FROM SYMMETRIC PRODUCT CFTs TO AdS3

Collaborators: M. Gaberdiel, P. Maity, B. Knighton Based on arXiv: 2011.10038 [hep-th]. Rajesh Gopakumar, ICTS-TIFR, Bengaluru

Rencontres Theoriciennes, Paris (online). 21 st Jan. 2021

ROADMAP

MOTIVATIONS (From Strings to Fields and From Fields to Strings) BACKGROUND (On symmetric product orbifolds and covering maps) TECHNICALITIES (A large N limit, a matrix model and its solution) MEANING (How CFT Feynman diagrams cover stringy moduli space...) ANSWERS (...and what that concretely gives for the dual string theory) OUTLOOK (Onwards to 4d Yang-Mills!)

MOTIVATION

DERIVING AdS/CFT

- How exactly do large N QFTs reorganise themselves into theories of strings?
- D-brane physics indicates open-closed string duality as the underlying reason [Maldacena-'97].
- Holes close up and backreaction alters the background.
- But difficult to see this explicitly happen at large $g_s N = \lambda$.
- Therefore, cannot delineate scope of gauge-string duality beyond examples.

A DIFFERENT LAMP POST

- Shift focus in this talk to the corner where we understand the field theory but not the bulk.
- Look at $\lambda \to 0$ i.e. highly curved AdS or tensionless limit. Very stringy regime.
 - Dictionary: $R_{AdS} \propto \lambda^{\alpha}$; $g_s^2 \propto \frac{\lambda^2}{N^2}$.
- Finite number of holes to sum over at zero coupling. Well defined genus expansion.
- Interactions treated perturbatively as correlators in a free QFT.

WHAT CONSTITUTES A DERIVATION?

$$\left\langle \mathcal{O}_{h_1}^{(w_1)}(x_1) \mathcal{O}_{h_2}^{(w_2)}(x_2) \dots \mathcal{O}_{h_n}^{(w_n)}(x_n) \right\rangle_{S^d} \bigg|_g =$$

- **Operational definition:** Relate (single trace) gauge invariant (euclidean) correlators to perturbative string amplitudes $-\forall (g, n)$.
- perturbative sigma model 2d CFT for the RHS. Mathematically well posed question.
- Can we make the equality manifest? Can we `tautologise' the correspondence?

 $= \int \left\langle \mathcal{V}_{h_1}^{w_1}(x_1; z_1) \mathcal{V}_{h_2}^{w_2}(x_2; z_2) \dots \mathcal{V}_{h_n}^{w_n}(x_n; z_n) \right\rangle_{\Sigma_{g,n}}$

Based on the dictionary between states: $\mathcal{O}_{h}^{(w)}(x) \leftrightarrow \mathcal{V}_{h}^{w}(x;z)$. (h = conformal dimension).

Both sides have autonomous definitions: as a fixed point for QFT on LHS and in terms of a

PROOF OF CONCEPT

very concrete and explicit - testing ground for a derivation.

$$\left\langle \mathcal{O}_{h_1}^{(w_1)}(x_1) \mathcal{O}_{h_2}^{(w_2)}(x_2) \dots \mathcal{O}_{h_n}^{(w_n)}(x_n) \right\rangle_{S^2} \bigg|_{S^2}$$

- Orbifold CFT as $N \to \infty$; $(g_s^2 \propto 1/N)$. [Eberhardt, Gaberdiel, R.G. '18-'19].
- Worldsheet correlators on the RHS $\propto \int \delta^{(2)}(x_i \Gamma(z_i))$ i.e. localise to points on $\mathcal{M}_{0,n}$ corresponding to specific branched covers $x = \Gamma(z)$ with branching w_i at insertions $z_i : x \sim x_i + a_i^{\Gamma}(z - z_i)^{w_i}$.

Recent work on a tensionless limit of the AdS_3/CFT_2 correspondence makes much of this discussion

$$= \int_{\mathcal{M}_{g,n}} \left\langle \mathcal{V}_{h_1}^{w_1}(x_1; z_1) \mathcal{V}_{h_2}^{w_2}(x_2; z_2) \dots \mathcal{V}_{h_n}^{w_n}(x_n; z_n) \right\rangle_{\Sigma_{g,n}}$$

• CLAIM: String Theory on $AdS_3 \times S^3 \times T^4$ and k = 1 unit of NS-NS flux $\equiv Sym^N(T^4)$ free Symmetric

[RG@Strings20]

• Follows from a twistorial incidence relation $\langle (\xi^- + \Gamma(z)\xi^+) \rangle_{phys} = 0$. [Dei, Gaberdiel, R.G., Knighton '20].

BACK AND FORTH

$$\left\langle \mathcal{O}_{h_1}^{(w_1)}(x_1) \mathcal{O}_{h_2}^{(w_2)}(x_2) \dots \mathcal{O}_{h_n}^{(w_n)}(x_n) \right\rangle_{S^d} \bigg|_g = \int_{\mathcal{M}_g} \langle \mathcal{M}_g |_g$$

- An apparent asymmetry in this equality. Easier to go from RHS to LHS Strings to Fields.
- To go from Fields to Strings (LHS to RHS), need to reconstruct a worldsheet integrand not unique.
- Nevertheless can have a canonical or natural form for the correlator on the RHS.
- "From Free Fields to AdS" program to recast QFT correlators into stringy correlators. [R.G. '03-'05].
- BASIC IDEA: Sum over distinct worldline topologies in Feynman diagrams for a large N theory = Sum
 over distinct worldsheets (moduli space) after gluing up double lines.

 $\left\langle \mathcal{V}_{h_1}^{w_1}(x_1;z_1) \mathcal{V}_{h_2}^{w_2}(x_2;z_2) \dots \mathcal{V}_{h_n}^{w_n}(x_n;z_n) \right\rangle_{\Sigma_{g,n}}$

FROM WORLDLINES TO WORLDSHEETS

Exploits the Strebel parametrisation of $\mathcal{M}_{\varrho,n}$ [R.G.'05].

A refinement of 't Hooft's idea of associating a genus to double line Feynman graphs [R.G. '04].

BACKGROUND

ORBIFOLD CORRELATORS AND COVERINGS

- Consider $\langle \sigma^{(w_1)}(x_1) \sigma^{(w_2)}(x_2) \dots \sigma^{(w_n)}(x_n) \rangle_{S^2}$ ground states of w-cycle twisted sector.
- Insight of Lunin-Mathur['00] : can compute these by going to a covering space. [cf. replica trick]
- Vacuum path integral of single copy of T^4 CFT but branching behaviour at insertions of operators.
- Locally, $x = \Gamma(z)$ with branching w_i at insertions z_i : $x \sim x_i + a_i^{\Gamma} (z - z_i)^{w_i}.$

Implement the Fields to Strings program in our test case. $CFT_2 = (T^4)^K / S_K$; $(K \to \infty)$.

CALCULATING WITH COVERINGS

- Original correlator $\langle \sigma^{(w_1)}(x_1)\sigma^{(w_2)}(x_2)...\sigma^{(w_n)}(x_n) \rangle_{S^2}$ given by a sum over contributions from all the allowed covering maps $x = \Gamma(z)$ with specified branching behaviour $x \sim x_i + a_i^{\Gamma}(z z_i)^{w_i}$.
- Covering map specified by the data $\{z_i, w_i\}$ and three x's. Remaining (n 3) of x_i determined.
- [Equivalently, specifying $\forall x_i, w_i$ determines (n-3) of z_i discrete set of points on $\mathcal{M}_{0,n}$.]
- Coordinate dependence comes from pullback $\partial \Gamma(z)$ induced metric on covering space and Liouville action of this conformal factor.
- Weight $\propto e^{-S_L[\Phi=\ln|\partial\Gamma|^2]}$. Here $S_L[\Phi] = \frac{c}{48\pi}$.
- With appropriate regularisation and normalisation, gives the ground state correlators.

$$\int d^2 z [2\partial \Phi \bar{\partial} \Phi + R\Phi].$$

FEYNMAN COVERINGS

- Can associate free field like Feynman diagram with each covering map contribution.
- Bifundamental like double line graph pullback of Jordan curve on spacetime S^2 .
- $2w_i$ edges coming out of vertices $z_i = \Gamma^{-1}(x_i)$.
- N preimages of $x = \infty$ (poles of $\Gamma(z)$) in the coloured loops. N=degree of map.
- Graph triangulates the covering space (= worldsheet).

[Pakman-Rastelli-Razamat-'09]

COMPUTING COVERINGS

- Covering maps are hard to explicitly write down. Even for a four point function on sphere.
- Stick to genus zero covering space, but *n*-branch points and degree N maps ($\Gamma(z) : \Sigma_{0,n} \to S^2$).

$$\Gamma(z) = \frac{p_N(z)}{q_N(z)} = \frac{p_N(z)}{\prod_{a=1}^N (z - \lambda_a)} \Rightarrow$$

Requiring no simple pole at $z = \lambda_a \Rightarrow \sum_{i=1}^{n-1} \frac{w_i - 1}{\lambda_a - z_i} = \sum_{b \neq a}^{N} \frac{2}{\lambda_a - \lambda_b}$, (a = 1, ..., N). Scattering Equations' - to be solved for the N poles: $\lambda'_a s$ [Roump

$$\partial \Gamma(z) = M_{\Gamma} \frac{\prod_{i=1}^{n-1} (z - z_i)^{w_i - 1}}{\prod_{a=1}^{N} (z - \lambda_a)^2} \qquad (z_n =$$

TECHNICALITIES

A GROSS-MENDE LIMIT

• Study
$$\left\langle \sigma^{(w_1)}(x_1) \sigma^{(w_2)}(x_2) \dots \sigma^{(w_n)}(x_n) \right\rangle_{S^2} \Big|_{g=0}$$
 in a s

- special limit where dimensions/energies are large. [Gaberdiel-R.G.-Knighton-Maity-'20] • Recall correlator gets contributions from a finite number of covering maps $\sim N^{2n-6}$ where $N = 1 + \sum_{i=1}^{n} \frac{w_i - 1}{2}$ = degree of the map (Riemann-Hurwitz).
- Thus Lunin-Mathur covering maps at a finite number of points on moduli space $\mathcal{M}_{0,n}$.
- How do we see the full stringy moduli space $\mathcal{M}_{0,n}$ if we start with $\langle \sigma^{(w_1)}(x_1)\sigma^{(w_2)}(x_2)...\sigma^{(w_n)}(x_n) \rangle_{S^2}$?

Take
$$w_i \to \infty$$
; $\frac{w_i}{N} = \alpha_i$ fixed. Gross-Mende like limit $h_i = \frac{w_i^2 - 1}{4w_i} \to \frac{\alpha_i N}{4}$.

COVERING MAPS & A MATRIX MODEL

Find the covering maps in this limit. Recall

• Scattering equations become $\Rightarrow \sum_{i=1}^{n-1} \frac{\alpha_i}{\lambda_a - z}$

Saddle point of a large N Penner-like matrix model with potential $W(z) = \sum_{i=1}^{n-1} \alpha_i \log (z - z_i);$ [cf. Dijkgraaf-Vafa-'09] Solve for the resolvent $u(z) = \int_C \frac{\rho(\lambda)}{z - \lambda}$ where $\rho(\lambda) = \frac{1}{N} \sum_{a=1}^N \delta(\lambda - \lambda_a)$. [Gaberdiel-R.G.-Knighton-Maity - '20]

$$\int \partial \Gamma(z) = M_{\Gamma} \frac{\prod_{i=1}^{n-1} (z - z_i)^{w_i - 1}}{\prod_{a=1}^{N} (z - \lambda_a)^2}$$

$$\frac{1}{z_i} = \frac{1}{N} \sum_{\substack{b \neq a}}^{N} \frac{2}{\lambda_a - \lambda_b}, \qquad (a = 1, \dots, N).$$

LOOP EQUATIONS

Resolvent obeys the loop equation (in terms of y(z) = W'(z) - 2u(z)) [Wadia -'80]

$$y^{2}(z) - \frac{2}{N}y'(z) = \left(W'(z)\right)^{2} - \frac{2}{N}W''(z) - 4R(z)$$

Defines the spectral curve of the matrix model (w

• The spectral curve captures the original covering map $\Gamma(z)$. By definition: Liouville Field of Lunin-Mathur $\frac{1}{-\lambda_a} = \frac{1}{N} \frac{\partial^2 \Gamma(z)}{\partial \Gamma(z)} = \frac{1}{N} \frac{\partial \ln \partial \Gamma}{\partial \Gamma} = \frac{1}{N} \frac{\partial \Phi}{\partial \Phi}$

$$y(z) = \sum_{i=1}^{n-1} \frac{\alpha_i}{(z-z_i)} - \frac{2}{N} \sum_{a=1}^N \frac{1}{(z-z_i)} - \frac{2}{N} \sum_{a=1}^N \sum_{a=1}^N \frac{1}{(z-z_i)} - \frac{2}{N} \sum_{a=1}^N \sum_{a=$$

with
$$R(z) = \frac{1}{N} \sum_{a=1}^{N} \frac{W'(\lambda_a) - W'(z)}{(\lambda_a - z)}$$
).

At large N, the

TO LEADING ORDER...
spectral curve
$$y_0(z)$$
 obeys $y_0^2(z) = (W'(z))^2 - 4R_0(z)$.
 $y_0^2(z) = \frac{\tilde{W}_{n-2}^2(z) - \prod_{i=1}^{n-1} (z - z_i)\tilde{R}_{n-3}(z)}{\prod_{i=1}^{n-1} (z - z_i)^2} \equiv \frac{Q_{2n-4}(z)}{\prod_{i=1}^{n-1} (z - z_i)^2}$.

• Has *n* double poles at $z = z_i$. And (2n - 4) zeroes $(z = a_k)$ - of the polynomial $Q_{2n-4}(z)$.

Take as unknowns, (n-3) parameters in $\tilde{R}_{n-3}(z)$ and (n-3) cross ratios z_i .

• Fixed by (2n-6) periods: $\frac{1}{2\pi i} \oint_{A_l} y_0(z) dz \equiv \nu_l$, $\frac{1}{2\pi i} \oint_{B_l} y_0(z) dz \equiv \mu_l$. Parametrises the different covering map solutions. $y_0(z) = \partial \ln \partial \Gamma$ to leading order. Will see the interpretation of these parameters soon.

Going back to the $\frac{1}{N}$ corrected loop equation, we have $y^2(z) - \frac{2}{N}y'(z) = -\frac{2}{N^2} \left| \frac{\Gamma''}{\Gamma'} - \frac{3}{2} \left(\frac{\Gamma''}{\Gamma'} \right)^2 \right|$ Schwarzian of the covering map $\Rightarrow -\frac{2}{N^2}S[\Gamma] = \left(W'(z)\right)$

Note that the left hand side transforms as a quadratic differential.

... AND A BIT BEYOND

$$z))^{2} - \frac{2}{N}W''(z) - 4R(z) = \frac{\tilde{Q}_{2n-4}(z)}{\prod_{i=1}^{n-1}(z-z_{i})^{2}}$$

It's behaviour near the double poles are $\sim \frac{w_i^2 - 1}{N^2} \frac{1}{(z - z_i)^2}$. (Residue $\sim \alpha_i^2$ to leading order)

MEANING

DIAGRAMMATIC INTERPRETATION

Feynman diagrams - coalesces into cuts, transverse to the edges of the graph.

•
$$y_0^2(z) = \frac{Q_{2n-4}(z)}{\prod_{i=1}^{n-1} (z-z_i)^2} = \frac{\alpha_n^2 dz^2}{\prod_{i=1}^n (z-z_i)^2} \prod_{k=1}^{2n-4} (z-a_k);$$

(n-3) branch cuts between the zeroes $\{a_k\}.$

• The periods count number of wick contractions n_{ii} . The constraint $\sum n_{ij} = 2w_i$ follows from residues at the poles z_i . j≠i

• (2n-6) independent $\{n^{(l)}, \tilde{n}^{(l)}\}$ which parametrise different Feynman diagrams and therefore inequivalent coverings $\Gamma(z)$. $\frac{1}{2\pi i} \oint_{A_l} y_0(z) dz \equiv \nu_l = \frac{n^{(l)}}{N} , \quad \frac{1}{2\pi i} \oint_{B_l} y_0(z) dz \equiv \mu_l = \frac{\tilde{n}^{(l)}}{N}$

The spectral curve $y_0(z)$ - determines 'eigenvalue density' of poles λ_a in coloured loops of

THE SKELETON GRAPH & IT'S DUAL

- Global picture therefore of a cut system dual to the edges of the (skeleton) Feynman diagram. Dual graph has (3n - 6) edges, *n* faces (each with a pole z_i) and (2n - 4) vertices $\{a_k\}$.
- Geometric significance of this graph follows from a remarkable property of the spectral curve.

• $-y_0^2(z)dz^2 \equiv \phi_S(z)dz^2$ is a Strebel differential.

- Unique meromorphic quadratic differential on $\Sigma_{0,n}$ with double poles at z_i (with real residues) and real r^am Strebel lengths (periods) i.e. $\sqrt{\phi_S(z)}dz = l_{km} \in \mathbb{R}_+.$

THE STREBEL GRAPH

- The Strebel differential foliates the Riemann surface into closed `horizontal trajectories': $\phi_S(z(t)) \left(\frac{dz(t)}{dt}\right)^2 > 0.$
- Disk domains (faces) each containing one of the *n* double poles.
- Separated by a critical graph connecting the zeroes.
- Cuts that form the graph dual to the (skeleton) graph for the Feynman diagram.

IMPLEMENTING OPEN-CLOSED DUALITY

- Strebel differentials give a one to one parametrisation of $\mathcal{M}_{0,n}$ (for fixed residues α_i) through the (2n - 6) real lengths l_{km} .
- Associate a closed string surface to the Strebel graph.
- An implementation of gluing: for each Feynman graph, a dual Strebel graph which specifies how the ribbon graphs close up to the dual string worldsheet.
- Precise realisation of the prescription for open-closed duality. [R.G. '04-'05].

In the present case, at large N, $l_{km} \propto n_{km}/N$ - similar to Razamat-'08. Takes continuous values.

OPEN-CLOSED TRIPTYCH

I) Ribbon Graphs

2) Glued up Strips

3) Strebel Surface

ANSWERS

- over moduli space $\mathscr{M}_{0,n}$: $\sum_{\{n_{ii}\}} \longrightarrow \int \prod_{l=1}^{n-3} [d\nu_l d\mu_l] = \int_{\mathscr{M}_{0,n}} |\omega^{(n-3)}(z_i)|^2.$
- What about the integrand? Lunin-Mathur $\propto e^{-S_L[\Phi]}$ with the Liouville action $S_L[\Phi] = \frac{c}{48\pi} \int d^2 z [2\partial \Phi \bar{\partial} \Phi + R\Phi].$ Recall $\partial \Phi \sim Ny_0(z) \sim N\sqrt{-\phi_S(z)} \sim \sqrt{S[\Gamma]}.$
 - To leading order, a Schwarzian action $\mathcal{S}_{I}[\Phi]$

THREF AVATARS

Sum over all the inequivalent covering maps (i.e. Feynman diagrams) goes over to an integral

$$[d] \sim \int d^2 z \left| S[\Gamma(z)] \right|.$$

Compare with AdS₂ case, for softly broken conformal symmetry [Maldacena-Stanford-Yang -'16].

FROM FIELDS TO STRINGS

- differential $\phi_S(z)dz^2$ defines an almost flat worldsheet metric $ds^2 = |\phi_S(z)| dz d\overline{z}$.
- The Liouville action $\mathcal{S}_L[\Phi] \sim \left[d^2 z \sqrt{\det(g_S)} \text{Nambu-Goto action with induced Strebel metric.} \right]$
- Alternatively, $S_L[\Phi] \sim \left[\frac{d^2 z}{\partial x \bar{\partial} \bar{x}} \partial^2 X(z) \bar{\partial}^2 \bar{X}(\bar{z}) \right]$ (where $X(z) \equiv \Gamma(z)$ parametrises boundary S^2). Similar to the action of the pre-holographic "rigid string". [Polyakov, Kleinert-'86]
- All these forms match with the on-shell AdS_3 sigma model action of the correlator in the

The weight on moduli space can also be viewed in more worldsheet terms - the Strebel

tensionless limit - with $\Phi(z, \bar{z})$ being the radial direction. [Eberhardt-Gaberdiel-R. G. -'19].

- Exhibited a test case where the general program of reassembling large N QFTs into string theories can be explicitly carried out.
- Could also close the circle from strings to fields due to a tractable worldsheet theory.
- Holds out the hope that we can use this program to generalise to large N QFTs in general.
- General lessons from the worldsheet theory underlying topological string,...
- [Gaberdiel-R.G.] General lessons for field theories - underlying geometric picture of Feynman diagrams.... [Bharathkumar-Bhat-R.G.-Maity]
- Laundry list of problems [Gaberdiel, R.G., Knighton-Maity, 20].

OUTLOOK

THANKYOU