characters belonging to any of these sets.

• We also don’t (yet) have a proof that our ` = 6m
classification is complete, but it is probably true and
should not be hard to prove.
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• As we have seen, characters are vector-valued modular
functions. Hence in particular:

χi(− 1
τ ) =

∑
j

Sijχj(τ)

• Via the Verlinde formula, this matrix determines the fusion
rules of the CFT:

Nijk =

p−1∑
m=0

SimSjmS∗km
S0m

which are a key input to reconstruct the full CFT from its
characters.

• However the MLDE method does not help us find the
modular S-matrix. This is because τ → − 1

τ does not have
a term-by-term action on the q-series.
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• It is well-known that the moduli space of the torus can be
parametrised in terms of a variable λ defined as:

λ(τ) =
θ4

2(τ)

θ4
3(τ)

= 16 q1/2(1− 8q1/2 + 44q + . . . )

• In terms of λ, the modular transformations become:

T : λ→ λ

λ− 1

S : λ→ 1− λ

• For (p = 2, ` = 0), the characters of an RCFT can be
written as a pair of hypergeometric functions:

χ0(τ) = N0 (λ(1− λ))
1
6
−h

2F1

(
1
2 − h,

1
2 − 3h

∣∣∣ 1− 2h
∣∣∣ λ)

χ1(τ) = N1 (λ(1− λ))
1
6

+h
2F1

(
1
2 + h, 1

2 + 3h
∣∣∣ 1 + 2h

∣∣∣ λ)
where NA are normalisations.
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• We can use the integral representation of these functions to
write:

χ0(τ) = N0 (λ(1− λ))
2
3
−a
∫ ∞

1
dt
[
t(t− 1)(t− λ)

]a
χ1(τ) = N1 (λ(1− λ))

2
3
−a
∫ λ

0
dt
[
t(1− t)(λ− t)

]a
where a = h− 1

2 , and NA are (new) normalisations.

• Now we can explicitly compute the S-matrix. We send
λ→ 1− λ and then deform contours avoiding the branch
cuts. Each character comes back to a linear combination of
both characters, with:

SAB =

( sinπa
sin 2πa − sinπa

sin 2πa

− sin 3πa
sin 2πa − sinπa

sin 2πa

)

• From this one can compute degeneracies, multiplicities and
fusion rules for all the cases where a corresponds to a CFT.
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• In [Mathur-Mukhi-Sen 1989] we extended this to a set of three
contour integrals whose λ→ 0 behaviour can be fitted to
all possible (p = 3, ` = 0) CFT.

• The MLDE ensures that, as long as we have p ≤ 5, fitting
the exponents guarantees that the contour integrals are the
characters.

• From this we constructed S for all (p = 3, ` = 0) theories.
This enabled us to determine the fusion rules, correlation
functions etc.

• A surprising result, noted in [Mukhi-Panda-Sen 1989], was that
even for p ≥ 4 one can find contour-integral representations
whose λ→ 0 behaviour fits the critical exponents of large
families of known RCFT.
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• This led to the conjecture that the following n+ 1 contour
integrals [Dotsenko-Fateev 1984,1985] are the characters of
large classes of ` = 0 RCFT:

ĴA(λ) = NA (λ(1− λ))
α
∫ ∞
1

dtn

∫ ∞
1

dtn−1 · · ·
∫ λ

0

dtA · · ·
∫ λ

0

dt1

A∏
i=1

[
ti(1− ti)(λ− ti)

]a n∏
i=A+1

[
ti(ti − 1)(ti − λ)

]a ∏
0≤k<i≤n

(ti − tk)2ρ

• This conjecture has no a priori reason to hold. First of all,
a p-character theory has p distinct exponents (c and hi)
while the contour integral only has two parameters a, ρ.

• Nonetheless for many theories, including minimal models
M2,r and SU(2)k for all k, the exponents of the known
theory can be reproduced by these contour integrals.

• Even so, it does not follow that the contour integrals
describe the corresponding characters in general. This does
follow for p ≤ 5 (proof via MLDE) but not for p ≥ 6.
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• In [Mukhi-Poddar-Singh 2019] we investigated this conjecture
further.

• We developed a “sum over paths” algorithm to compute
the modular S-matrix for these contour integrals. This
enabled us to compute SAB for many cases even up to 20
characters, and verify the conjecture in every case.

45 / 49



• In [Mukhi-Poddar-Singh 2019] we investigated this conjecture
further.

• We developed a “sum over paths” algorithm to compute
the modular S-matrix for these contour integrals. This
enabled us to compute SAB for many cases even up to 20
characters, and verify the conjecture in every case.

45 / 49



Outline

1 Introduction and Review

2 Meromorphic CFT

3 Modular Linear Differential Equation (MLDE) method

4 Novel Coset Construction

5 Quasi-characters

6 Contour Integrals and Modular S-matrix

7 Conclusions and Outlook



Conclusions and Outlook

• We have made a lot of progress in classifying RCFT by
their number of characters using MLDE, though there is a
long way to go.

• A great deal of useful information emerges, which would
not be accessible by the more standard methods of minimal
series and null vectors.

• These theories provide some lessons for generic (not
rational) CFT: finding a modular invariant partition
function does not imply a CFT exists!
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• The Novel Coset Construction is a useful relation that
helps us find new theories by combining lattice CFT and
WZW models.

• Quasi-characters are interesting in themselves, but also
make a useful tool to build admissible characters with
arbitrary Wronskian index `.

• The Contour Integral Representation describes the
characters of large families of known theories, but may also
be a classification tool. We really don’t know why it works
at all.
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Thank you



Summary of results

• Here is a summary of results presented in this talk:

• Approach:

1. Assume fixed small number of characters, without
specifying the chiral algebra.

2. Require modular invariance and non-negative integral
q-expansion to find admissible characters of the form:

χi(q) = q−
c
24+hi(ai0 + ai1q + ai2q

2 + · · · )

where ain ≥ 0 and integer.

3. Constrain which subset of the admissible characters are
actual CFT by additional consistency requirements.
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• Techniques:

1. One-character (meromorphic) CFT. Studied via theory of
modular forms and string-theory construction of free bosons
on even, unimodular lattices.

2. p ≥ 2-character theories. Studied via Modular Linear
Differential Equations (MLDE).

• Recent results:

1. The Novel Coset Construction. Uses meromorphic CFT to
produce new p-character RCFT.

2. Quasi-characters. Provides a way to completely classify
RCFT for a given number of characters.

3. Contour-integral representation for RCFT characters
provides a way to compute characters in some cases even
when the number of characters is quite large. Importantly,
allows us to compute the modular S-matrix.

• The only complete classification so far is the set of
admissible characters for two-character RCFT.
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