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ROADMAP

MOTIVATIONS (From Strings to Fields and From Fields to Strings)

BACKGROUND (On symmetric product orbifolds and covering maps) 

TECHNICALITIES (A large N limit, a matrix model and its solution)

MEANING (How CFT Feynman diagrams cover stringy moduli space…)

ANSWERS (…and what that concretely gives for the dual string theory)

OUTLOOK (Onwards to 4d Yang-Mills!)



MOTIVATION



DERIVING AdS/CFT

How exactly do large N QFTs reorganise themselves into theories of strings? 

D-brane physics indicates open-closed string duality as the underlying reason [Maldacena-’97]. 

Holes close up and backreaction alters 
the background.

But difficult to see this explicitly 
happen at large . 

Therefore, cannot delineate scope of 
gauge-string duality beyond examples.  
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A DIFFERENT LAMP POST

Shift focus in this talk to the corner where we 
understand the field theory but not the bulk.

Look at  i.e. highly curved AdS or 
tensionless limit.  Very stringy regime.   

Dictionary:   ;  .

Finite number of holes to sum over at zero 
coupling.  Well defined genus expansion.  

Interactions treated perturbatively as 
correlators in a free QFT. 
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WHAT CONSTITUTES A DERIVATION?

      

Operational definition: Relate (single trace) gauge invariant (euclidean) correlators to 
perturbative string amplitudes - . 

Based on the dictionary between states: .  ( conformal dimension).

Both sides have autonomous definitions: as a fixed point for QFT on LHS and in terms of a 
perturbative sigma model 2d CFT for the RHS.  Mathematically well posed question.  

Can we make the equality manifest? Can we `tautologise’ the correspondence?
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PROOF OF CONCEPT
Recent work on a tensionless limit of the  correspondence makes much of this discussion 
very concrete and explicit - testing ground for a derivation.

 CLAIM: String Theory on  and  unit of NS-NS flux   free Symmetric 
Orbifold CFT as ;   . [Eberhardt, Gaberdiel, R.G. - ’18-’19].            

  Worldsheet correlators on the RHS  i.e. localise to points on  corresponding to 

specific branched covers  with branching  at insertions  :  .   

 Follows from a twistorial incidence relation . [Dei, Gaberdiel, R.G., Knighton ‘20].  

AdS3/CFT2
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BACK AND FORTH

      

An apparent asymmetry in this equality. Easier to go from RHS to LHS - Strings to Fields.

To go from Fields to Strings (LHS to RHS), need to reconstruct a worldsheet integrand - not unique. 

Nevertheless can have a canonical or natural form for the correlator on the RHS. 

“From Free Fields to AdS” program to recast QFT correlators into stringy correlators. [R.G. - ’03-’05].

BASIC IDEA: Sum over distinct worldline topologies in Feynman diagrams for a large N theory = Sum 
over distinct worldsheets (moduli space) after gluing up double lines.  
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FROM WORLDLINES TO WORLDSHEETS
 

A refinement of ’t Hooft’s idea of associating a genus to double line Feynman graphs [R.G. ’04]. 

SLOGAN: EACH FEYNMAN GRAPH
 A CLOSED WORLDSHEET. ↔

Implementation of 
open-closed string duality.

Exploits the Strebel parametrisation of  [R.G.’05].ℳg,n



BACKGROUND



ORBIFOLD CORRELATORS AND COVERINGS

Implement the Fields to Strings program in our test case. .

Consider   - ground states of -cycle twisted sector. 

CFT2 = (T4)K /SK; (K → ∞)

⟨σ(w1)(x1)σ(w2)(x2)…σ(wn)(xn)⟩S2
w

Insight of Lunin-Mathur[’00] : can compute these 
by going to a covering space. [cf. replica trick]

Vacuum path integral of single copy of  CFT but 
branching behaviour at insertions of operators. 

Locally,  with branching  at insertions  :  
.

T4

x = Γ(z) wi zi
x ∼ xi + aΓ

i (z − zi)wi



CALCULATING WITH COVERINGS
Original correlator                                          given by a sum over contributions from all the allowed 
covering maps  with specified branching behaviour . 

Covering map specified by the data  and three . Remaining  of  determined.

[Equivalently, specifying ,  determines  of  - discrete set of points on .].

Coordinate dependence comes from pullback  - induced metric on covering space - and Liouville 
action of this conformal factor.  

Weight  .  Here . 

With appropriate regularisation and normalisation, gives the ground state correlators.  

x = Γ(z) x ∼ xi + aΓ
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FEYNMAN COVERINGS

Bifundamental like double line graph - pullback       
of Jordan curve on spacetime . 

 edges coming out of vertices . 

N preimages of  (poles of ) in the       
coloured loops.  N=degree of map. 

Graph triangulates the covering space                     
(= worldsheet). 

S2

2wi zi = Γ−1(xi)

x = ∞ Γ(z)

[Pakman-Rastelli-Razamat-’09]

Can associate free field like Feynman diagram with each covering map contribution. 



COMPUTING COVERINGS

Covering maps are hard to explicitly write down.  Even for a four point function on sphere. 

Stick to genus zero covering space, but -branch points and degree  maps ( ). 

          

Requiring no simple pole at  .
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TECHNICALITIES



A GROSS-MENDE LIMIT
Study  in a special limit where dimensions/energies are large. 

Recall correlator gets contributions from a finite number of covering maps  where 

 = degree of the map (Riemann-Hurwitz). 

Thus Lunin-Mathur covering maps at a finite number of points on moduli space .

How do we see the full stringy moduli space  if we start with ?

Take  fixed.  Gross-Mende like limit . 
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[Gaberdiel-R.G.-Knighton-Maity-’20]



COVERING MAPS & A MATRIX MODEL

Find the covering maps in this limit.  Recall 

Scattering equations become .

Saddle point of a large N Penner-like matrix model with potential   ;    

Solve for the resolvent    where . 
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[cf. Dijkgraaf-Vafa-’09]



LOOP EQUATIONS

Resolvent obeys the loop equation (in terms of ) [Wadia -’80]

                                    

Defines the spectral curve of the matrix model (with  ).

  The spectral curve captures the original covering map . By definition:
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At large N, the spectral curve  obeys .  

                        .

Has  double poles at .  And  zeroes  - of the polynomial . 

Take as unknowns,  parameters in  and  cross ratios .  

Fixed by  periods:   . Parametrises the different covering map   

solutions.   to leading order.  Will see the interpretation of these parameters soon. 
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…AND A BIT BEYOND

Going back to the  corrected loop equation, we have     

                                

Note that the left hand side transforms as a quadratic differential.

It’s behaviour near the double poles are .  (Residue  to leading order) 
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MEANING



 DIAGRAMMATIC INTERPRETATION

The spectral curve  - determines ‘eigenvalue density’ of poles  in coloured loops of 
Feynman diagrams - coalesces into cuts, transverse to the edges of the graph.                       

y0(z) λa

;                                                   

 branch cuts between the zeroes .                     

The periods count number of wick contractions .                                    
The constraint  follows from residues at the poles .

 independent  which parametrise different Feynman diagrams 
and therefore inequivalent coverings .   
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THE SKELETON GRAPH & IT’S DUAL 

Global picture therefore of a cut system dual to the edges of the (skeleton) Feynman diagram. 
Dual graph has  edges,  faces (each with a pole ) and  vertices .(3n − 6) n zi (2n − 4) {ak}

Geometric significance of this graph follows from a 
remarkable property of the spectral curve.

 is a Strebel differential.

Unique meromorphic quadratic differential on  
with double poles at  (with real residues) and real 

Strebel lengths (periods) i.e. . 

−y2
0(z)dz2 ≡ ϕS(z)dz2

Σ0,n
zi

∫
am

ak

ϕS(z)dz = lkm ∈ ℝ+



THE STREBEL GRAPH
The Strebel differential foliates the Riemann 
surface into closed `horizontal trajectories’: 

. 

Disk domains (faces) each containing one of 
the  double poles.   

Separated by a critical graph connecting the 
zeroes. 

Cuts that form the graph dual to the 
(skeleton) graph for the Feynman diagram. 

ϕS(z(t))( dz(t)
dt )

2
> 0

nz1 z2

z3

a1

a2

a3

a4

Figure 2: The horizontal trajectories of a Strebel di↵erential. The (double) poles of the Strebel dif-
ferential are denoted by black dots, while the zeros are represented by black crosses. The coloured
lines describe the critical horizontal trajectories that make up the critical Strebel graph, see Sec-
tion ?? for more details.
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IMPLEMENTING OPEN-CLOSED DUALITY

Strebel differentials give a one to one parametrisation of  (for fixed residues ) 
through the  real lengths . 

ℳ0,n αi
(2n − 6) lkm

Associate a closed string surface to the Strebel graph.

An implementation of gluing: for each Feynman graph, a 
dual Strebel graph which specifies how the ribbon graphs 
close up to the dual string worldsheet.

Precise realisation of the prescription for open-closed 
duality. [R.G. ’04-’05].

In the present case, at large ,   - similar to Razamat-’08.  Takes continuous values.  N lkm ∝ nkm/N



OPEN-CLOSED TRIPTYCH
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ANSWERS



THREE AVATARS

Sum over all the inequivalent covering maps (i.e. Feynman diagrams) goes over to an integral 

over moduli space :         .

What about the integrand? Lunin-Mathur  with the Liouville action  

.    Recall . 

To leading order, a Schwarzian action .  

Compare with  case, for softly broken conformal symmetry [Maldacena-Stanford-Yang -’16]. 

ℳ0,n ∑
{nij}

⟶ ∫
n−3

∏
l=1

[dνldμl] = ∫ℳ0,n

|ω(n−3)(zi) |2

∝ e−𝒮L[Φ]

𝒮L[Φ] =
c

48π ∫ d2z[2∂Φ∂̄Φ + RΦ] ∂Φ ∼ Ny0(z) ∼ N −ϕS(z) ∼ S[Γ]

𝒮L[Φ] ∼ ∫ d2z S[Γ(z)]

AdS2



FROM FIELDS TO STRINGS
The weight on moduli space can also be viewed in more worldsheet terms - the Strebel 
differential  defines an almost flat worldsheet metric .

The Liouville action  - Nambu-Goto action with induced Strebel metric.

Alternatively,  (where  parametrises boundary ). 

Similar to the action of the pre-holographic “rigid string”. [Polyakov, Kleinert-’86]

All these forms match with the on-shell  sigma model action of the correlator in the 
tensionless limit - with  being the radial direction. [Eberhardt-Gaberdiel-R. G. -’19].  

ϕS(z)dz2 ds2 = |ϕS(z) |dzdz̄

𝒮L[Φ] ∼ ∫ d2z det(gS)

𝒮L[Φ] ∼ ∫ d2z
1

∂X∂̄X̄
∂2X(z) ∂̄2X̄(z̄) X(z) ≡ Γ(z) S2

AdS3
Φ(z, z̄)



OUTLOOK

Exhibited a test case where the general program of reassembling large N QFTs into string 
theories can be explicitly carried out. 

Could also close the circle from strings to fields due to a tractable worldsheet theory. 

Holds out the hope that we can use this program to generalise to large N QFTs in general. 

General lessons from the worldsheet theory - underlying topological string,…

General lessons for field theories - underlying geometric picture of Feynman diagrams…. 

Laundry list of problems [Gaberdiel, R.G., Knighton-Maity,’20].

[Gaberdiel-R.G.]

[Bharathkumar-Bhat-R.G.-Maity] 
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