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A brief history




e Consider 2-2 scattering of identical massive scalars.

e Tn perturbative QFT we use Feynman diagrams. These
manifest crossing symmetry.

e A non-perturbative representation of the amplitude
follows from fixed-t dispersion relation. This loses
crossing symmetry, which needs to be imposed as a
constraint.



e Where are the Feynman diagrams then from the
dispersion relation point of view?

e There is an analogous question one can ask in conformal
field theory—this was our motivation to look into this
question: Polyakov in 1974 proposed a crossing symmetric
bootstrap. This looked like......
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Gopakumar, Kaviraj, Sen, AS '16; Gopakumar, AS ‘18, ........



e Based on 2012.04877 with Ahmadullah Zahed and
2101.09017 with Rajesh Gopakumar and Ahmadullah
Zahed, 2103.12108 with Parthiv Haldar and Ahmadullah
Zahed and work in progress with Prashanth Raman.
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Starting with an analyticity domain in the two Mandelstam variables which is contained in A r'ela'l‘ively
the domain obtained by Martin, we derive a parametric dispersion representation for scat-
tering amplitudes in the equal-mass case. For pion-pion scattering this representation is a unknown paper‘ fr‘om
rigorous consequence of the axioms of local field theory; it displays in a symmetric and
explicit way the contributions of all three channels, and it has only “physical” absorptive 1972'

parts. This representation is useful for deriving sum rules involving only absorptive parts
and relating all three channels. Some of these sum rules are given in this paper, the most
important of which form a set of independent physical relations that lead to necessary and
sufficient conditions ensuring full crossing symmetry.

RIGOROUS PARAMETRIC DISPERSION REPRESENTATION... 2965
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Note added in proof. One should note that Eq. (4.13) is tremendously simplified in the fully symmetric
case, m°7°— 7°7°. In that case one obtains

-~ 1 [ ds' ) o+ —) - = o The most useful/
Pos L =aprs [ L AT 5 L) HGSS, T, :
8/3 encouraging formula

where H(s';s, £, ) =[s(s" = 8) "' +1(s' = 1) +u(s’ ~w) 7], and {,(s";5, ¢, w) =4,(s"; @) with @=5Lu(s{ + u+suy’ was in a NOTE
and {,(s’, a) given in Eq. (5.20). This representation holds for ary point (s, f) for which 7=1,(s"; s, t,u) + +
lies in the Martin-Lehmann ellipses F(s’) for A(s’, 1) given in Eq. (A2). The similarity of this representa- ADDED!

tion to the Cini-Fubini approximation® is striking. This representation follows most directly from Eq.
(5.2) by transforming from the (z, a) variables to the s, {, # variables.,
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Crossing symmetric dispersion relation

I [T ds; R
VL o(S1,8) =ag+—| —A (S{;s( ) (s{,a)) X H (s{;sl,sz, S

U ) 2u Si -

’%

H (51551, 89, 83) = : I

(8551 32:3) [m-so (51 =52 <si—Ss>]
y o 43 1/2

s§”<si»a>=‘31[1_(;i—a> ] |

515233 ay = M(s, = 0,5, = 0)
S139 —+ 5153 —+ 37373

SI+S2+S3=O //t=4m2 ad =

4 4 4

NB:S1=s—§m ,§ =1 ——m ,s3=u——m2



An important question

Expand*

C(1=s)T(1=5)T(s;+s+1)

_ M (1, Sy) =
$152(81 + 8) A (s, 5,) F(S1+1)p(_sl_sz+1)r(s2+1)

In terms of poles in
51,932,593 = — 81 — 5

*Removing a kinematic pre-factor of (s;s, + 5,55 + 5253)2
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e A very naive 1st try would be to just sum over the residue
X pole in each channel. This is doomed to fail.

e On the other hand if you just sum over s-u channel poles,
this works.

 The nontrivial question is (x,y are crossing symmetric
combinations):

7 | |
%(Sla S29 SB) — Z]Ck(xa y)
k

+ +
51 =8 S — 38 83 — 5

+ C,






Expand

—518(81 + $) A (s, 5,) =

Answer

C(1=s)T(1=5)T(s;+s+1)

In terms of poles in

53

F(Sl+I)F(—Sl—sz+1)r(s2+1)

(1)

1

o0
—S1S2(S1 + Sz)%(sl, Sz)(CFOSSlng) — 1 + Z
k=0 L

1 1
Kk +1)! (k—s1+1 Ck—s+1

( (kg 1 ke ))F(%(W

X

4a

—a+k+1

3
Ck—s;+ 1 k+1>

S158) &

= 7917 %

Pk [ 1+3>> _

r(% (k(\/_aj‘;m 1—1) +\/_a+k+1 1+1>)r<%<—\/_a+k+1 +1—k<\/

o =

519253

S139 —+ SlS3 —+ 52S3

13

da

—a+k+1

)+1))

N
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Numerical checks

~$152(S1+82)Mai($1,52), S2=75
" 20 &
! | 1
e - %
4 1.5_‘ QQ
;/ \
P $ ' e %
¢ ' 2
Tr Tr 0.5_‘ “‘ “
2 T4 B
-5 0 3} :
—»- Crossing 2-channel - Exact

B Crossing m 2-channel 7 Overlap 10% & Contour a=1

Similar expansion exists for the 2d Ising Mellin Amplitude. Also similar
expansion exists for the open string amplitude with only s,t symmetry (w P.
Raman).
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S t Exact kmax=100 K rax=400

i & 1.32322 1.32361 1.32325

o —3 —0.000619309 —0.00061931 —0.000619309
T4 2| -8 — 222 10.200577 — 0.0884721i | 0.200577 — 0.088472i | 0.200577 — 0.0884721:
343l 1yt | —0.242057 + 2.28081% | —0.247887 + 2.281944 | —0.242315 + 2.28022i

0.769274 + 0.6389197

0.769435 + 0.639057

0.769279 + 0.638931%

 Good match for complex values
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Notice something nontrivial. If we consider just a fixed k.
Expand around a=0.
You will get negative powers of x.

But LHS has no such powers. This means that once we sum
over Kk, these negative powers will cancel. Keep this in
mind.

Lesson: To have a crossing symmetric expansion, it seems
we have to introduce “spurious”, "non-local” singularities
to the basis elements. [[nothing to do with Polyakov double poles]]
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A brief derivation of

crossing symmetric
dispersion relation

e Auberson, Khuri 1972; AS, Zahed '20.



The key idea

e If we have a completely crossing symmetric amplitude,
then if there are no massless poles, we can expect

(S|, Sy, $3) = 2 Wp qxp y4 W, “Wilson” coefficients
P.q

e The idea is to work with a different set of variables.
Consider the cubic equation

519753

( =
S18y + S153 + 5H53

|18



The key steps

e We can parametrize the solution using a new variable 7

(2 — Zk)3
27— 1

S, =a—da

e Here z; are the cube roots of unity. Satisfying
Z1+ﬂQf+23::O

19
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Case-|

1.5

-1.5

|
1.5

L 515953 o 58(s) +8))
S1Sy + §153 + S283 5185 + 57+ 53
Low energy

‘ High energy

S = a,|$],|s3] > o0 when z — z, etc



The key steps

e Imposing s; + 5, + 53 = 0 the equation

515233

o =
3137 -+ S1S3 -+ S2S3

e Becomes a quadratic equation giving s, in terms of ;.
Call these Szi(Sl, a)

1/2
() oS | (1T 3a
S8, a) = 1
2 (1 ) 2 |: +<S1—CZ) :|
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The key idea

e Tdea now is to write a dispersion relation in z for fixed a.

e Conveniently one can show

27“323 Make a mental note
—V = 515,53 = of the forms of these. These
(73 — 1)? are what are called Koebe functions
9 3 in the context of univalent functions.
27a°z

—X = 5,5, + 5,53 + 5153 =
152 T 583 T 5153 22— 1)

e So that an expansion in powers of X,y is an expansion in powers

of a,ZB.
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The key idea

o If we assume 4 (sy,s,) = o(s7) for |s;| = oo for fixed s, and
similarly for the other channels, this translates to

o M(a,z) =o(l/(z— Zk)z) as 7 — z; with fixed a.

» We write dispersion integrals for (22 = DAl (a, 7).
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The key idea

1 / ZB — 1 /
— @ dz EY %(Z ,Cl) — ’%(Sl — O,S2 = O)
Jc, < (Z — Z)

& 3 3
l - 1 5 — 1 M(s, = O,S = ()
Y d7’ M7, a) = M(z,a) (5, 2 =0)

c PE-2) z3 z3

IS
I
a,

....'.1-5l_ll““
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e Subtracting and converting to s, variable leads to

[ [T dsq +)
VL o(S1,8) =ag+—| —A (S{;S (s{,a)) X H (s{;sl,sz, S

U ) 2u Si 2
’%

H (51551, 89, 83) = : I

(8551 32:3) [m-so (51 =52 <si—Ss>]
y o 43 1/2

s§“<si»a>=‘31[1_(;i—a> ] |

515233 ay = M(s, = 0,5, = 0)
S139 —+ 5153 —+ 37373

S1+S2+S3=O ad =

2012.04877 with A. Zahed
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e An advantage of this formalism is that RHS is now
manifestly crossing symmetric.

e This means we should be able to write down an immediate
formula for the "Wilson" coefficients.

A (81, 8,) = Z (21/” + 2(1) af(sl)C;“) ( cf(sl,a)> ,
£=0

2
=i (T5)- 65

The partial wave expansion is convergent inside the Lehmann-Martin ellipse which translates to —7.05u < a < u

26



Locality constraints

T ds) « “Wilson

7/, n—mum — [2 _S E , (2f + 2(1) a/(sl)gg,(ff,zfl(sl) ; coefficients”
|
3 =0

) fome
95’%)11(&) = Z ] (50) (450) (3] = m = 2n)(=n),,

S asprm = D=

b

e Our formalism is such that m > 0. However, n < m is
not ruled out.

e This would lead to negative powers of x. We want to
rule this out by demanding "locality.”

e These are new constraints. n < m,n > 1. Only spins
greater than 2n contribute.

) (&) = 0'CY <\/E >/ 9, A1, 52, 53) = %quxpy !

27



Structure of "Dyson” and "Feynman” blocks

1 * do .
G559 = MO0+~ 0 +20) | H(@:5)a, (o)L E ) Dyson block expansion
= 2Tu o —“Regge bounded”
! " do 0/51.50)  Ouls553)  Opls3. ) ' Feynman
A(sy,8,) = A(0,0) + — Z (22 + 2a) 7 4/(0) ) _1 e _2 e _3 — + poly, block expansion
Ty '3 o(o — 7)5 974 0=% 0= 1l —not “Regge bounded”

+
>< eg. poly, =cx+ cyy

2u
* Qf(Sl’ Sz) — Sl(Sl — ?)KC;G)(COS 9)

28



"Dyson” block expansion

Expansion of the massless pole subtracted dilation amplitude in terms of crossing symmetric
partial waves (locality constraints implicit).

Fractional
deviation
Sl — 03
0.0012 -
0.0010 - _
i fmax o 69 k
0.0008 |
- Sl — 01
0.0006
0.0004 | -
I 0.4}
0.0002 .
\ 0.2

S2

~15  -1.0 -0.5 0.0 0.5 1.0 15 \ ;
0.1+~

-04 -0.2
0.1

021
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"Feynman" block expansion

Expansion of the massless pole subtracted dilation amplitude in terms of crossing symmetric
partial waves (locality constraints imposed—operationally throw away negative powers of x,
partialwave*kernel wise).

Fractional
deviation
0.0008+
0.0006 ! Z =6, k

30



Importance of contact terms

S, S5 Exact Feynman Without contact terms Dyson
% i 2.45013 2.45012 2.44898 2.45012
L 1+ — 0.886092 +16.2404 1 8.886074 + 16.2397 1 8.834015 + 10.2278 1 8.886395 +106.24 1

8.327184 + 0.214067 1

8.332949 +0.217049 1

8.796025 + 8.6663346 1

0.32976 + ©0.219688 1

8.205184 +©.179331 1

8.211681 + ©.187269 1

©.775999 + 8.8556316 1

8.201598 + 6.183881 1

8.312277 +0.112769 1

8.315664 + 8.116603 1

0.802566 + 8.6667358 1

0.313287 +©0.116089 1
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Fractional
deviation

0.0012}

Feynman

0.0010}

0.0008 | AR

'.', | “-, ;: [ Singularity removed block/
\ esis s Feynman block seems to do
A S | alal better.

X 0.0004 | il

0.0002) /AT T\
ey O
-0.5
1 S1=0.1 n S1=0.3 ] S1=0.7

32



Proposed nomenclature

QFT CFT
Partial wave with singularity —Dyson block Conformal partial wave with singularity — Polyakov block
Partial wave with singularities removed —Feynman block CPW with singularities removed —Witten block
QFT CFT

33




Applications in QFTs

e 2012.04877 with A. Zahed



* Lg])

Inequalities

d Z (2f + Za) a (s)

‘%1(/5721(‘?1) ’

(]) (50) (450)j(3j —m —2n)(—n),

o0 0
V= [
T 1 r=0
() _
Bnm(S1) = Z -
j=0 :

» We can derive inequalities for 7/,
« These arise from properties of %,(/l”ﬂ,,)n

eWe consider n >m,m>0,n> 1

(&) = 0'C (V/E) 108,

i ylim =) (=n)jy

35

b

Py 4
pg* Y

(S, $H, S3) = Z /4
P.q




Examples of inequalities

n—m.,m

* ds
W) — J bl | Z 2f + 205) af(sl)%("ﬂ ) (51),

= +50 Sl =0
N R ' lation f
0 ecursion relation for
D 2w, 8) W), > 0 , |
—0 ¥ s known 2012.04877 with A. Zahed
S A s R
Z T >0, n>m A nontrivial limit
0

Testing ground: Dilaton scattering in type Il string theory, Green & Wen ‘19

B [(=s)I(=s,)I'(s; + 55) B l B , 3 ; >
M(Sy, $y) = 5520+ SOCGO I s — 50 > +20(3) —20(3)7y + 20(5)x + 3 (2C(3)" + €9y —4C(3)E(S)xy +

* here 1 = O, we can subtract the massless pole by choosing Og > 0
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Low energy constraints

e Say we were given the first few terms in the expansion.

e Can we say what maximum oy we can use? This will be the
location of the 1st massive string state.

6(()max)
1.08;
1.06}
| Converges very rapidly to 1 !
1.04!
1.02}
1.00¢ LMA_&_A—&—A-&—A—&—A_' 2(2
10 20 30 40 50 (2n+m)

EMmM=1T g mM=2m3 Mm=3 3 m=4 @ m=5

37



Comparison with recent work

e We can reproduce the limited number of inequalities
available in the literature so far and generalise them.

e These include the "null-constraints” (which need crossing

symmetry) of Tolley et al and Caron-huot and Duong which
lead to two sided bounds in EFTs.

 These "null-constraints” or "locality constraints” appear to
give a generalised Froissart bound...... as, zahed

2011.02957: Caron-huot, Duong: 2011.02400: Tolley et al

38



Extremal solution (string theory)

¥ 2, sy W), = 0

e Extremal solution:

W("‘) —92.47295 W“’" 1.47958 W(Cl) —3.49239 W(Cl) 3.98908 (C‘) — —1.49593
1,1 — 0,2 — 2,1 — 1,2 — 0 3 .

Wéf{’ = —6.49984 Wij}” = 17.4994 W?fﬁ) = —24.9991 Wz(j’;) = 19.9993 | W, = —8.49972 | W = 1.49995

Wi = —9.5 | W) =40 [ WS = —98 | W) = 154 | WS = —161 | Wi = 112 | W% = —50 | W) = 13| WY = —1.5

o0

Z (—l)n (2m + 3n)F(m + n) M — 3y — 2x _ S1 | S9 | S3
m!n! Y (x —y—1) 1 — s '

n,m=0

39




Bieberbach conjecture and QF T

de Branges's theorem

From Wikipedia, the free encyclopedia

In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the
complex plane injectively to the complex plane. It was posed by Ludwig Bieberbach (1916) and finally proven by Louis de Branges (1985).

The statement concerns the Taylor coefficients a, of a univalent function, i.e. a one-to-one holomorphic function that maps the unit disk into the complex plane, normalized as is always possible so
that aj = 0 and a, = 1. That is, we consider a function defined on the open unit disk which is holomorphic and injective (univalent) with Taylor series of the form

f(z) =z+ Z a,z".
n>2

Such functions are called schlicht. The theorem then states that

la,| <n foralln > 2. anr:a)
3 —_— 1.0
{ =%
— n=1
Mz a) —ay— 22+ ) odl =2
., — n=3
n>2 | n 20
—_— =
Crossing symmetric dispersion variables expansion "A A — n=50
"M.&... AN
e 2103.12108 w P. Haldar and A. Zahed 0sl
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Key point: Univalence

I k(Z)(2s; — 3a)
Kernel is a Mobius transformation of o ( q [ — Cl) k(Z) — S13

the Kobe function and is hence
univalent provided no singularity
Inside unit disc. This gives ~

-8/9<a<16/9. k() = 27a>

The amplitude for UNITARY theories then is a convex sum of univalent functions.....

41



Two sided bound on amplitude

3 3
7 M(Z,a) — 7
< 2| <
(1 + 2% a (=1+2%)7
27a> s, |
n [aW o1+ W 1ol <M — oy <——5aW o+ Wl
Sin? —
2
A/gzzi);an si=|s |ei%
5__1() 1 1
4
3!
| 1-loop ¢*
2/
1

—2IIII—1IIIOIII1III2
8

— Lower bound a=-3% — a=;l

— a=% — Upper bound 49




Testing using S-matrix bootstrap

4 n

Linear Regge

0.35 - -
River boundaries —

imposing S,P,D-wave

4/ iInequalities

chi-PT

Lovelace-Shapiro | Builds on S-matrix
bootstrap rebooted by
Paulos, Penedones, van
Rees, Vieira and
adapted to pion
bootstrap by Guerrieri,
Penedones and Vieiera

Minimum total

scattering cross- /

section. Input is rho |
meson and unitarity. | D

O » » » » '] » » » » '] » » » » » »
0 1 2 3 4

e 2011.07944 w A. Bose and S. Tiwari 43 S



Two sided bound on Wilson coefficient

“Wo O %O,l O
Wio — < < —
16  W,, 8
T T -
U .0. |f‘“‘fo ".‘ A
_0 W“A‘ * . o
0.5/ ‘ .
:';A o . Consequence of de
_ o, ° Branges’ theorem
0.0 S a——
i ¢ 1 02 .‘3 4
0.5}

*Same as Tolley et al; Caron-huot, van Duong

**Stronger than any known result, dimension independent,

coincides with Caron-huot, van Duong in the infinite dimension limit
44



Froissart bound




A new look

e T will now briefly tell you how a Froissart like bound at
high energy is derived from all this.

 The key element in deriving Froissart bound is to impose
polynomial boundedness at the boundary of the Lehmann-

Martin ellipse, namely at t = 4.

e We need this and some jiggery pokery black magic of the
Type

P,(x) > cx+Vx2=1)Y, x>1

46



A new look

* Now since we have a dispersion relation (and we were
using the twice subtracted form) we should recover the
Froissart bound. The question is if the numerical
coefficient in the bound can be made stronger, namely

JU 5 \)
o < —log”~ — |
m2 S Numerical factor apparently
2 orders of magnitude

bigger than experiments:

Froissart '59, Martin '65....., Martin-Roy, ....many many papers
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A new look

e We will use the 1st locality constraint.

* Now recall that the locality constraints used an expansion
around a=0—this is in the interior of the Lehmann-Martin
ellipse, namely at t = 4/3.

e Therefore it should not come as a surprise that what we
land up finding is in fact

T 5 S
o < —log” —
m2 30

48



A new look

e T believe a better result is possible.

e To do that we need to find a better version of the
following step.

e We need this and some jiggery pokery black magic of the

Type P,(x) > cx+Vx2— 1Y, x> 1

e Adapted to the B,gg(sl) which entered our game.

49



A new look

e What we have been able to show is a bound that should be
for any s.

Omax & s —4)*3s ——4)°
Y @ + Dayls) < i— Gmar = 2 (8nar = 4)
ly = 360 9s2 . .—30s,, .+ 32

- Q]

e Borne out by numerics
300

200}

100}

5 10 15 20 25 30 35

B Lnax=36 B Lya=46 B Lnax=60 M =% log?(s/so), S0=0.015 m Pion bootstrap 0
5



Derivation of the

Polyakov bootstrap

e 2101.09017 with R. Gopakumar and A. Zahed



Key finding

Crossing Constraints t@ Polyakov, = Locality Constraintsc@ Polyakov,
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Benchmarking: Fixed-t

dispersion relation

1912.11100: Penedones, Silva, Zhiboedov; 2008.04931: Caron-huot, Mazac, Rastelli, Simmons-
duffin; 2009.13506: Carmi, Penedones, Silva, Zhiboedov;2011.02957: Caron-huot, Duong:
2011.02400: Tolley et al ........
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e Mellin conventions:

ds, ds,

G(u,v) = J

27l 27

M
U3 VR U(Sy, $5) (S, S))
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Two kinds of sum rules

e In these 2 papers™®, there are 2 kinds of sum rules I)
Which follow from just crossing symmetry. IT) Which
follow from the Polyakov conditions. Let us begin with I.

M(sp,s5) 1 ds;  M(si,$,)

$153 2mi J 51— 8 s1(=51 — 52)

* 1912.11100: Penedones, Silva, Zhiboedov; 2009.13506: Carmi, Penedones, Silva,
Zhiboedov
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Crossing sum rules

* Now put in the conformal partial wave expansion

M(sy,8,) = A(0,s,) + i O Py (T4 52) : : : :
S1,857) = ) C (T |
12 . 2 A7k AL A L% 2 T, — 85 77 Tk+S1+S2 Tk+S2

6D
 Using crossing symmetry we get

M(s),8) — M5y, 50) = ) P18, =0
P-4

1912.11100: Penedones, Silva, Zhiboedov, not well studied so far
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Crossing sum rules

* A similar story is also true for QFT. There we will replace
with partial wave expansion in terms of Gegenbauers.

e These constraints in effective field theories were termed
"null-constraints” by Caron-huot and Duong and lead to
two sided bounds in EFTs.

2011.02957: Caron-huot, Duong: 2011.02400: Tolley et al
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Polyakov conditions

e Sum rules IT follow from Polyakov conditions (no

operators with A =2A , + ¢ + 2n exactly). The kind we
will focus on are:

ds,
_%(Sl’ S2) — O

0 $,) =
p19p29p3( 2) #C 27[1 A¢ A¢ A¢
= 3 TP~ s TS| 3 TP TSI T8

2009.13506: Carmi, Penedones, Silva, Zhiboedov
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Comments on locality

e Putting in partial wave expansion in
M(sy,8)) 1 C/F dsy,  MM(sy,$,)

, assuming ho bound state
3133 27T

1 S| — 8 81(=51 — $2)
poles, we see that only positive powers of s, s, appear in

%(Sl, Sz) expcmded around 1 = O, Sy = 0.

e This is what we will loosely refer to as locality. Fixed-¢
dispersion has locality in-built. But impose crossing.

59



RECALL: Crossing sum rules fixed-t

* Now put in the conformal partial wave expansion

M(s,, 55) %(Os)+ic(k)P (7., 55) : : : :
, — ] (7 I
12 . 2 A7k AL A2 e B2 Tk—Sl Tk Tk+S1+S2 Tk+S2

G(s3)

 Using crossing symmetry we get

M5y, 57) — M5y, 5) = Y sP's9E, =0 «

P-q

These are precisely
our locality
constraints

1912.11100: Penedones, Silva, Zhiboedov
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Some details

A¢ A¢ Ad)
%(T +p1, S2) %(T +p2, 52) ﬂ(? +p3, Sz)

pipapy = 7 28, 2, 24, 24,
(Pr=P)P1+p3+S+—) (P—p)patpstsat+t—-) (Pr+ps+s+—)P2tp3+s+—)

0

) pp(52) = Z s5Qy — crossing symmetric sum rules
r=0
0

Dp, pop(52) = Z Sgwlgf?pz,p3 —fixed t sum rules, Sum rules “II”
r=0

@& — o . —trivial equivalence

Wy prps — Qpl,pzaps , E= 1,03

—equivalence on imposing

© —_ o6
0 = Q) + #W . .
0 1.2 locality constraints/sum rules “I”

p17p2’0 P1:P2>

The partial wave expansion is convergent for —7\/3 < a < 27(9/3

*qq cancels  ** ) s have nice properties. o



Contact terms and connection to previous work

e A natural question from the purview of crossing

symmetric dispersion: Can we expand in a basis where
the locality constraints are inbuilt?

e Ans: Yes. These are the "Witten" blocks where all
£ > 2 contact terms are fixed.

2) 2) .....Similar (complicated) polynomial
C(k) 235[92,() )’b(),z forms for higher spins; explicit forms
Eg = A2 we have worked out till spin 10.
4

A,k Tk T]g m+n=¢/2

m. n Gopakumar, AS ’18;
— LAY
—2) Z mn Heemskerk, Penedones,

{m,n}=0 Polchinski, Sully
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Analytic functionals (d=4)
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Spin=0

Analytic functionals (d=3)
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Final comments

Crossing symmetric dispersion relation is proving quite
handy/powerful in examining EFTs.

In cases which do not have 3 channel crossing symmetry,
we can develop similar methods (in progress with Raman).
We believe this will be handy in processes like Moller/
Bhabha scattering etc. We are trying to connect with the
EFT-hedron story.

We put Polyakov bootstrap on firm footing.

Further applications in CFTs are expected (eg. two sided
bounds on CFT correlator in position space by Paulos).
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Thank you



