Scattering in chiral strong backgrounds

Tim Adamo University of Edinburgh

Paris

27 February 2020

Work in progress with L. Mason & A. Sharma see also work with E. Casali, A. Ilderton & S. Nekovar

Amplitudes: what's it all about?

To compute S-matrix, usually follow recipe:

- Perturbation theory around trivial background
- Space-time Lagrangian \rightarrow Feynman rules
- Draw diagrams & compute

Amplitudes: what's it all about?

To compute S-matrix, usually follow recipe:

- Perturbation theory around trivial background
- ullet Space-time Lagrangian o Feynman rules
- Draw diagrams & compute

Last 20+ years: look for alternative recipes.

- Lots of progress, especially for massless QFTs
- All-multiplicity formulae at tree-level and beyond
- Divorced from standard space-time perturbation theory

Amplitudes: what's it all about?

To compute S-matrix, usually follow recipe:

- Perturbation theory around trivial background
- Space-time Lagrangian \rightarrow Feynman rules
- Draw diagrams & compute

Last 20+ years: look for alternative recipes.

- Lots of progress, especially for massless QFTs
- All-multiplicity formulae at tree-level and beyond
- Divorced from standard space-time perturbation theory

New formulation(s) of perturbative QFT?

Examples

Consider Yang-Mills theory. At tree-level, we know everything:

$$A_{n,0}^{(0)} = \delta^4 \left(\sum_{i=1}^n k_i \right) \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$
 [Parke-Taylor]

Examples

Consider Yang-Mills theory. At tree-level, we know everything:

$$A_{n,0}^{(0)} = \delta^4 \left(\sum_{i=1}^n k_i \right) \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$
 [Parke-Taylor]

$$A_{n,k}^{(0)} = \int \frac{\prod_{r=0}^{k+1} \mathrm{d}^{4|4} U_r}{\mathrm{vol} \, \mathrm{GL}(2,\mathbb{C})} \prod_{i=1}^n \frac{\mathrm{d}\sigma_i \, \mathcal{A}_i(Z(\sigma_i))}{\sigma_i - \sigma_{i+1}} \quad \text{\tiny [Roiban-Spradlin-Volovich-Witten]}$$

Examples

Consider Yang-Mills theory. At tree-level, we know everything:

$$A_{n,0}^{(0)} = \delta^4 \left(\sum_{i=1}^n k_i \right) rac{\langle i j \rangle^4}{\langle 1 \, 2 \rangle \, \langle 2 \, 3 \rangle \, \cdots \langle n \, 1 \rangle} \quad {}^{ ext{\tiny [Parke-Taylor]}}$$

$$A_{n,k}^{(0)} = \int \frac{\prod_{r=0}^{k+1} \mathrm{d}^{4|4} U_r}{\mathrm{vol}\, \mathrm{GL}(2,\mathbb{C})} \prod_{i=1}^n \frac{\mathrm{d}\sigma_i\, \mathcal{A}_i(Z(\sigma_i))}{\sigma_i - \sigma_{i+1}} \quad {}_{\text{[Roiban-Spradlin-Volovich-Witten]}}$$

$$A_n^{(0)} = \delta^d \left(\sum_{i=1}^n k_i \right) \int d\mu_n \prod_{j=1}^n \delta(\mathcal{S}_j) \prod_{i=1}^n \frac{1}{\sigma_i - \sigma_{i+1}} \operatorname{Pf}'(M)$$

[Cachazo-He-Yuan]

Strong backgrounds

What about amplitudes on strong (non-trivial) backgrounds?

Strong backgrounds

What about amplitudes on strong (non-trivial) backgrounds?

MANY reasons to be interested:

- Strong field QED/laser physics (electromagnetic plane waves)
- Strong field QCD/colour glass condensates (Yang-Mills plane waves & shockwaves)
- Gravitational waves (gravitational plane waves & shockwaves)
- Cosmology (de Sitter or FLRW space-times)
- Strongly-coupled CFTs/holography (anti-de Sitter)
- Non-perturbative physics (shockwaves)

Knowledge gap

What do we know about amplitudes in strong backgrounds?

Knowledge gap

What do we know about amplitudes in strong backgrounds?

Best results at tree-level: 4-points

- QED in plane wave [Ilderton]
- YM/GR in AdS [Raju]
- YM in plane wave [TA-Casali-Mason-Nekovar]

But a novel formulation of pQFT should work on *any* perturbative background...

Today

Question:

Can we make all-multiplicity statements about scattering in strong backgrounds?

Today

Question:

Can we make all-multiplicity statements about scattering in strong backgrounds?

Strategy:

Consider 4d gluon scattering on simplest non-trivial background – chiral plane waves

Plane Waves

Solution to vacuum equations (in *d* dim.) with:

- covariantly constant null symmetry n,
- (2d-4) additional symmetries,
- commuting to form Heisenberg algebra w/ center n

Plane Waves

Solution to vacuum equations (in *d* dim.) with:

- covariantly constant null symmetry n,
- (2d-4) additional symmetries,
- commuting to form Heisenberg algebra w/ center n

For Yang-Mills theory, PWs valued in Cartan of gauge group

[Trautman, Basler-Hadicke, TA-Casali-Mason-Nekovar]

$$\mathrm{d}s^2 = 2\mathrm{d}x^+\,\mathrm{d}x^- - (\mathrm{d}x^\perp)^2\,, \qquad A = x^\perp\,\dot{a}_\perp(x^-)\,\mathrm{d}x^-$$

 $a_{\perp}(x^{-})$ are d-2 Cartan-valued free functions

Null symmetry: $n = \partial_+$

Scattering on plane waves

Sandwich waves: $\dot{a}_{\perp}(x^{-})$ compactly supported:

- Asymptotically flat regions
- Unitary evolution
- No particle creation (in quadratic theory)

[Gibbons, Garriga-Verdaguer,

TA-Casali-Mason-Nekovarl

Figure: Sandwich wave

Lots to like about PWs:

- Symmetries
- Physical interpretation ↔ coherent superposition of gluons
- Universality (Penrose limits)
- Well-defined S-matrix
- Explicit Feynman rules [Volkov, Gibbons, Ward, Mason,

TA-Casali-Mason-Nekovar]

Lots to like about PWs:

- Symmetries
- Physical interpretation ↔ coherent superposition of gluons
- Universality (Penrose limits)
- Well-defined S-matrix
- Explicit Feynman rules [Volkov, Gibbons, Ward, Mason,

```
TA-Casali-Mason-Nekovar]
```

But many new subtleties:

- No d-dimensional momentum conservation integrals always left over due to wave profile
- Memory effect [Zhang-Duval-Gibbons-Horvathy, TA-Casali-Mason-Nekovar]
- Tails [Günther-Wünsch, Mason, Harte]

4d Plane Waves

Even more structure for d = 4:

$$\mathrm{d} s^2 = 2 \left(\mathrm{d} x^+ \, \mathrm{d} x^- - \mathrm{d} z \, \mathrm{d} \overline{z} \right) = \mathrm{d} x_{\alpha \dot{\alpha}} \, \mathrm{d} x^{\alpha \dot{\alpha}} \,,$$

for

$$x^{\alpha\dot{\alpha}} = \left(\begin{array}{cc} x^+ & \overline{z} \\ z & x^- \end{array}\right)$$

Propagation direction of wave: $n = \partial_+$

Since
$$n^2=0$$
, $n^{\alpha\dot{\alpha}}=\iota^{\alpha}\,\tilde{\iota}^{\dot{\alpha}}$, $\iota^{\alpha}=\left(\begin{array}{c}1\\0\end{array}\right)=\tilde{\iota}^{\dot{\alpha}}$

Result:

$$A = (z \, \dot{a}(x^{-}) + \bar{z} \, \dot{\bar{a}}(x^{-})) \, \iota_{\alpha} \tilde{\iota}_{\dot{\alpha}} \, \mathrm{d}x^{\alpha \dot{\alpha}}$$

Spinor-helicity on PWs [TA-Ilderton]

On-shell gluon perturbations proportional to $e^{i\phi_k}$

$$\phi_k = k_+ x^+ + k z + \bar{k} \, \bar{z} + e (z \, a + \bar{z} \, \bar{a}) + \frac{1}{k_+} \int_{-\infty}^{\infty} ds \, |k + e \, a(s)|^2$$

for incoming momentum $k_{lpha\dot{lpha}}=\lambda_{lpha}\,\tilde{\lambda}_{\dot{lpha}}$ and charge e

Spinor-helicity on PWs [TA-Ilderton]

On-shell gluon perturbations proportional to $\mathrm{e}^{\mathrm{i}\phi_k}$

$$\phi_k = k_+ x^+ + k z + \bar{k} \, \bar{z} + e (z \, a + \bar{z} \, \bar{a}) + \frac{1}{k_+} \int_{-\infty}^{\infty} ds \, |k + e \, a(s)|^2$$

for incoming momentum $k_{\alpha\dot{\alpha}}=\lambda_{\alpha}\,\tilde{\lambda}_{\dot{\alpha}}$ and charge e Momentum $K_{\alpha\dot{\alpha}}(x^{-})=-\mathrm{i}\mathrm{e}^{-\mathrm{i}\phi_{k}}\,D_{\alpha\dot{\alpha}}\mathrm{e}^{\mathrm{i}\phi_{k}}$ is on-shell:

$$K^2(x^-) = 0 \Rightarrow K_{\alpha\dot{\alpha}} = \Lambda_{\alpha}\,\tilde{\Lambda}_{\dot{\alpha}}\,,\quad \Lambda_{\alpha} = \lambda_{\alpha} + rac{e\,a(x^-)}{\sqrt{k_+}}\,\iota_{\alpha}$$

On-shell polarizations:
$$\mathcal{E}_{\alpha\dot{\alpha}}^{-} = \frac{\Lambda_{\alpha}\,\tilde{\iota}_{\dot{\alpha}}}{\left[\tilde{\iota}\,\tilde{\lambda}\right]}\,,\qquad \mathcal{E}_{\alpha\dot{\alpha}}^{+} = \frac{\iota_{\alpha}\,\tilde{\Lambda}_{\dot{\alpha}}}{\langle\iota\,\lambda\rangle}$$

So far...

In a 4d PW background, we can:

- use explicit Feynman rules
- use spinor-helicity formalism
- exploit 3-momentum conservation (in x^+, z, \bar{z} directions)

So far...

In a 4d PW background, we can:

- use explicit Feynman rules
- use spinor-helicity formalism
- exploit 3-momentum conservation (in x^+, z, \bar{z} directions)

Can we simplify any further?

Self-dual plane waves

Complexify background and require:

$$*F = iF$$

Self-dual plane waves

Complexify background and require:

$$*F = iF$$

Result: only 1 functional d.o.f.

$$A = \bar{z} \dot{f}(x^{-}) dx^{-} = \bar{z} \dot{f}(x^{-}) \iota_{\alpha} \tilde{\iota}_{\dot{\alpha}} dx^{\alpha \dot{\alpha}}$$

$$F = \dot{f}(x^{-}) \,\mathrm{d}\bar{z} \wedge \mathrm{d}x^{-} = \dot{f} \,\tilde{\iota}_{\dot{\alpha}} \tilde{\iota}_{\dot{\beta}} \,\mathrm{d}x_{\alpha}{}^{\dot{\alpha}} \wedge \mathrm{d}x^{\alpha\dot{\beta}}$$

Coherent superposition of positive-helicity gluons

SDPW kinematics

SDPW have chiral on-shell kinematics

Gluon with incoming momentum $k_{\alpha\dot{\alpha}}=\lambda_{\alpha}\tilde{\lambda}_{\dot{\alpha}}$: T^a $\mathcal{E}^{\pm}_{\alpha\dot{\alpha}}(x^{-})\,\mathrm{e}^{\mathrm{i}\phi_{k}}$

$$\phi_k = k \cdot x + e \bar{z} f(x^-) + \frac{k}{k_+} \int_{-\infty}^{x^-} dt \, e f(t)$$

On-shell kinematics:

$$egin{aligned} \mathcal{K}_{lpha\dot{lpha}}(x^-) &= \lambda_lpha\, ilde{\mathsf{\Lambda}}_{\dot{lpha}}\,, \qquad ilde{\mathsf{\Lambda}}_{\dot{lpha}} := ilde{\lambda}_{\dot{lpha}} + rac{e}{\sqrt{k_+}}\, ilde{\iota}_{\dot{lpha}}\,f(x^-) \ \\ \mathcal{E}_{lpha\dot{lpha}}^- &= rac{\lambda_lpha\, ilde{\iota}_{\dot{lpha}}}{\left[ilde{\iota}\, ilde{\lambda}
ight]}\,, \qquad \mathcal{E}_{lpha\dot{lpha}}^+ &= rac{\iota_lpha\, ilde{\mathsf{\Lambda}}_{\dot{lpha}}}{\langle\iota\,\lambda
angle} \end{aligned}$$

So what?

MHV scattering = helicity flip on a SD background [Mason-Skinner] Shift YM action by topological term:

$$-\frac{1}{2\,{\rm g}^2}\int {\rm tr}\, F\wedge *F + \frac{1}{8\,{\rm g}^2}\int {\rm tr}\, F\wedge F = -\frac{1}{2\,{\rm g}^2}\int {\rm tr}\, F^-\wedge F^-$$

for F^- the ASD part of F.

So what?

MHV scattering = helicity flip on a SD background [Mason-Skinner] Shift YM action by topological term:

$$-\frac{1}{2\,{\rm g}^2}\int {\rm tr}\, F\wedge *F + \frac{1}{8\,{\rm g}^2}\int {\rm tr}\, F\wedge F = -\frac{1}{2\,{\rm g}^2}\int {\rm tr}\, F^-\wedge F^-$$

for F^- the ASD part of F.

Introduce Lagrange multiplier $B \in \Omega^2_-(\mathfrak{g})$.

$$-\frac{1}{2\,\mathrm{g}^2}\int\mathrm{tr}\,F^-\wedge F^-$$
 equivalent to

$$S[A, B] = \int \operatorname{tr} F^- \wedge B + \frac{g^2}{2} \int \operatorname{tr} B \wedge B$$

Field equations:

$$F^- = -g^2 B, \qquad DB = 0$$

Upshot

Yang-Mills admits a pert. expansion around SD sector [Chalmers-Siegel]

Expanding around the SDPW 'no worse' than expanding around a *trivial* background!

Upshot

Yang-Mills admits a pert. expansion around SD sector [Chalmers-Siegel]

Expanding around the SDPW 'no worse' than expanding around a *trivial* background!

Need: something that manifests the integrability/triviality of the SD background...

Twistor theory

Twistor space:
$$Z^A=\left(\mu^{\dotlpha},\lambda_lpha
ight)$$
 homog. coords. on \mathbb{CP}^3
$$\mathbb{PT}=\mathbb{CP}^3\setminus\{\lambda_lpha=0\}$$

$$x\in\mathbb{C}^4$$
 given by $X\cong\mathbb{CP}^1\subset\mathbb{PT}$ via $\mu^{\dot{lpha}}=x^{lpha\dot{lpha}}\lambda_{lpha}$

Twistor theory

Twistor space: $Z^A=\left(\mu^{\dotlpha},\lambda_lpha
ight)$ homog. coords. on \mathbb{CP}^3 $\mathbb{PT}=\mathbb{CP}^3\setminus\{\lambda_lpha=0\}$

 $x\in\mathbb{C}^4$ given by $X\cong\mathbb{CP}^1\subset\mathbb{PT}$ via $\mu^{\dot{lpha}}=x^{lpha\dot{lpha}}\lambda_{lpha}$

On a flat background:

- Massless free fields \leftrightarrow cohomology on \mathbb{PT} [Penrose, Sparling, Eastwood-Penrose-Wells]
- Representation for on-shell scattering kinematics [Hodges]
- Full tree-level S-matrix of ${\cal N}=4$ SYM [Witten, Berkovits, Roiban-Spradlin-Volovich]
- Full tree-level S-matrix of $\mathcal{N}=8$ SUGRA [Cachazo-Skinner]

What's this got to do with perturbation theory on SDPWs?

What's this got to do with perturbation theory on SDPWs?

Theorem [Ward, 1977]

There is a 1:1 correspondence between:

- SD SU(N) Yang-Mills fields on C⁴, and
- rank N holomorphic vector bundles $E \to \mathbb{PT}$ trivial on every $X \subset \mathbb{PT}$ (+ technical conditions)

What's this got to do with perturbation theory on SDPWs?

Theorem [Ward, 1977]

There is a 1:1 correspondence between:

- SD SU(N) Yang-Mills fields on C⁴, and
- rank N holomorphic vector bundles $E \to \mathbb{PT}$ trivial on every $X \subset \mathbb{PT}$ (+ technical conditions)

Upshot: twistor theory *trivializes* the SD sector

SDPWs in Twistor Space

Can construct $E \to \mathbb{PT}$ explicitly; holomorphicity encoded by partial connection on E:

Easy to show that $\bar{D}^2=0$

SDPWs in Twistor Space

Can construct $E \to \mathbb{PT}$ explicitly; holomorphicity encoded by partial connection on E:

$$ar{D} = ar{\partial} + A, \qquad A = rac{\langle a \, \lambda
angle}{\langle a \, \iota
angle} \, ar{\partial} \left(rac{1}{\langle \lambda \, \iota
angle}
ight) \int^{rac{\langle a \, \iota
angle}{\langle a \, \lambda
angle} \, [ilde{\iota} \, \mu]} \mathrm{d}t \, f(t)$$

Easy to show that $\bar{D}^2=0$

Penrose transform: gluons encoded by E-twisted cohomology on \mathbb{PT}

- helicity
$$\leftrightarrow H^{0,1}_{\bar{D}}(\mathbb{PT},\,\mathcal{O}(-4)\otimes E)$$

+ helicity $\leftrightarrow H^{0,1}_{\bar{D}}(\mathbb{PT},\,\mathcal{O}\otimes E)$

MHV generating functional

MHV amplitudes on the SDPW background generated by:

$$\int \mathrm{d}^4 x \int\limits_{X_1 \times X_2} \mathrm{D} \lambda_1 \, \mathrm{D} \lambda_2 \, \langle \lambda_1 \, \lambda_2 \rangle^2 \, \mathrm{tr} \left[b_1 \, \gamma_1 \gamma_2^{-1} \, b_2 \, \gamma_2 \gamma_1^{-1} \right]$$

- $b_{1,2} \in H^{0,1}_{\bar{D}}(\mathbb{PT}, \mathcal{O}(-4) \otimes E)$
- $\gamma \leftrightarrow$ holomorphic trivialization of $E|_X$:

$$\gamma \, \bar{D}|_{X} \gamma^{-1} = \bar{\partial}|_{X} \,, \qquad \gamma(x,\lambda) := \exp\left(\mathrm{i} rac{\langle o \, \lambda
angle}{\langle \iota \, \lambda
angle} \int^{x^{-}} \!\!\!\mathrm{d} t \, f(t)
ight)$$

Perturbative expansion

Take
$$\bar{D} \to \bar{D} + a$$
, for $a \in H^{0,1}_{\bar{D}}(\mathbb{PT}, \mathcal{O} \otimes E)$
 $\gamma_1 \gamma_2^{-1}$ must solve $(\bar{D} + a)|_{X_1} \gamma_1 \gamma_2^{-1} = 0 \Rightarrow$ Born series:

$$\gamma_{1}\gamma_{2}^{-1} = \frac{1}{1 - \bar{D}^{-1}|_{X}a}$$

$$= 1 + \sum_{k=3}^{\infty} \int_{X^{k-2}} \frac{\gamma_{1}}{\langle \lambda_{1} \lambda_{3} \rangle} \left(\prod_{i=3}^{k} \frac{D\lambda_{i} \gamma_{i}^{-1} a_{i} \gamma_{i}}{\langle \lambda_{i} \lambda_{i+1} \rangle} \right) \frac{\gamma_{2}}{\langle \lambda_{k} \lambda_{2} \rangle}$$

Re-labeling the field insertions, n^{th} -order term is

$$\int d^4x \int_{X^n} \langle \lambda_i \lambda_j \rangle^4 \prod_{k=1}^n \frac{D\lambda_k}{\langle \lambda_k \lambda_{k+1} \rangle} \operatorname{tr} \left[a_1 \cdots b_i a_{i+1} \cdots b_j a_{j+1} \cdots a_n \right] \\ \times \exp \left[i \sum_{k=1}^n e_k \frac{\langle o \lambda_k \rangle}{\langle \iota \lambda_k \rangle} \int_{-\infty}^{\infty} dt f(t) \right]$$

Re-labeling the field insertions, n^{th} -order term is

$$\int d^4x \int_{X^n} \langle \lambda_i \lambda_j \rangle^4 \prod_{k=1}^n \frac{D\lambda_k}{\langle \lambda_k \lambda_{k+1} \rangle} \operatorname{tr} \left[a_1 \cdots b_i a_{i+1} \cdots b_j a_{j+1} \cdots a_n \right] \\ \times \exp \left[i \sum_{k=1}^n e_k \frac{\langle o \lambda_k \rangle}{\langle \iota \lambda_k \rangle} \int^{x^-} dt f(t) \right]$$

Evaluate on twistor representatives for $\mathcal{E}_{\alpha\dot{\alpha}}^{\pm} e^{i\phi_k}$:

$$a_i = \frac{\langle a\,\lambda\rangle}{\langle a\,i\rangle}\,\bar{\partial}\left(\frac{1}{\langle \lambda\,i\rangle}\right)\,\operatorname{e}^{\mathrm{i}\frac{\langle a\,i\rangle}{\langle a\,\lambda\rangle}[\mu\,i]}\,,\quad b_i = \frac{\langle a\,i\rangle^3}{\langle a\,\lambda\rangle^3}\,\bar{\partial}\left(\frac{1}{\langle \lambda\,i\rangle}\right)\,\operatorname{e}^{\mathrm{i}\frac{\langle a\,i\rangle}{\langle a\,\lambda\rangle}[\mu\,i]}$$

MHV amplitude

Evaluating the \mathbb{CP}^1 integrals gives:

$$\delta_{+,\perp}^{3}\left(\sum_{i=1}^{n}k_{i}\right)\frac{\langle ij\rangle^{4}}{\langle 12\rangle\langle 23\rangle\cdots\langle n1\rangle}\int_{-\infty}^{+\infty}\mathrm{d}x^{-}\,\mathrm{e}^{\mathrm{i}\mathcal{F}_{n}(x^{-})}$$

for Volkov exponent

$$\mathbb{K}^{lpha\dot{lpha}}(x^-):=\sum_{i=1}^{n-1}\mathcal{K}_i^{lpha\dot{lpha}}(x^-)\,,\qquad \boxed{\mathcal{F}_n(x^-):=rac{1}{\mathbb{K}_+}\int^{x^-}\!\mathrm{d}t\,\mathbb{K}^2(t)}$$

Red flag: only one residual lightfront integral!

Expect n-2 for n-point tree amplitude

Red flag: only one residual lightfront integral!

Expect n-2 for n-point tree amplitude

Resolution: field redefinition recasts Yang-Mills action such that all MHV vertices have *single* lightfront integral [Mansfield]

Red flag: only one residual lightfront integral!

Expect n-2 for n-point tree amplitude

Resolution: field redefinition recasts Yang-Mills action such that all MHV vertices have *single* lightfront integral [Mansfield]

Other sanity checks & features:

- Explicit checks at 3- and 4-points
- Perturbative limit (MHV_n+ background \rightarrow MHV_{n+1})
- Flat background limit
- Generalization to $\mathcal{N}=4$ SYM

Full tree-level S-matrix?

Easy guess for N^kMHV, based on holomorphic maps $Z: \mathbb{CP}^1 \to \mathbb{PT}$

$$\int \frac{\prod_{r=0}^{k+1} d^{4|4} U_r}{\operatorname{vol} \operatorname{GL}(2,\mathbb{C})} \operatorname{tr} \left(\prod_{i=1}^n \frac{d\sigma_i \, \gamma_i^{-1} \, \mathcal{A}_i(Z(\sigma_i)) \, \gamma_i}{\sigma_i - \sigma_{i+1}} \right)$$

where:

- $Z(\sigma) = \sum_{r=0}^{k+1} U_r \sigma^r$ is a degree k+1 holomorphic map
- $\{\sigma_i\} \subset \mathbb{CP}^1$ punctures on \mathbb{CP}^1
- $\mathcal{A} \in H^{0,1}_{\bar{D}}(\mathbb{PT}, \mathcal{O} \otimes E)$ twistor wavefunctions
- γ holomorphic trivialization of E over image of Z

Full tree-level S-matrix?

Easy guess for N^kMHV, based on holomorphic maps $Z: \mathbb{CP}^1 \to \mathbb{PT}$

$$\int \frac{\prod_{r=0}^{k+1} d^{4|4} U_r}{\operatorname{vol} \operatorname{GL}(2,\mathbb{C})} \operatorname{tr} \left(\prod_{i=1}^n \frac{d\sigma_i \, \gamma_i^{-1} \, \mathcal{A}_i(Z(\sigma_i)) \, \gamma_i}{\sigma_i - \sigma_{i+1}} \right)$$

where:

- $Z(\sigma) = \sum_{r=0}^{k+1} U_r \sigma^r$ is a degree k+1 holomorphic map
- $\{\sigma_i\} \subset \mathbb{CP}^1$ punctures on \mathbb{CP}^1
- $\mathcal{A} \in H^{0,1}_{\bar{D}}(\mathbb{PT}, \mathcal{O} \otimes E)$ twistor wavefunctions
- γ holomorphic trivialization of E over image of Z

Currently just a conjecture...

Summary

Upshot: it *is* possible to make all-multiplicity statements in strong backgrounds!

Also a (more complicated) version of this story for **gravity**!

Many exciting things to do:

- Prove/correct N^kMHV conjecture
- Double copy for full tree-level SDPW S-matrix
- Generalize to generic PW backgrounds
- Other SD backgrounds?