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Phase transitions and CFTs

Quantum field theory post-1970 has close ties to Landau paradigm.
Rough idea: continuous phase transition between symmetry-preserving
and -breaking phases = fixed point of effective action for order parameter.

Such an order parameter can be a scalar (Z2 magnets = Ising), a vector,
or even a matrix (liquid 3He) — it transforms as some irrep of a global
symmetry group G .

Playbook to studying phase transition:

1. determine global symm. group G + write down order parameter(s)

2. write down all relevant G - and Lorentz-singlets

3. study RG diagram, pick out the fixed points, determine critical
exponents.

Step 3 is delicate — often requires Monte Carlo or similar approaches.



Bootstrap?

This point of view is partially outdated. A continuous phase transition
has conformal symmetry — and we should use this SO(d + 1, 1)
judiciously.
Reflection positivity (when applicable) is also extremely constraining.

Consistent with universality, there are only finitely many fixed points with
given dimension d , symmetry G and say central charge 6 cmax.
As matter of principle, can study these “exactly”. Success for 3d Ising
and O(N) (+ many other) universality classes.

Becomes more and more tedious if G is “small” and/or there are many
fields. But long-term vision is clear: should explore the atlas of conformal
field theories.



Epsilon expansion

We want a large class of non-supersymmetric toy models. Most RG flows
are long: they change scaling dimensions and central charges by O(1)
quantities — can’t be studied analytically.

To get a short RG flow, need a small parameter. Wilson’s idea is to work
in d − ε dimensions, where there are couplings g i of mass dimension ε,
and beta functions of the form

βi (g j) = −εg i + C i
jk g

jgk + . . .

for some C i
jk .

There can be fixed points βi (g j
∗) = 0 due to cancellations:

g i
∗ = #ε+ #ε2 + #ε3 + . . .

so ε is good small parameter for perturbation theory. Need to set ε→ 1
to get real physics.



Multiscalar fixed points

Simplest setup that can give 3d CFTs: d = 4− ε + quartic interactions.
Most general theory with N scalars:

L = (∂µφ
i )2 + µεV (φi ), V (φi ) = λijkl φ

iφjφkφl .

Impose Z2 to rule out cubic terms. One-loop β functions

β(λ)ijkl = −λijkl + λijmnλklmn + λikmnλjlmn + λilmnλjkmn

setting ε = 1.

Scheme dependence feeds into higher loops. Can all be ignored today.
(Higher loops only make sense after fixing one-loop.)

Only focus: examine solutions to β(λ) = 0.



Multiscalar CFTs (2)

Well-explored since birth of RG [Wilson 1972] + many, many others.

On the menu today:

I Can we classify all solutions for a given N?

I Can we put rigorous bounds on theory space, à la bootstrap?

I Can we prove theorems about observables?

Theories with N scalars + quartic interaction are not the end of the
story. Much can be recycled in other contexts (φn interactions, other
matter content). Not covered today.

Philosophy goes back to fundamental paper [Brézin–Le Guillou–Zinn-Justin

1973] for isotropic systems, follow-up work by Michel and many others.
Recent revival of this strategy by [Osborn-Stergiou 2017], [Rychkov-Stergiou

2018], [Codello et al. 2019, 2020].



Important solutions

Trivial theory V (φ) = 0. Ising = Wilson-Fisher theory

V (φ) =
1

3
φ4

or generalization to O(N), V (φi ) ∝ (φiφi )2. Other known solutions:

I cubic: O(N) deformed by
∑

i φ
4
i w/ discrete symmetry group

I biconical-type solutions with symmetry O(m)× O(m′).

I . . .

No solutions known with G = Z2 beyond Ising. Exploration so far based
on group theory (model building with large G ).



Discussion of (an)isotropy

From Landau point of view, need to impose additional group-theoretical
inputs = “isotropy”:

I φi irrep of G

I unique quadratic invariant δij

Useful to make connection with experiments (reduce # of relevant
operators), but not for writing CFT atlas.

Classification of isotropic CFTs undertaken in [Wallace-Zia 1975] for
N = 2, 3, [Brézin-Michel-Tolédano-Tolédano 1985] for N = 4.



State of the art

Beyond model building, classification?
This is hard: # of couplings ∼ 1

24N
4.

I N = 1: textbook.

I N = 2: solved in by [Osborn-Stergiou 2017]

I N = 3: 15 equations, too much for analytics;
numerical hints that there is nothing more (conjecture).

New as of 2020: numerics [Codello et al., Osborn-Stergiou].

Can put an upper bound on number of CFTs using algebraic geometry:

number of fixed points < exp(0.0458N4)

Seems to overcount badly (but how to prove this?).



Invariants

Given a potential V (φi ), can perform O(N) field redefinition

φi 7→ R i
j φ

j

or equivalently, change couplings. This is not a symmetry, just
redundancy in description.

Take-away: individual couplings like λ1111 don’t have physical meaning.
Invariants like

λiijj , ‖λ‖2 = λ2
ijkl , eigenvalues of Λij := λijkk , . . .

do.



Known results

Most basic invariant: norm

‖λ‖2 = λ2
ijkl > 0.

Rychkov-Stergiou recently showed that

β(λ) = 0 ⇒ ‖λ‖2 6


1

36 (3 + 4
√

2) ≈ 0.240468 N = 2
1

12 (1 + 2
√

3) ≈ 0.372008 N = 3
1
8N N > 4

.

Interpretation: fixed points can’t live in the whole space of dimension
∼ N4, they live inside a sphere of radius ∼

√
N.

Proof: bound individual elements of λijkl using β = 0.



Other invariants

There is one linear invariant:

a0 := λiijj .

In addition to ‖λ‖2, one extra quadratic invariant:

a2 =
6

N + 4

[
λ2
ijkk −

1

N
a2

0

]
> 0

defined such that a2 = 0 for isotropic theories.



Explorations

Can write simple Python code and hunt for fixed points for given N.
Can use this to draw points in theory space.
Some heuristics:

I all fixed points have a0 > 0, even though this invariant is not
sign-definite

I there’s no theory other than Gaussian with ‖λ‖ < 0.33, but 0.33
does occur.

Let’s prove this.



Lower bound on ‖λ‖

We’ll argue that any fixed point must satisfy:

λijkl = 0 or ‖λ‖ > 1

3
.

Or: can’t have arbitrarily weak CFTs.

Proof: fixed point obeys

λijkl = λijmnλklmn + 2 terms.

Now bound first term on RHS using Cauchy-Schwartz:∑
mn

(λijmnλklmn)2 6
∑
mn

λ2
ijmn

∑
pq

λ2
klpq ⇒ ‖RHS‖ 6 3‖λ‖2.

But then
‖λ‖ 6 3‖λ‖2 ⇒ 3‖λ‖(‖λ‖ − 1/3) > 0.



Lower bound (2)

C-S argument gives info about limiting cases.
Here: learn that the bound is saturated if there exist matrices R,S such
that

λijkl = RijSkl .

By permutation symmetry of λijkl can argue that R = S and

(S2)ij = tr(S)Sij .

But then every eigenvalue ν of S must obey

ν = 0 or ν = tr(S).

Only possible if 6 1 non-zero eigenvalue. So ∃ ui s.t. Sij ∝ uiuj which
implies

bound saturated ⇔ ‖λ‖ = 1/3 ⇔ V (φ) =
1

3
(uiφ

i )4.

Conclusion: Ising model is the most weakly-coupled CFT, for any N!



More bounds

To proceed: notice that any fixed point obeys

λiijj = λiimnλjjmn + 2 terms

and decompose this into invariants. Messy but doable:

1

2N
a0(N − a0) = ‖λ‖2 +

N + 4

12
a2.

Constraining relation between the different invariants (only valid at fixed
points).
Finally, can show that

‖λ‖2 − a2 −
3

N(N + 2)
(a0)2 > 0.

This comes from decomposing λijkl into 3 irreps→ 3 positivity conditions.



Combined results

Bringing together the different bounds we’ve collected, get tight allowed
regions (here N = 4):



Comments on spectra

Composite operators Oa have an anomalous dimension at one loop:

∆[Oa] = ∆classical[Oa] + γa ε+ O(ε2).

For simple theories, a finite number of them determine the critical
exponents ν, γ, . . ..

Operators mix under RG. Determining γa means diagonalizing a mixing
matrix. There are some selection rules, especially at order ε.
Focus on operators of form

[Oa] = Ta|i1···ir φ
i1 · · ·φir

which have large degeneracy and only mix amongst themselves.
Coefficient tensors must obey equation of the form

λijklTa|kl ∝ γaTa|ij

likewise for higher r .



Anomalous dimensions (2)

Since there is a huge degeneracy, what is the strongest statement we can
make? First, get bound: for operators with r copies of φ, we find

[Oa] ∼ φr : |γa| 6
r(r − 1)

2
‖λ‖

saturated by Ising model — similar proof as before.

More interesting, can say something about averages i.e. sum rules

〈γn〉r =
1

(# of operators)

∑
a

(γa)n.

This tells you something about the statistics: what is the average
anomalous dimension, what is the standard deviation?
Obey convexity condition.



Anomalous dimensions (3)

These averages are closely related to the invariants we discussed before.
Can easily show that the sum 〈γ〉r is maximal at the O(N) fixed point.
This is an invariant way to characterize the O(N) fixed point!

For the sum of squares 〈γ2〉r , the analysis is more involved. Can prove

that as long as N 6 4 (r − 9/8)2, we have

〈γ2〉λr 6 〈γ2〉O(N)
r <

r(r − 1)(r2 − r + 1)

(N + 5)2
.

Bootstrap philosophy: completely universal bounds that hold for all
CFTs, only making use of unitarity.



U(1) gauge theory

Can instead look at N complex scalars, imposing overall U(1) + reality:

L = |∂µφi |2 + gijklφ
iφj φ̄k φ̄l .

(Sufficient for unitarity.) Note: charge conjugation not used as an input.
Can be embedded in action with 2N real fields. No new interesting
bounds, except Ising is replaced by O(2) = XY model and O(N) by
U(N).

Now gauge the U(1) that rotates φi 7→ exp(iα)φi = bosonic QED:

L′ = 1
4F

2
µν + |Dµφi |2 + gijklφ

iφj φ̄k φ̄l .

Beta function for coupling e reads

β(e) = −ε
2
e +

N

48π2
e3 + . . .

so at any fixed point e2
∗ = 0 (previous situation) or e2

∗ ∼ ε/N > 0.



Known cases

Well-known solution: PSU(N) = SU(N)/ZN global symmetry, having an
interaction

V (φ) ∝ (
∑
i

|φi |2)2

which famously exists only for N > 183.
Similar families of theories that exist only for N > 198 [Benvenuti et al.

2019].



Results

Gauge coupling e2 interacts with the scalars through Dµ, and this feeds
into the beta functions for the gijkl . The new terms are of order 1/N and
1/N2. Imhomogeneous equations.
To proceed, decompose gijkl into irreps of PSU(N) instead of O(N), but
same logic applies.

No solutions at all for N < N∗ := 90 + 24
√

15 ≈ 182.9516.



Discussion

I Should take the task of describing the CFT landscape seriously,
and multiscalar theories are a logical place to start. Perhaps using
some fresh ideas (machine learning?).

I Using simple group theory, can already show that fixed points live in
a small sliver of theory space. Should be possible to do better.

I Machinery applies to many different frameworks (Yukawas).

I Many conjectures to prove (e.g. absence of theories with trivial
symmetries). Almost nothing known about gauged CFTs.

I Possible to prove theorems about other elements of spectrum (e.g.
spinning operators φi∂`φj), OPE coefficients? Primaries versus
descendants.


