The Coulomb branch of 5d supeconformal field theories on a circle

Cyril Closset

University of Birmingham \& Royal Society URF

Rencontres Théoriciennes, IHP, Paris
16 Septembre 2021
based on 2107.03509 with H. Magureanu

QFT and geometry

Motivation and context, in a nutshell:

- QFT is hard (and mathematically shaky...).
- Supersymmetry often gives rise to more geometric approaches to quantum fields.
- We can engineer SQFT in string theory (using open and/or closed strings).

Recall the basic string-theory framework from the point of view of 10d (or 11d) space-time:

We have a low-energy effective quantum field theory in d-dimensional space-time coupled to gravity, with an effective Newton constant:

$$
G_{N} \sim \frac{1}{\operatorname{vol}(\mathbf{X})}
$$

QFT and geometry

Consider X being a non-compact variety. Then gravity decouples.

Specifically, in this talk:

- we will take \mathbf{X} to be a canonical threefold singularity in the sense of [Reid, 1983].
- we place ourselves in 11-dimensional M-theory. Note the identity:

$$
11=5+6
$$

- We then obtain a quantum field theory in five dimensions.
[Seiberg, 1996; Morrison, Seiberg, 1996; Morrison, Seiberg, Intriligator 1996]

Introduction: the SW solution for SQCD

Rational elliptic surfaces

4d SQFTs of rank one, revisited

Modularity

5d SCFTs on a circle and geometric engineering

The U-plane of the $E_{n} 5 \mathrm{~d}$ SCFTs

Introduction: the SW solution for SQCD
N. Seibers

Department of Plyvics and Astrunomy
Ralgers Universily, Piscatansy, NJ 0585S-08!9, USA
nad
Inatitute fer Adrunend Stuly
Prinotlon, NJ 065 40 , USA
and
E. Wittes

Inatitute for Adnanced Stely
Princeton, NS ESS 40 USA

We staly the vacume strocture and dyon spectrum of $N=2$ superymunetric gange theory in foer dimensices, with grage group $\mathrm{SU}(2)$. The theory turns out to have renarkably rich and physical peopertion which cas nonetheless be described preciely; euat formulne can be dotsined, for instance, for electroe natl dyou mouess and the metric on the moduli spece of vacua. The duriptios implves a vervion of Olive-Montours electric-magretic duality. The "atmondy coupled" vwcuum turns ont to be a weakly eongled theory of mesopoles. The "stronely conpled" vncuum turns ont to be a wedil by monpole condensation.

Electric-Magnetic Duality,
Monopole Condensation, And Confinement In $N=2$ Supersymmetric Yang-Mills Theory

$$
\begin{aligned}
& \text { Dterestibse way wit } \\
& \text { Hith Sors } \\
& \text { O(s) tria }
\end{aligned}
$$

$4 \mathrm{~d} \mathcal{N}=2 \mathrm{SQCD}$

We are interested in 4d $\mathcal{N}=2$ supersymmetric gauge theories. For simplicity, focus on SQCD with $S U(2)$ gauge group:

- Vector multiplet for gauge group $S U(2)$:

$$
\mathcal{V}=\left(\phi, A_{\mu}, \lambda_{I}, \bar{\lambda}^{I}, D_{I J}\right)
$$

Scalar potential includes term $V=|[\bar{\phi}, \phi]|^{2} \geq 0$.

- N_{f} 'flavors': hypermultiplets in the fundamental, $\mathbf{2} \oplus \overline{\mathbf{2}}$, with masses m_{i}.
- Flavour symmetry algebra $\mathfrak{g}_{F}: \mathfrak{s o}\left(2 N_{f}\right)$ if $m_{i}=0, \forall i, \mathfrak{u}\left(N_{f}\right)$ if $m_{i}=m$, and $\mathfrak{u}(1)^{N_{f}}$ with generic masses.
- Asymptotic freedom implies $N_{f} \leq 4$. The theory with $N_{f}=4$ and $\mathfrak{g}_{F}=\mathfrak{s o}(8)$ is a 4d SCFT with an exactly marginal gauge coupling.

$4 \mathrm{~d} \mathcal{N}=2 \mathrm{SQCD}$

- Generic vacuum is on the Coulomb branch:

$$
\phi=-\frac{i}{\sqrt{2}}\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right), \quad S U(2) \rightarrow U(1)
$$

The SW solution gives the exact low-energy effective action for the IR $U(1)$:

$$
S=\int d^{4} x \operatorname{Im}(\tau(a))\left(F_{\mu \nu} F^{\mu \mu}+\partial_{\mu} a \partial^{\mu} a+\cdots\right)
$$

By supersymmetry, the CB metric is determined by an holomorphic function, the prepotential:

$$
\tau=\frac{\partial^{2} \mathcal{F}}{\partial a^{2}}
$$

The CB is parameterised by the gauge-invariant parameter:

$$
u=\left\langle\operatorname{Tr}\left(\phi^{2}\right)\right\rangle \approx-a^{2}+\cdots
$$

The CB of $4 \mathrm{~d} \mathcal{N}=2 \mathrm{SQCD}$ is 'the u-plane'.
The point at infinity, $u=\infty$, is the weak coupling point.

The u-plane of SQCD

Electric-magnetic duality of a $U(1)$ vector multiplet:

$$
\binom{a_{D}}{a} \rightarrow \mathbb{M}_{*}\binom{a_{D}}{a}, \quad \mathbb{M}_{*} \in \mathrm{SL}(2, \mathbb{Z}) \cong\left\langle S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle
$$

with $S L(2, \mathbb{Z})$ monodromies of the 'electromagnetic periods' (modulo constant shifts if $\left.m_{i} \neq 0\right)$. We have:

$$
a_{D}=\frac{\partial \mathcal{F}}{\partial a}, \quad \tau=\frac{\partial a_{D}}{\partial a}
$$

For fixed masses, the u-plane has the form:

- paths $\gamma_{v}, v=1, \cdots, k$, and $v=\infty$.
- $\gamma_{\infty}=-\left(\gamma_{1}+\cdots+\gamma_{k}\right)$
- If m_{i} generic, $k=N_{f}+2$.
- $\mathbb{M}_{\infty} \prod_{l=1}^{k} \mathbb{M}_{* l}=\mathbf{1}$.

We will think of the u-plane as a projective plane, $\mathbb{P}^{1} \cong\{u\}$ with a distinguished point $u=\infty$.

The SW solution

Postulate that τ with $\operatorname{Im}(\tau) \geq 0$ is the modular parameter of an elliptic curve, E_{u} :

- We then have:

$$
\begin{gathered}
\tau=\frac{\omega_{D}}{\omega_{a}}=\frac{\partial a_{D}}{\partial a}, \\
\omega_{D}=\frac{d a_{D}}{d u}=\int_{\gamma_{B}} \boldsymbol{\omega}, \\
\omega_{a}=\frac{d a}{d u}=\int_{\gamma_{A}} \boldsymbol{\omega} .
\end{gathered}
$$

- The SW solution is a specific elliptic fibration over the CB. The one-parameter family of curves E_{u} is usually called 'the SW curve'.
- The 'Seiberg-Witten geometry' is the total space of the SW fibration over the u-plane.
- It necessarily has singular fibers. Kodaira classification.

The SW solution

- Singularity at infinity determined at weak coupling (1-loop β-function):

$$
I_{4-N_{f}}^{*}: \quad \mathbb{M}_{\infty}=-T^{4-N_{f}}
$$

- Simple singularities in the interior: I_{n} singularity (multiplicative fiiber):

$$
I_{n}: \quad \mathbb{M}_{*}=T^{n}
$$

The actual monodromy is conjugate to T^{n}.
If a single dyon of charge (m, q) becomes massless at $u=u_{*}$:

$$
\mathbb{M}_{*}^{(m, q)}=B^{-1} T B=\left(\begin{array}{cc}
1+m q & q^{2} \\
-m^{2} & 1-m q
\end{array}\right)
$$

- Other possibilities, from the Kodaira classification of singular elliptic fibers:

$$
\begin{array}{llll}
I I: & \mathbb{M}_{*}=(S T)^{-1}, & I I^{*}: & \mathbb{M}_{*}=S T \\
I I I: & \mathbb{M}_{*}=S^{-1}, & I I I^{*}: & \mathbb{M}_{*}=S \\
I V: & \mathbb{M}_{*}=(S T)^{-2}, & I V^{*}: & \mathbb{M}_{*}=(S T)^{2}
\end{array}
$$

The u-plane of massless SQCD

For massless SQCD, we have:

I_{n} singularity: n mutually local particles become massless.

The symmetry group of $4 \mathrm{~d} \mathcal{N}=2$ SQCD

The (global) symmetry group of a theory is, by definition, the group that acts effectively on gauge-invariant states. In particular, we must quotient by gauge redundancies.

The global symmetry of massless SQCD is easily determined in the UV:

$$
G_{F}=S O\left(2 N_{f}\right) / \mathbb{Z}_{2}
$$

We also write this as:

N_{f}	0	1	2	3	4
G_{F}	-	$U(1)$	$\left(S U(2) / \mathbb{Z}_{2}\right) \times\left(S U(2) / \mathbb{Z}_{2}\right)$	$S U(4) / \mathbb{Z}_{4}$	$\operatorname{Spin}(8) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$

The pure $S U(2)$ gauge theory ($N_{f}=0$) has a one-form symmetry:
[Gaiotto, Kapustin, Seiberg, Willett, 2014]

$$
\mathcal{Z}^{[1]}=\mathbb{Z}_{2}
$$

which acts on Wilson loops in the fundamental (i.e. background quark worldlines):

$$
\mathbb{Z}_{2}: W \rightarrow-W
$$

The symmetry group of $4 \mathrm{~d} \mathcal{N}=2$ SQCD

We would like to determine the symmetry directly in the IR.
Let us start with a partial answer:
Claim: The semi-simple part of the flavor symmetry algebra $\mathfrak{g}_{F}^{\mathrm{NA}}=\operatorname{Lie}\left(G_{F}\right)^{\text {NA }}$ is given in terms of the Kodaira singularities in the interior:

$$
\mathfrak{g}_{F}^{\mathrm{NA}}=\bigoplus_{v=1}^{k} \mathfrak{g}_{v}
$$

with:

F_{v}	I_{n}	I_{m}^{*}	$I I$	$I I I$	$I V$	$I I^{*}$	$I I I^{*}$	$I V^{*}$
\mathfrak{g}_{v}	$\mathfrak{s u}(n)$	$\mathfrak{s o}(8+2 m)$	-	$\mathfrak{s u}(2)$	$\mathfrak{s u}(3)$	\mathfrak{e}_{8}	\mathfrak{e}_{7}	\mathfrak{e}_{6}

We will soon explain how to determine G_{F} itself, directly from the SW geometry.

Rational elliptic surfaces

SW curve and periods: generalities

It is convenient to bring the SW curve into the Weierstrass normal form:

$$
y^{2}=4 x^{3}-g_{2}(u, m) x-g_{3}(u, m)
$$

The singular fibers are located along the zeros of the discriminant:

$$
\Delta(u)=g_{2}(u)^{3}-27 g_{3}(u)^{2}
$$

For SQCD, this is a polynomial of order $N_{f}+2$. At generic masses, we have $N_{f}+2$ simple roots in u (giving rise to I_{1} singularities).

Example: For pure $S U(2)$, we have:

$$
g_{2}(u)=\frac{4 u^{2}}{3}-4 \Lambda^{4}, \quad g_{3}(u)=-\frac{8 u^{3}}{27}+\frac{4}{3} u \Lambda^{4}
$$

and the discriminant:

$$
\Delta=16 \Lambda^{8}\left(u^{2}-4 \Lambda^{4}\right)
$$

SW curve and periods: generalities

Kodaira's classification of singularities of elliptic fibrations:

$$
g_{2} \sim\left(u-u_{*}\right)^{\operatorname{ord}\left(g_{2}\right)}, \quad g_{3} \sim\left(u-u_{*}\right)^{\operatorname{ord}\left(g_{3}\right)}, \quad \Delta \sim\left(u-u_{*}\right)^{\operatorname{ord}(\Delta)} .
$$

fiber	τ	$\operatorname{ord}\left(g_{2}\right)$	$\operatorname{ord}\left(g_{3}\right)$	$\operatorname{ord}(\Delta)$	M_{*}	flavor
I_{k}	$i \infty$	0	0	k	T^{k}	$\mathfrak{s u}(k)$
I_{k}^{*}	$i \infty$	2	3	$k+6$	$-T^{k}$	$\mathfrak{s o}(2 k+8)$
I_{0}^{*}	τ_{0}	≥ 2	≥ 3	6	$-\mathbf{1}$	$\mathfrak{s o}(8)$
$I I$	$e^{\frac{2 \pi i}{3}}$	≥ 1	1	2	$(S T)^{-1}$	-
$I I^{*}$	$e^{\frac{2 \pi i}{3}}$	≥ 4	5	10	$(S T)$	\mathfrak{e}_{8}
$I I I$	i	1	≥ 2	3	S^{-1}	$\mathfrak{s u}(2)$
$I I I^{*}$	i	3	≥ 5	9	S	\mathfrak{e}_{7}
$I V$	$e^{\frac{2 \pi i}{3}}$	≥ 2	2	4	$(S T)^{-2}$	$\mathfrak{s u}^{2}(3)$
$I V^{*}$	$e^{\frac{2 \pi i}{3}}$	≥ 3	4	8	$(S T)^{2}$	\mathfrak{e}_{6}

SW curve and periods: generalities

We are interested in the 'physical periods':

$$
a_{D}=\int_{\gamma_{B}} \lambda_{\mathrm{SW}}, \quad a=\int_{\gamma_{A}} \lambda_{\mathrm{SW}}
$$

with the Seiberg-Witten differential such that:

$$
\frac{d \lambda_{\mathrm{SW}}}{d u}=\boldsymbol{\omega}, \quad \boldsymbol{\omega} \equiv \frac{d y}{x}
$$

Thus, we can find the physical periods from the 'geometric periods':

$$
\omega_{D}=\int_{\gamma_{B}} \boldsymbol{\omega}, \quad \quad \omega_{a}=\int_{\gamma_{A}} \boldsymbol{\omega}
$$

At any fixed m, they satisfy a standard Picard-Fuchs equation:

$$
\Delta(u) \frac{d^{2} \omega}{d u^{2}}+P(u) \frac{d \omega}{d u}+Q(u) \omega=0
$$

SW geometry and rational elliptic surface

The low-energy physics on the CB is determined by the (affine) bundle:

$$
\mathbb{C}^{2} \rightarrow(\text { SW geom }) \rightarrow \overline{\mathcal{B}} \cong\{u\}
$$

with the fibers given by the periods $\left(a_{D}, a\right)$.

Once we geometrize the periods by introducing the SW curve E_{u}, we have:

$$
E \rightarrow \mathcal{S} \rightarrow \overline{\mathcal{B}}
$$

We compactify the base by adding the point at infinity:

$$
\overline{\mathcal{B}} \cong\{u\} \cong \mathbb{P}^{1}
$$

The SW geometry \mathcal{S} is then a rational elliptic surface (RES) with a section.
Note: Any (resolved) RES $\tilde{\mathcal{S}}$ can be obtained as a blow up of the projective plane at 9 points, $d P_{9}=\mathrm{Bl}_{9}\left(\mathbb{P}^{9}\right)$. This is also called 'half-K3 surface' by string theorists. A deep fact is then that:

$$
H_{2}(\tilde{\mathcal{S}}, \mathbb{Z}) \cong\langle(O), E\rangle \oplus\left(-E_{8}\right)
$$

with E_{8} denoting the E_{8} lattice, for the 2-cycles with the intersection pairing.

SW geometry and rational elliptic surface

The singular fibers lead to ADE singularities on \mathcal{S}, in correspondence with the ADE 'flavor' type.
They admit a standard resolution, $\tilde{\mathcal{S}} \rightarrow \mathcal{S}$. (Kodaira-Neron model.)

$$
\pi^{-1}\left(U_{*, v}\right)=F_{v} \cong \sum_{i=0}^{m_{v}-1} \widehat{m}_{v, i} \Theta_{v, i}
$$

Example: The E_{n} family.

(a) $I_{2} \oplus I_{3}\left(E_{3}\right)$

(b) $I_{5}\left(E_{4}\right)$

(c) $I_{1}^{*}\left(E_{5}\right)$

(d) $I V\left(E_{6}\right)$

(e) $I I I\left(E_{7}\right)$

(f) $I I\left(E_{8}\right)$

The Mordell-Weil group of rational section

Elliptic curves are additive groups:

$$
P_{1}+P_{2}=P_{3}
$$

Given an elliptic fibration $E \rightarrow \mathcal{S} \rightarrow \mathbb{P}^{1}$, there may exist non-trivial rational sections. In Weierstrass form:

$$
P=(x(u), y(u)), \quad x(u), y(u) \in \mathbb{C}(u)
$$

They form a finitely generated abelian group, the Mordell-Weil group:

$$
\Phi=\mathrm{MW}(\mathcal{S}) \cong \mathbb{Z}^{\mathrm{rk}(\Phi)} \oplus \mathbb{Z}_{k_{1}} \oplus \cdots \oplus \mathbb{Z}_{k_{t}}
$$

The number of free generators, $\operatorname{rk}(\Phi) \geq 0$, is called the rank of the MW group.
The trivial element in Φ is the zero section, $O=(\infty, \infty)$.
Importantly, the MW group can have non-trivial torsion elements, $k_{i} P_{\text {tor }}=O$.

The classification of rational elliptic surfaces

Rational elliptic surfaces \mathcal{S} are fully classified.
They are characterised by:

- A set of 'allowed' singular fibers, $\left(F_{v}\right)$.
- The MW group Φ.

In fact, in most cases, the set of singular fibers fully determines \mathcal{S}.

A basic but powerful global constraint is:

$$
\left.\sum_{v} \operatorname{ord}(\Delta)\right|_{U_{* v}}=12
$$

where the sum includes ' $v=\infty$ '. There is thus a finite set of allowed singularities. Additional considerations show that these are the following 20 :

$$
I_{1}, \cdots, I_{9}, \quad I_{0}^{*}, \cdots, I_{4}^{*}, \quad, I I, I I I, I V, I I^{*}, I I I^{*}, I V^{*} .
$$

Total number of distinct RES: 289.

4d SQFTs of rank one, revisited

Fixing the fiber at infinity
The RES perspective, and Persson's classification, gives us a bird's-eye view of rank-one $4 \mathrm{~d} \mathcal{N}=2$ theories.

The basic idea, generalising [Caorsi, Cecotti, 2018], is that the UV $\mathcal{N}=2$ SQFT is determined by the fiber at infinity:

$$
\mathcal{T}_{F_{\infty}} \quad \longleftrightarrow \quad\left\{\mathcal{S} \mid \pi^{-1}(\infty)=F_{\infty}\right\}
$$

F_{∞}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	I_{8}	I_{9}
$D_{S^{1}} \mathcal{T}_{5 \mathrm{~d}}$	E_{8}	E_{7}	E_{6}	E_{5}	E_{4}	E_{3}	E_{2}	E_{1} or \widetilde{E}_{1}	E_{0}
$\# S$	227	140	77	51	26	16	6	$2+2$	1
F_{∞}	II	III	IV	I_{0}^{*}	I_{1}^{*}	I_{2}^{*}	I_{3}^{*}	I_{4}^{*}	
$\mathcal{T}_{4 \mathrm{~d}}$	E_{8}	E_{7}	E_{6}	D_{4}	D_{3}	D_{2}	$N_{f}=1$	$N_{f}=0$	
$\# S$	137	93	49	19	13	6	2	1	
F_{∞}		7			IV*	III*	$I I^{*}$	N	
$\mathcal{T}_{4 \mathrm{~d}}$					$A_{2}\left(H_{2}\right)$	$A_{1}\left(H_{1}\right)$	$-\left(H_{0}\right)$		
$\# \mathcal{S}$					8				

Fixing the fiber at infinity

Some comments:

- Fixing F_{∞}, the list of distinct RES with such a fiber gives the number of distinct CB configurations for $\mathcal{T}_{F_{\infty}}$, which we denote by:

$$
\mathcal{S} \cong\left(F_{\infty}, F_{1}, \cdots, F_{k}\right)
$$

For instance, pure $S U(2)$ has a single CB configuration, $\mathcal{S} \cong\left(I_{4}^{*}, I_{1}, I_{1}\right)$.

- The above 'periodic table' includes the 3 'classic AD SCFTs [Argyres, Douglas, 1995] and the $3 E_{n} \mathrm{MN}$ theories [Minahan, Nemeschansky, 1996].
- It does not include the other 4d SCFTs [Argyres, Wittig, 2007; Argyres, Lotito, Lu, Martone, 2016] with enhanced CB (although, see [Caorsi, Cecotti, 2016]).
- Conjecture (?): the table gives the full list of CB configurations for rank-one 4d $\mathcal{N}=2$ SQFTs with a 'trivial' CB (i.e. with only a $U(1)$ vector multiplet).
- The top row corresponds to 5d SCFTs on $\mathbb{R}^{4} \times S^{1}$, as we will show.
- If we choose $F_{\infty}=I_{0}$ (the trivial fiber), we get the E-string on $\mathbb{R}^{4} \times T^{2}$. There are therefore 289 distinct CB configurations for that theory.

Symmetry group and rational sections

We claimed above that the non-abelian part of the flavour symmetry was captured by the singular fibers (in the interior), $F_{v \neq \infty}$.

We also claim that each generator of $\Phi_{\text {free }}=\Phi / \Phi_{\text {tor }}$ gives rise to a $U(1)$ flavor symmetry.

The full flavour symmetry algebra is then:

$$
\mathfrak{g}_{F}=\bigoplus_{s=1}^{\operatorname{rk}(\Phi)} \mathfrak{u}(1)_{s} \oplus \bigoplus_{v=1}^{k} \mathfrak{g}_{v}
$$

One can also show that:

$$
\operatorname{rank}\left(\mathfrak{g}_{F}\right)=8-\operatorname{rank}\left(\mathfrak{g}_{\infty}\right)
$$

Example: $S U(2), N_{f}=1$. The massless CB configuration is $\mathcal{S} \cong\left(I_{3}^{*}, 3 I_{1}\right)$. In that case, one indeed finds $\Phi \cong \mathbb{Z}$, in agreement with $\mathfrak{g}_{F}=\mathfrak{u}(1)$.

Symmetry group and rational sections

The global form of flavour group can be determined by analysing the full MW group. For simplicity, assume that $\operatorname{rk}(\Phi)=0$, so that G_{F} is semi-simple:

$$
\Phi=\Phi_{\text {tor }}=\mathbb{Z}_{k_{1}} \oplus \cdots \oplus \mathbb{Z}_{k_{t}}
$$

Let \tilde{G}_{F} denote the simply-connected group such that $\mathfrak{g}_{F}=\operatorname{Lie}\left(G_{F}\right)$.
Define the subgroup of $\Phi_{\text {tor }}$ of 'interior-narrow sections':

$$
\mathcal{Z}^{[1]}=\left\{P \in \Phi_{\text {tor }} \mid(P) \text { intersects } \Theta_{v, 0} \text { for all } F_{v \neq \infty}\right\}
$$

and denote by \mathscr{F} the cokernel of the inclusion map $\mathcal{Z}^{[1]} \rightarrow \Phi_{\text {tor }}$:

$$
0 \rightarrow \mathcal{Z}^{[1]} \rightarrow \Phi_{\text {tor }} \rightarrow \mathscr{F} \rightarrow 0
$$

Then, we claim that:

- $G_{F}=\tilde{G}_{F} / \mathscr{F}$ is the flavour symmetry group.
- $\mathcal{Z}^{[1]}$ is the one-form symmetry group.

This is very similar to discussions of the gauge group in F-theory [Anspinwall, Morrison, 1998; Morrison, Park, 2012;] (not coincidentally).

Symmetry group and rational sections

Example: SQCD. For massless SQCD, one finds:

N_{f}	0	1	2	3	4
\mathcal{S}	$\left(I_{4}^{*}, 2 I_{1}\right)$	$\left(I_{3}^{*}, 3 I_{1}\right)$	$\left(I_{2}^{*}, 2 I_{2}\right)$	$\left(I_{1}^{*}, I_{4}, I_{1}\right)$	$\left(I_{0}^{*}, I_{0}^{*}\right)$
Φ	\mathbb{Z}_{2}	\mathbb{Z}	\mathbb{Z}_{2}^{2}	\mathbb{Z}_{4}	\mathbb{Z}_{2}^{2}

This matches the results expected from the UV:

- $N_{f}=0$: we have $\Phi_{\text {tor }}=\mathcal{Z}^{[1]}=\mathbb{Z}_{2}$, in agreement with known results.
- $N_{f}=2$: we have $\Phi_{\text {tor }}=\mathscr{F}$ and $\left.G_{F}=S U(2) \times S U(2)\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.
- $N_{f}=3:$ we have $\Phi_{\text {tor }}=\mathscr{F}$ and $G_{F}=S U(4) / \mathbb{Z}_{4}$.
- $N_{f}=4:$ we have $\Phi_{\text {tor }}=\mathscr{F}$ and $G_{F}=\operatorname{Spin}(8) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.

Symmetry group and rational sections

The general result can also be applied to non-Lagrangian theories. We have the following interesting RES:
[Miranda, Persson, 1986]

- $\mathcal{S}=\left(I I, I I^{*}\right)$, with $\Phi=0$.
- If $F_{\infty}=I I^{*}$, we have the AD point H_{0} with trivial flavour group.
- If $F_{\infty}=I I$, we have the $E_{8} \mathrm{MN}$ SCFT, with $G_{F}=E_{8}$.
- $\mathcal{S}=\left(I I I, I I I^{*}\right)$, with $\Phi=\mathbb{Z}_{2}$.
- If $F_{\infty}=I I I^{*}$, we have the AD point H_{1} with flavour group $G_{F}=S O(3)$.
- If $F_{\infty}=I I I$, we have the E_{8} MN SCFT, with $G_{F}=\mathrm{E}_{7} / \mathbb{Z}_{2}$.
- $\mathcal{S}=\left(I V, I V^{*}\right)$, with $\Phi=\mathbb{Z}_{3}$.
- If $F_{\infty}=I V^{*}$, we have the AD point H_{2} with flavour group $G_{F}=\operatorname{PSU}(3)$.
- If $F_{\infty}=I V$, we have the E_{8} MN SCFT, with $G_{F}=\mathrm{E}_{6} / \mathbb{Z}_{3}$.

All these flavour groups are centerless. For the MN theories, this determination reproduces recent results [Bhardwaj, 2021]. The H_{1} flavour group was determined in [Buican, Jiang, 2021], and the H_{2} flavour group is a new result.

Systematic analysis of CB configurations
Using the Persson classification and some direct computations, we can map out the full set of CB configurations of a given SQFT \mathcal{T}_{∞}, in principle.
Example: $S U(2), N_{f}=3$. There are 13 allowed configurations:

massless (3) stm.	$\left\{F_{v}\right\}$	m_{1}	m_{2}	m_{3}	g_{F}	rk((Φ)	$\Phi_{\text {tor }}$
	I_{1}, I_{4}, I_{1}	0	0	0	A_{3}	0	Z_{4}
	$I_{1}, I_{3}, 2 I_{1}$	m_{1}	m_{1}	m_{1}	$A_{2} \oplus \mathfrak{u}(1)$	1	-
AD ant H_{2}	$I_{1}, I V, I_{1}$	$\Lambda / 2$	m_{1}	m_{1}	$A_{2} \oplus \mathfrak{u}(1)$	1	-
	$I_{1}, I_{3}, I I$	$-\Lambda / 16$	m_{1}	m_{1}	$A_{2} \oplus \mathfrak{u}(1)$	1	-
	$I_{1}, I I I, I_{2}$	$\Lambda / 4$	0	0	$2 A_{1} \oplus \mathbf{u}(1)$	1	z_{2}
	$I_{1}, 2 I_{2}, I_{1}$	m_{1}	0	0	$2 A_{1} \oplus \mathbf{u}(1)$	1	Z_{2}
	$I_{1}^{*}, I I I, I I$	$-\frac{7}{4} \Lambda$	$i \sqrt{2} \Lambda$	m_{1}	$A_{1} \oplus 2 \mathrm{u}(1)$	2	-
	$I_{1}, I I I, 2 I_{1}$	$\frac{m_{2}^{2}}{A}+\frac{A}{4}$	m_{2}	m_{1}	$A_{1} \oplus 2 \mathrm{u}(1)$	2	-
	$I_{1}^{*}, I I, I_{2}, I_{1}$	m_{1}	$\frac{\left(4 m_{1}+\Lambda\right)^{3 / 2}}{6 \sqrt{3 \Lambda}}$	m_{1}	$A_{1} \oplus 2 \mathrm{u}(1)$	2	-
	$I_{1}, I_{2}, 3 I_{1}$	m_{1}	m_{2}	m_{1}	$A_{1} \oplus 2 \mathrm{u}(1)$	2	-
	$I_{1}, 2 I I, I_{1}$	$\left(-2 T_{2} \Lambda+\frac{13}{8} \Lambda^{3}, 5 T_{2} \Lambda^{2}-\frac{57}{16} \Lambda^{4}\right)$			$3 \mathrm{u}(1)$	3	-
	$I_{1}, I I, 3 I_{1}$	$\left(\frac{1}{4} T_{2} \Lambda-\frac{1}{16} \Lambda^{3}, \frac{1}{2} T_{2} \Lambda^{2}-\frac{3}{16} \Lambda^{4}\right)$			$3 \mathrm{u}(1)$	3	-
feneric \rightarrow	$I_{1}, 5 I_{1}$	m_{1}	m_{2}	m_{3}	$3 \mathrm{u}(1)$	3	-

Modularity

Modularity of the u-plane

For any $4 \mathrm{~d} \mathcal{N}=2$ SQFT with mass parameters m, we have an 'extended CB' where m are viewed as VEVs for background vector multiplets.

There are many 'special loci' on the extended Coulomb branch which have modular properties. More precisely, it can happen that, at some fixed values of the masses, the u-plane is a modular curve:

$$
\overline{\mathcal{B}} \cong \mathbb{H} / \Gamma, \quad \Gamma \subset S L(2, \mathbb{Z})
$$

for some particular modular subgroup Γ. When this happens, the map:

$$
u: \mathbb{H} / \Gamma \rightarrow \overline{\mathcal{B}}: \tau \mapsto u(\tau)
$$

is an isomorphism. The Γ-invariant function $u(\tau)$ is called the Hauptmodul (or principal modular function) of Γ.

When the CB is modular, the singularities are in one-to-one correspondence with cusps and elliptic points of Γ. This simplifies the analysis of e.g. the monodromy group.

Note: even when the CB is not modular, it is advantageous to work on the τ-plane. See [Aspman, Furrer, Manschot, 2000, 2021] for recent discussions.

Modular curves for SQCD

Massless SQCD with $N_{f} \neq 1$ is modular:

Theory	$\Delta(u)=0$	$F_{v \neq \infty}$	F_{∞}	Modular Function	Monodromy	Cusps τ
$N_{f}=0$	$+1,-1$	I_{1}, I_{1}	I_{4}^{*}	$u(\tau)=1+\frac{1}{8}\left(\frac{\eta\left(\frac{\tau}{4}\right)}{\eta(\tau)}\right)^{8}$	$\Gamma^{0}(4)$	$0,2, i \infty$
$N_{f}=1$	$u^{3}=1$	$3 I_{1}$	I_{3}^{*}	$u^{3}=\frac{2 E_{4}(\tau)^{\frac{3}{2}}}{E_{4}(\tau)^{2}+E_{6}(\tau)}$	$\Gamma_{N_{f}=1}$	$0,1,2, i \infty$
$N_{f}=2$	$+1,-1$	I_{2}, I_{2}	I_{2}^{*}	$u(\tau)=1+\frac{1}{8}\left(\frac{\eta\left(\frac{\tau}{2}\right)}{\eta(2 \tau)}\right)^{8}$	$\Gamma(2)$	$0,1, i \infty$
$N_{f}=3$	0,1	I_{4}, I_{1}	I_{1}^{*}	$u(\tau)=-\frac{1}{16}\left(\frac{\eta(\tau)}{\eta(4 \tau)}\right)^{8}$	$\Gamma_{0}(4)$	$0,-\frac{1}{2}, i \infty$

Note: Massless $N_{f}=1$ is not modular.

Modular curves for SQCD
Example: pure $S U(2)$. Modular curve for $\Gamma^{0}(4)$. Two cusps of width 1.

$$
u(\tau)=\frac{1}{8}\left(q^{-\frac{1}{4}}+20 q^{\frac{1}{4}}-62 q^{\frac{3}{4}}+216 q^{\frac{5}{4}}-641 q^{\frac{7}{4}}+1636 q^{\frac{9}{4}}+\mathcal{O}\left(q^{\frac{11}{4}}\right)\right)
$$

Figure 4: Fundamental domains for $\Gamma^{0}(4)$. Figure (a) shows a standard choice, with width one cusps at $\tau=0$ and 2, while in figure (b) the cusp at $\tau= \pm 2$ is split, with the branch cut of the periods indicated by the dashed line.

Associated monodromies:

$$
\mathbb{M}_{u=1}=S T S^{-1}, \quad \mathbb{M}_{u=-1}=\left(T^{2} S\right) T\left(T^{2} S\right)^{-1}, \quad \mathbb{M}_{\infty}=P T^{4}
$$

Modular curves for SQCD
Another example: $S U(2), N_{f}=1$.

$\left\{F_{v}\right\}$	m_{1}	\mathfrak{g}_{F}	$\operatorname{rk}(\Phi)$	$\Phi_{\text {tor }}$
$I_{3}^{*}, 3 I_{1}$	m_{1}	$\mathfrak{u}(1)$	1	-
$I_{3}^{*}, I I, I_{1}$	$m_{1}^{3}=\frac{27}{16} \Lambda^{3}$	$\mathfrak{u}(1)$	1	-

Two configurations: massless one is not modular. The other is modular for $\Gamma=\Gamma^{0}(3)$:

$$
u(\tau)=-\frac{5}{3}-\frac{1}{9}\left(\frac{\eta\left(\frac{\tau}{3}\right)}{\eta(\tau)}\right)^{12}
$$

Note the AD points H_{0} as an elliptic point:

Figure 7: Fundamental domain for $\Gamma^{0}(3)$ corresponding to the configuration $\left(I_{3}^{*}, I_{1}, I I\right)$ on the CB of the $4 \mathrm{~d} S U(2), N_{f}=1$ theory. The marked point $\tau=2+e^{2 i \pi / 3}$ is the elliptic point of the congruence subgroup $\Gamma^{0}(3)$.

5d SCFTs on a circle and geometric engineering

5d SCFT from M-theory

M-theory is expected to define a surjective map:

$$
\{\mathrm{CY} \text { threefold singularity }\} \rightarrow\{5 \mathrm{~d} \text { SCFTs }\}: \quad \mathbf{X} \mapsto \mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}
$$

This is poorly understood in general.
Most basic quantity:
$r=\operatorname{rank}\left(\mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}\right)=$ number of exceptional divisor in generic crepant resolution $\tilde{\mathbf{X}} \rightarrow \mathbf{X}$
If $\tilde{\mathbf{X}}$, the $\mathcal{N}=1$ SUGRA approximation is valid for large Kähler volumes. We then have a gauge theory $U(1)^{r}$ with 5 d prepotential determined classically:

$$
\mathcal{F}_{5 \mathrm{~d}}=\frac{1}{6} \sum_{i, j, k} \mathcal{F}_{i, j, k} S_{i} \cdot S_{j} \cdot S_{k}
$$

5d SCFT from M-theory

Geometric realization of the full moduli space of $\mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}$.

- Kähler moduli of $\tilde{\mathbf{X}}=$ ECB moduli
- \mathbb{C}-structure moduli of $\widehat{\mathbf{X}}=$ Higgs branch moduli (+ irrelevant couplings)

5d SCFT from M-theory: rank one

Here we focus on the simplest example, of rank one:

$$
\tilde{\mathbf{X}}=\operatorname{Tot}(\mathcal{K} \rightarrow S), \quad S=\mathbb{F}_{0} \text { or } d P_{n}(n \neq 8)
$$

Singularity X: blow-down the zero section S, which is a Fano surface.
Two ways of describing the del Pezzo surface:
(i) $d P_{n} \cong \operatorname{Bl}_{n}\left(\mathbb{P}^{2}\right)$: blow up of \mathbb{P}^{2} at n generic points.
(ii) $d P_{n} \cong \operatorname{Bl}_{n-1}\left(\mathbb{F}_{0}\right)$: blow up of $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ at $n-1$ generic points.

Intersection form $H_{2}(S, \mathbb{Z}) \times H_{2}(S, \mathbb{Z}) \rightarrow \mathbb{Z}$ can be written as:

$$
\left(\begin{array}{cc}
9-n & 0 \\
0 & -A_{I J}^{E_{n}}
\end{array}\right), \quad I, J=1, \cdots, n, \quad 9-n=\operatorname{deg}(S)=\mathcal{K} \cdot \mathcal{K}
$$

$\Rightarrow \quad \mathrm{M} 2$-brane particles on CB form representations of $E_{n}=\mathfrak{e}_{n}$ algebra.

E_{n} theories from del Pezzos

These SCFTs are all related by RG flows triggered by massive deformations:

E_{n} theories from del Pezzos

for 'generalized toric' (GTP) description, see [Benini, Benvenuti, Tachikawa, 2009]

The 5d gauge theory limit

- These 10 rank-one SCFTs were first discovered by Seiberg as UV fixed points of 5d $\mathcal{N}=1$ gauge theories. [Seiberg, 1996]
- Recall that 5d gauge theories are IR-free effective theories. The perturbative gauge-theory description is valid for RG scales:

$$
\mu \ll m_{0} \equiv \frac{1}{g_{5 \mathrm{~d}}^{2}}
$$

- $\mathcal{T}_{E_{n}}^{5 \mathrm{~d}}$ admits a mass deformation to a $5 \mathrm{~d} \mathcal{N}=1$ gauge theory in the IR:

$$
E \ll m_{0}=\frac{1}{g_{5 d}^{2}} \quad: \quad 5 \mathrm{~d} \mathcal{N}=1 S U(2) \text { with } N_{f}=n-1 \text { fundamentals. }
$$

This mass deformation breaks the flavor algebra as:

$$
E_{n} \quad \rightarrow \quad \mathfrak{s o}(2 n-2) \oplus \mathfrak{u}(1)
$$

5d theories on $\mathbb{R}^{4} \times S^{1}$: generalities

Consider the SCFT $\mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}$ compactified on a finite-size circle, of radius β.
This gives us a $4 \mathbf{d} \mathcal{N}=2$ supersymmetric Kaluza-Klein (KK) field theory:

$$
D_{S^{1}} \mathcal{T}_{\mathrm{X}}^{5 \mathrm{~d}} \text { on } \mathbb{R}^{4} \cong \mathcal{T}_{\mathrm{X}}^{5 \mathrm{~d}} \text { on } \mathbb{R}^{4} \times S_{\beta}^{1}
$$

Note:

- $D_{S^{1}} \mathcal{T}_{\mathbf{X}}^{5 \mathrm{~d}}$ is not conformal. Scale $\mu_{\mathrm{KK}}=\frac{1}{\beta}$.
- The Coulomb branch is complexified. In terms of the low-energy abelian vector multiplet:

$$
\overline{\mathcal{B}}: \quad a=i\left(\varphi+i A_{5}\right), \quad e^{2 \pi i A_{5}} \equiv e^{\int_{S^{1}} A}
$$

IR vector multiplet is not globally defined on $\overline{\mathcal{B}}$, just like for any $4 \mathrm{~d} \mathcal{N}=2$ SQFT.
\diamond At any point $U \in \overline{\mathcal{B}}$, we have massive half-BPS particle excitations. Their masses:

$$
M_{\gamma}=\left|Z_{\gamma}\right|=\left|e^{i} a_{i}+m_{i} a_{D}^{i}+q^{I} \mu_{I}+n \mu_{\mathrm{KK}}\right|
$$

are determined by their electro-magnetic charges:

$$
\gamma=(e, m, q, n) \in \Gamma \subset \mathbb{Z}^{2 r+f+1}
$$

To determine the BPS spectrum $\{\gamma\}$ is a complicated, unsolved problem in general. (Recent studies for 5d KK theories: [Eager, Selmani, Walcher, 2016; Banerjee, Longhi, Romo, 2019, 2020; CC, Del Zotto, 2019; Longhi, 2020; Mozgovoy, Pioline, 2020])
\diamond Note: the charge lattice includes, electromagnetic charges, 5d flavor charges and the KK charge.
\diamond Key features of any SW geometry are its singular loci: the complex-codim-1 loci on the CB where some BPS particles become massless.

The U-plane for a 5d SCFT on S^{1}

As a first approximation, let us think of our E_{n} theories as $5 \mathrm{~d} S U(2)$ gauge theories. The low-energy $U(1)$ scalar is:

$$
a=i\left(\varphi+i A_{5}\right), \quad e^{2 \pi i A_{5}} \equiv e^{\int_{S^{1}} A}
$$

and the gauge-invariant order parameter is:

$$
U=\langle W\rangle=e^{2 \pi i a}+e^{-2 \pi i a}+\cdots
$$

Here W is a supersymmetric Wilson line in 5 d , wrapped along the S^{1}.
Similarly, the complexified mass parameters are flavor Wilson lines:

$$
M_{I}=e^{2 \pi i \mu_{I}}=e^{-\beta m_{I}+i \vartheta_{I}}
$$

The U-plane for a 5d SCFT on S^{1}

At fixed M_{I}, the Coulomb branch is one-dimensional, with local coordinate $U \in \mathbb{C}$. This is the U-plane.

As in 4d, the low-energy physics is fully determined by some Seiberg-Witten geometry, which was derived in [Ganor, Morrison, Seiberg, 1996; Eguchi, Sakai, 2002].

All our computations are done using the E_{n} SW curves of [Eguchi, Sakai, 2002]. (Matches Hori-Vafa mirror in toric case.)

The U-plane from local mirror symmetry

The SW solution is essentially local mirror symmetry:

$$
\begin{array}{rll}
\mathrm{CB} \text { of } D_{S^{1}} \mathcal{T}_{\mathrm{X}}^{5 \mathrm{~d}} & \longleftrightarrow & \text { IIA string theory on } \mathbb{R}^{4} \times \tilde{\mathbf{X}} \\
& \longleftrightarrow & \text { IIB string theory on } \mathbb{R}^{4} \times \hat{\mathbf{Y}}
\end{array}
$$

We have the local mirror symmetry between smooth threefolds:

$$
\tilde{\mathbf{X}} \quad \leftrightarrow \quad \hat{\mathbf{Y}}, \quad D(\tilde{\mathbf{X}}) \quad \leftrightarrow \quad \operatorname{Fuk}(\hat{\mathbf{Y}})
$$

In particular:

- U, M_{I} are complex structure parameters of $\widehat{\mathbf{Y}}$.
- a, μ_{I} are Kähler parameters of $\tilde{\mathbf{X}}$.
- The exact expression:

$$
a(U)=\frac{1}{2 \pi i} \log \frac{1}{U}+\sum_{k} c_{k} U^{k}
$$

is the mirror map.

The U-plane for a 5d SCFT on S^{1}

For our local $d P_{n}$ geometries, the mirror threefold $\widehat{\mathbf{Y}}$ can be written as the suspension of an affine elliptic curve, E :

$$
v_{1} v_{2}+P(w, t)=0, \quad E=\left\{(w, t) \in \mathbb{C}^{*} \times \mathbb{C}^{*} \mid P(w, t)=0\right\}
$$

\diamond For the five toric geometries, $E_{0}, \tilde{E}_{1}, E_{1}, E_{2}$ and E_{3}, we have $P(w, t)$ equal to the Newton polygon of the toric diagram.
[Chiang, Klemm Yau, Zaslow, 1999; Hori, Vafa, 2000]
\diamond For the higher del Pezzos, the mirror curves are also known. They are all limits of the E-string theory Seiberg-Witten curve [Ganor, Morrison, Seiberg, 1996; Eguchi, Sakai, 2002]
\diamond We have:

$$
H_{3}(\widehat{\mathbf{Y}}, \mathbb{Z}) \cong \mathbb{Z}^{\left|Q_{0}\right|}, \quad\left|Q_{0}\right|=2 r+f+1=n+3
$$

Large-volume perspective
Coming back to Type IIA on:

$$
\tilde{\mathbf{X}}=\operatorname{Tot}\left(\mathcal{K} \rightarrow d P_{n}\right)
$$

$$
d P_{n} \cong \mathrm{Bl}_{n-1}\left(\mathbb{F}_{0}\right)
$$

we have:

- A four-cycle $\mathcal{B}_{4}=\left[d P_{n}\right]$. The D4-brane on \mathcal{B}_{4} gives the 'monopole.'
- A 2-cycle \mathcal{C}_{f} such that $\mathcal{C}_{f}^{2}=0$ and $\mathcal{C}_{f} \cdot \mathcal{B}_{4}=-2$. The D2-brane on \mathcal{C}_{f} is 'the W-boson.
- Exceptional 2-cycles $E_{a}, a=1, c \ldots, n-1$: gives the hypermultiplets.

BPS particles are wrapped branes, with central charge:

$$
Z=m \Pi_{\mathrm{D} 4}+n_{\mathrm{D} 2_{\mathrm{f}}} \Pi_{D 2_{f}}+\sum n_{\mathrm{D} 2_{\mathrm{E}_{\mathrm{a}}}} \Pi_{D 2_{E_{a}}}+n_{\mathrm{D} 0}
$$

The D-brane periods are well known at large volume, where the supergravity approximation holds (as an asymptotic expansion):

$$
\begin{aligned}
& \Pi_{D 2_{\mathcal{C}}}=\int_{\mathcal{C}}(B+i J) \\
& \Pi_{D 4}=\frac{1}{2} \int_{\mathcal{B}_{4}}(B+i J)^{2}+\frac{\chi\left(\mathcal{B}_{4}\right)}{24}+\cdots
\end{aligned}
$$

Large-volume perspective

The exact periods receive worldsheet instanton corrections, which can be obtained using local mirror symmetry.

There are $n+3$ D-brane periods, but $n+1$ are known exactly (no quantum corrections):

$$
\Pi_{\mathrm{D} 0}=1, \quad \Pi_{\mathcal{C}_{I}}=\frac{1}{2 \pi i} \log \left(z_{I}\right)=\mu_{I}
$$

in other words, $z_{I}=M_{I}$ for the flavor curves. These are such that $\mathcal{C}_{I} \cdot \mathcal{B}_{4}=0$.
The non-trivial periods are:

$$
\Pi_{\mathcal{C}_{f}} \equiv 2 a=\frac{1}{2 \pi i} \log \left(\frac{1}{U^{2}}\right)+\cdots
$$

and:

$$
\Pi_{\mathrm{D} 4}=a_{D}=\frac{1}{(2 \pi i)^{2}} \log \left(\frac{1}{U^{2}}\right) \log \left(\frac{M_{0}}{U^{2}}\right)+\frac{\chi}{24}+\cdots
$$

Note the normalisation of the a-period. (W-boson of electric charge 2 for $S U(2)$.)

Local mirror threefold and curve

In the mirror $\widehat{\mathbf{Y}}$, we have to compute classical periods:

$$
a=\int_{S_{a}^{3}} \Omega, \quad a_{D}=\int_{S_{D}^{3}} \Omega, \quad S_{a}^{3} \cdot S_{D}^{3}=1 .
$$

The corresponding cohomology classes fit in a mixed Hodge structure:

$$
H^{3}(\tilde{\mathbf{X}}) \cong H^{2,1} \oplus H^{1,2} \oplus H^{2,2} \cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}^{n+1}
$$

This can be reduced to the periods of the elliptic (or affine) curve E :

$$
a_{D}=\int_{\gamma_{B}} \lambda_{\mathrm{SW}}, \quad a=\int_{\gamma_{A}} \lambda_{\mathrm{SW}} .
$$

Thus, we may focus on that 'SW curve' to describe the mirror geometry.

BPS states and flavour symmetry

Write the 3-fold $\widehat{\mathbf{Y}}$ as a double-fibration on 'the W-plane':

$$
E \times \mathbb{C}^{*} \rightarrow \widehat{\mathbf{Y}} \rightarrow \mathbb{C} \cong\{W\}
$$

with:

$$
F(x, y ; W)=0, \quad v_{1} v_{2}=U-W
$$

- At $U=W$, the \mathbb{C}^{*} fiber degenerates.
- The elliptic fiber E degenerates at $W=U_{*}$.
- U is a complex structure parameter, and W and ambiant coordinate of the CY_{3} geometry. But we can substitute one for the other in the obvious way.
- Thus, we can view the RES \mathcal{S} as part of $\widehat{\mathbf{Y}}$ itself, as $E \rightarrow \mathcal{S} \rightarrow\{W\}$.
- We can build supersymmetric 3-cycles S_{γ}^{3} as torus fibrations over paths on the W-plane. [Hori, Vafa, 2000]
Let $\Gamma_{2} \subset S_{\gamma}^{3}$ be the two-chain with boundary along $\gamma \in E_{U}$ above the fiber at $W=U$. We have:

$$
\Pi_{\gamma}=\int_{S_{\gamma}^{3} \subset \widehat{\mathbf{Y}}} \Omega=\int_{\Gamma \subset \mathcal{S}} \Omega_{2}=\int_{\gamma \in E} \lambda_{\mathrm{SW}}
$$

with $\partial \Gamma=\gamma$, provided that:

$$
\Omega_{2}=d \lambda_{\mathrm{SW}}=\boldsymbol{\omega} \wedge d U
$$

inside \mathcal{S}.

BPS states and flavour symmetry

There is an F-theory perspective on this IIB geometry, by viewing τ itself as the axio-dilaton. In that interpretation:

- The singular fibers are 7-branes of type ADE.
- One interprets $W=U$ as the position of a single probe D3-brane.
- BPS states are string junctions between the D3-brane and the 7-branes.

To discuss the flavour group, we consider (formal) pure flavour states which are open strings between 7-branes. They correspond to closed 2-cycles $\Gamma \in \operatorname{NS}(\tilde{\mathcal{S}})$. Their flavor weights under $\mathfrak{g}^{\text {NA }}=\oplus_{v} \mathfrak{g}_{v}$ are determined by the intersection with the exceptional fibers:

$$
w_{i}^{\left(\mathfrak{g}_{v}\right)}(\Gamma)=\Theta_{v, i} \cdot \Gamma
$$

The abelian charges are given in terms of the so-called Shioda map:

$$
q_{s}(\Gamma) \equiv \varphi\left(P_{s}\right) \cdot \Gamma
$$

Moreover, physical states should not intersect the fiber at infinity:

$$
\Gamma \text { physical } \quad \Leftrightarrow \quad w_{i}^{\left(F_{\infty}\right)}(\Gamma)=\Theta_{\infty, i} \cdot \Gamma=0
$$

BPS states and flavour symmetry

Recall our definitions:

$$
\mathcal{Z}^{[1]}=\left\{P \in \Phi_{\text {tor }} \mid(P) \text { intersects } \Theta_{v, 0} \text { for all } F_{v \neq \infty}\right\},
$$

and:

$$
0 \rightarrow \mathcal{Z}^{[1]} \rightarrow \Phi_{\text {tor }} \rightarrow \mathscr{F} \rightarrow 0
$$

The Shioda map. An important mathematical result [Shioda, 1990] is that there exists a group homomorphism:

$$
\varphi: \Phi \rightarrow \operatorname{NS}(\tilde{\mathcal{S}}) \otimes \mathbb{Q}
$$

which maps sections to horizontal divisors (with rational coefficients). This map is given explicitly by:

$$
\varphi(P)=(P)-(O)-((P) \cdot(O)+1) F+\sum_{v} \sum_{i=1}^{\operatorname{rank}\left(\mathfrak{g}_{v}\right)} \lambda_{v, i}^{(P)} \Theta_{v, i}
$$

with the rational coefficients:

$$
\lambda_{v, i}^{(P)}=\sum_{j=1}^{\operatorname{rank}\left(\mathfrak{g}_{v}\right)}\left(A_{\mathfrak{g}_{v}}^{-1}\right)_{i j} \Theta_{v, j} \cdot(P)
$$

given in terms of the inverse of the Cartan matrix of \mathfrak{g}_{v}.

BPS states and flavour symmetry

Then, the argument for determining:

$$
G_{F}=\tilde{G}_{F} / \mathscr{F}
$$

(in the semi-simple case, for simplicity) is similar to the F-theory argument in e.g.
[Aspinwall, 1998; Mayrhofer, Morrison, Till, Weigand, 2014; Cvetic, Lin, 2017].
For any state, we have:

$$
\sum_{l=1}^{\operatorname{rank}\left(F_{\infty}\right)} \lambda_{\infty, l}^{\left(P_{\text {tor }}\right)} w_{i}^{\left(F_{\infty}\right)}+\sum_{i=1}^{\operatorname{rank}\left(\mathfrak{g}_{F}^{\mathrm{NA}}\right)} \lambda_{v, i}^{\left(P_{\text {tor }}\right)} w_{i}^{\left(\mathfrak{g}_{F}^{\mathrm{NA}}\right)} \in \mathbb{Z}
$$

For the pure flavour states that satisfy the physical state condition:

$$
\sum_{i=1}^{\operatorname{rank}\left(\mathfrak{g}_{F}^{\mathrm{NA}}\right)} \lambda_{v, i}^{\left(P_{\text {tor }}\right)} w_{i}^{\left(\mathfrak{g}_{F}^{\mathrm{NA}}\right)} \in \mathbb{Z}, \quad \forall P_{\text {tor }} \in \mathscr{F} .
$$

This directly implies the advertised result. To determine the precise action of \mathscr{F}, we compute the intersection of the sections with the fibers explicitly. (Further arguments confirm our general results [CC, Magureanu, 2021].)

The U-plane of the $E_{n} 5 \mathrm{~d}$ SCFTs

The fiber at infinity

Consider the E_{n} theory. One can determine the large volume monodromy from the semi-classical periods.

Let us give a more "5d QFT" derivation: Take a limit where the $5 \mathrm{~d} S U(2), N_{f}=n-1$ gauge-theory description is valid. At one-loop, the prepotential of the theory on $\mathbb{R}^{4} \times S^{1}$ reads:

$$
\mathcal{F}=\quad \mu_{0} a^{2}+\frac{2}{(2 \pi i)^{3}} \operatorname{Li}_{3}\left(e^{4 \pi i a}\right)-\frac{1}{(2 \pi i)^{3}} \sum_{a=1}^{n-1} \sum_{ \pm} \operatorname{Li}_{3}\left(e^{2 \pi i\left(\pm a+\mu_{a}\right)}\right)
$$

and $a_{D}=\frac{\partial \mathcal{F}}{\partial a}$. The large volume monodromy is:

$$
a_{D} \rightarrow a_{D}+(9-n) a+\mu_{0}-\sum_{a=1}^{n-1} \mu_{a}, \quad a \rightarrow a+1
$$

We thus have:

$$
\mathbb{M}_{\infty}=T^{9-n}=\left(\begin{array}{cc}
1 & 9-n \\
0 & 1
\end{array}\right)
$$

This determines the fiber at infinity, $F_{\infty}=I_{9-n}$, as anticipated.

Rational elliptic surfaces and generic masses:

$\left(N_{s}+4\right) I_{1}$
SD SuN), N_{8}
($N_{1}=-1, \ldots 7$)

$\left(N_{f}+2\right) I_{1}$
MD $50(2), N_{p}$

$$
\left(N_{p}=0, \ldots 3\right)
$$

The I_{k} fiber has monodromy conjugate to T^{k}. The bulk I_{1} corresponds to a single BPS particle becoming massless:

$$
M_{*}^{(m, q)}=B^{-1} T B=\left(\begin{array}{cc}
1+m q & q^{2} \\
-m^{2} & 1-m q
\end{array}\right)
$$

The massless curves

Consider now $M_{I}=1$. One finds:

E_{8}	$:$	$I I^{*} \oplus I_{1}$
E_{7}	$:$	$I I I^{*} \oplus I_{1}$
E_{6}	$:$	$I V^{*} \oplus I_{1}$
E_{5}	$:$	$I_{1}^{*} \oplus I_{1}$
E_{4}	$:$	$I_{5} \oplus I_{1} \oplus I_{1}$
E_{3}	$:$	$I_{3} \oplus I_{2} \oplus I_{1}$
E_{2}	$:$	$I_{2} \oplus I_{1} \oplus I_{1} \oplus I_{1}$
E_{1}	$:$	$I_{2} \oplus I_{1} \oplus I_{1}$
\tilde{E}_{1}	$:$	$I_{1} \oplus I_{1} \oplus I_{1} \oplus I_{1}$
E_{0}	$:$	$I_{1} \oplus I_{1} \oplus I_{1}$

in agreement with old 'classic' results.
\diamond This reproduce the E_{n} flavor symmetry, including abelian factors.
\diamond The 4 d LEEFT is IR free for $n<6$

The massless curves

- It reproduces the 5d Higgs branches (one E_{n}-instanton moduli spaces).
- Note the case of $E_{5}: 4 \mathrm{~d} S U(2)$ with $N_{f}=5$ in the IR.
- 5d RG flows $E_{n} \rightarrow E_{n-1}$ reproduced.

RG flows to 4d

Two types of flows:

- "zooming in":

Here we just decouple the KK scale.

- "geometric engineering limit":
We decouple the KK scale and the instanton particles.

Extremal rational elliptic surfaces

Subclass of rational elliptic surfaces with a section and with $\mathrm{rk}(\mathrm{MW})=0$. Classification by [Miranda, Persson, 1986]. Small list of 16 surfaces.

- Four of them have only 2 singular fibers:

$$
\left(I I, I I^{*}\right), \quad\left(I I I, I I I^{*}\right), \quad\left(I V, I V^{*}\right), \quad\left(I_{0}^{*}, I_{0}^{*}\right)
$$

They describe the 7 "classic" 4d SCFTs of rank one we just reviewed.

- The other 12 extremal surfaces all describe points on the extended Coulomb branch of the $5 \mathrm{~d} E_{n}$ SCFTs. They are all the possible maximal Dynkin subalgebras of E_{n} ($n \neq \tilde{1}, 2$). For instance:

- Recall that the same surface can describe different theories, by choosing 'the point at infinity':

The U-plane of the $E_{n} 5$ d SCFTs

$\left\{F_{v}\right\}$	Notation	$\Phi_{\text {tor }}$	Field theory	g_{F}	Modularity
$I I^{*}, I_{1}, I_{1}$	X_{211}	-	$D_{S^{1}} E_{8}$	E_{8}	-
			AD H_{0}	-	
$I I I^{*}, I_{2}, I_{1}$	X_{321}	Z_{2}	$D_{S^{1}} E_{8}$	$E_{7} \oplus A_{1}$	$\Gamma_{0}(2)$
			$D_{S^{1}} E_{7}$	E_{7}	
			AD H_{1}	A_{1}	
$I V^{*}, I_{3}, I_{1}$	X_{431}	Z_{3}	$D_{S^{1}} E_{8}$	$E_{6} \oplus A_{2}$	$\Gamma_{0}(3)$
			$D_{S 1} E_{6}$	E_{6}	
			AD H_{2}	A_{2}	
I_{4}^{*}, I_{1}, I_{1}	X_{411}	Z_{2}	$D_{S^{1}} E_{8}$	D_{8}	$\Gamma_{0}(4)$
			4d pure $S U(2)$	-	
I_{1}, I_{4}, I_{1}	X_{141}	Z_{4}	$D_{S^{1}} E_{8}$	$D_{5} \oplus A_{3}$	$\Gamma_{0}(4)$
			$D_{S_{1} E_{5}}$	D_{5}	
			4d $S U$ (2) $N_{f}=3$	A_{3}	
I_{2}^{*}, I_{2}, I_{2}	X_{222}	$\mathrm{Z}_{2} \times \mathrm{Z}_{2}$	$D_{S^{1} E_{7}}$	$D_{6} \oplus A_{1}$	$\Gamma(2)$
			4d $S U(2) N_{f}=2$	$A_{1} \oplus A_{1}$	
$I_{9}, I_{1}, I_{1}, I_{1}$	X_{9111}	\mathbf{Z}_{3}	$D_{S^{1}} E_{8}$	A_{8}	$\Gamma_{0}(9)$
			$D_{S^{1}} E_{0}$	-	
$I_{8}, I_{2}, I_{1}, I_{1}$	X_{8211}	Z_{4}	$D_{S^{1}} E_{8}$	$A_{7} \oplus A_{1}$	$\Gamma_{0}(8)$
			$D_{S^{1}} E_{7}$	A_{7}	
			$D_{S^{1} E_{1}}$	A_{1}	
$I_{5}, I_{5}, I_{1}, I_{1}$	X_{5511}	\mathbf{Z}_{5}	$D_{S^{1}} E_{8}$	$A_{4} \oplus A_{4}$	$\Gamma_{1}(5)$
			$D_{S^{1} E_{4}}$	A_{4}	
$I_{6}, I_{3}, I_{2}, I_{1}$	X_{6321}	Z_{6}	$D_{S^{1}} E_{8}$	$A_{5} \oplus A_{2} \oplus A_{1}$	$\Gamma_{0}(6)$
			$D_{S^{1}} E_{7}$	$A_{5} \oplus A_{2}$	
			$D_{S^{1}} E_{6}$	$A_{5} \oplus A_{1}$	
			$D_{S^{1}} E_{3}$	$A_{2} \oplus A_{1}$	
$I_{4}, I_{4}, I_{2}, I_{2}$	X_{4422}	$\mathbf{Z}_{4} \times \mathbf{Z}_{2}$	$D_{S^{1}} E_{7}$	$A_{3} \oplus A_{3} \oplus A_{1}$	$\Gamma_{0}(4) \cap \Gamma(2)$
			$D_{S^{1}} E_{5}$	$A_{3} \oplus A_{1} \oplus A_{1}$	
$I_{3}, I_{3}, I_{3}, I_{3}$	X_{3333}	$\mathbf{Z}_{3} \times \mathbf{Z}_{3}$	$D_{S^{1}} E_{6}$	$A_{2} \oplus A_{2} \oplus A_{2}$	$\Gamma(3)$

New $5 d \rightarrow 4 d$ limits

\diamond Other interesting points on the 4 d CB of each $E_{n} \mathrm{KK}$ theory?
\diamond Most of these points are at $\left|M_{I}\right|=1$. In field theory, that corresponds to turning on Wilson line along the S^{1} in an otherwise massless theory. In IIA or M-theory, this corresponds to 'quantum periods' on vanishing cycles:

$$
M_{I} \sim e^{i \int_{\mathcal{C}_{I}} B}=e^{i \int_{\mathcal{C}_{I} \times S^{1}} C_{3}} \quad \text { with } \quad \operatorname{vol}\left(\mathcal{C}_{I}\right)=0
$$

\diamond The most interesting points are Argyres-Douglas points H_{0}, H_{1}, H_{2} which are not the ones we would obtain by tuning the masses in $4 \mathrm{~d} S U(2)$ with $N_{f}=1,2,3$ flavors.
\diamond The existence of such non-trivial limits was recently argued by [Bonelli, del Monte, Tanzini, 2020] using the 5d BPS quiver, as well as from a correspondence between these SCFTs and (difference) Painlevé equations [Bonelli, Lisovyy, Maruyoshi, Sciarappa, Tanzini, 2016]. We construct these limits explicitly.

Example: E_{3} and AD points

Consider the E_{3} SCFT. Its SW curve can be written as:

$$
E_{3}: \quad \frac{\sqrt{\lambda}}{t}\left(1+\frac{M_{2}}{w}\right)+t \sqrt{\lambda}\left(1+M_{1} w\right)+\frac{1}{w}+w-2 U=0
$$

- Recall that this is " $5 \mathrm{~d} S U(2), N_{f}=2$ ".
- We have $M_{0}=\lambda \sim e^{-\frac{\beta}{g_{5 d}^{2}}}$ and two 'hypermultiplet masses' M_{1}, M_{2}.
- On the other hand, the AD theories are known to exist on the CB of $4 \mathrm{~d} S U(2)$ with N_{f} flavors:
- $H_{0} \subset 4 \mathrm{~d} S U(2), N_{f}=1$
- $H_{1} \subset 4 \mathrm{~d} S U(2), N_{f}=2$
- $H_{2} \subset 4 \mathrm{~d} S U(2), N_{f}=3$

So, we may expect H_{0} and H_{1} to appear here too. We get 'more'.

Example: E_{3} and AD points
Starting from the massless curve $\lambda=M_{1}=M_{2}=1$, we can get the AD fixed point H_{2} at:

$$
I V:\left(\lambda, M_{1}, M_{2}\right)=\left(1, e^{\frac{i \pi t}{2}}, e^{-\frac{i \pi t}{2}}\right)
$$

We can then "zoom in" to the 4d SCFT. Similarly, we find H_{1} :

$$
I I I:\left(\lambda, M_{1}, M_{2}\right)=\left(e^{\frac{4 i \pi t}{3}}, e^{\frac{2 i \pi t}{3}}, e^{\frac{2 i \pi t}{3}}\right)
$$

Modularity of the U-plane
In many interesting special limits, the U-plane is a modular curve:

$$
\overline{\mathcal{B}} \cong \mathbb{H} / \Gamma, \quad \Gamma \subset S L(2, \mathbb{Z})
$$

This means, in particular, that the mirror map is a modular function:

$$
a=a(U) \quad \leftrightarrow \quad U=U(\tau)
$$

Example: the massless curves:

E_{7}	$:$	$I I I^{*} \oplus I_{1}$	$:$	$\Gamma^{0}(2)$
E_{6}	$:$	$I V^{*} \oplus I_{1}$	$:$	$\Gamma^{0}(3)$
E_{5}	$:$	$I_{1}^{*} \oplus I_{1}$	$:$	$\Gamma^{0}(4)$
E_{4}	$:$	$I_{5} \oplus I_{1} \oplus I_{1}$	$:$	$\Gamma^{1}(5)$
E_{3}	$:$	$I_{3} \oplus I_{2} \oplus I_{1}$	$:$	$\Gamma^{0}(6)$
E_{1}	$:$	$I_{2} \oplus I_{1} \oplus I_{1}$	$:$	$\Gamma^{0}(8)$
E_{0}	$:$	$I_{1} \oplus I_{1} \oplus I_{1}$	$:$	$\Gamma^{0}(9)$

The massless E_{8}, E_{2} and \tilde{E}_{1} are not modular.

MW group and global symmetry

The general prescription for the global symmetry works here too. We find:

$$
G_{F}=\mathrm{E}_{n} / Z\left(\mathrm{E}_{n}\right)
$$

for the massless theories with semi-simple symmetry group.

- This agrees with the 5d result of [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021], which found G_{F} centerless using directly the M-theory geometry.
- The fiber $F_{\infty}=I_{8}$ does not determine the SQFT uniquely. Two distinct choices for $\mathcal{Z}^{[1]}$, either \mathbb{Z}_{2} or trivial. This gives E_{1} or \tilde{E}_{1}.
- The case E_{1} is special, with $\Phi=\mathbb{Z}_{4}$ and $\mathcal{Z}^{[1]}=\mathbb{Z}_{2}$, with:

$$
\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \rightarrow \mathscr{F}=\mathbb{Z}_{2}
$$

so that $G_{F}=S O(3)$.

- All other theories have $\mathcal{Z}^{[1]}=0$.

Example: the massless E_{1} theory

This is " 5 d pure $S U(2)_{0}$ at infinite coupling."
The CB of the massless is a modular curve for the congruence subgroup $\Gamma^{0}(8)$:

Singularities and monodromies:

$$
M_{(-2)}=S T S^{-1}, \quad M_{(0)}=\left(T^{2} S\right) T^{2}\left(T^{2} S\right)^{-1}, \quad M_{(-2)}=\left(T^{4} S\right) T\left(T^{4} S\right)^{-1}
$$

- At $U=-2$, the monopole $(1,0)$ is massless, $a_{D} \rightarrow 0$. "Conifold point."
- At $U=0$, two dyons $(-1,2)$ are massless.
- At $U=2$, the dyon $(1,-4)$ is massless.

Modular curves and quiver points
We can classify all modular CB configurations for any of the rank-one theories.
For instance, for $D_{S^{1}} E_{8}$ and restricting to congruence subgroups (for simplicity):

$\left\{F_{v}\right\}$	$\operatorname{rk}(\Phi)$	$\Phi_{\text {tor }}$	\mathfrak{g}_{F}	$\Gamma \in \operatorname{PSL}(2, \mathbb{Z})$
$I_{1}, I_{2}, I I I^{*}$	0	\mathbb{Z}_{2}	$E_{7} \oplus A_{1}$	$\Gamma_{0}(2)$
$I_{1}, I_{3}, I V^{*}$	0	\mathbb{Z}_{3}	$E_{6} \oplus A_{2}$	$\Gamma_{0}(3)$
$2 I_{1}, I_{4}^{*}$	0	\mathbb{Z}_{2}	D_{8}	$\Gamma_{0}(4)$
I_{1}, I_{4}, I_{1}^{*}	0	\mathbb{Z}_{4}	$D_{5} \oplus A_{3}$	$\Gamma_{0}(4)$
$2 I_{1}, 2 I_{5}$	0	\mathbb{Z}_{5}	$A_{4} \oplus A_{4}$	$\Gamma_{1}(5)$
$I_{1}, I_{6}, I_{3}, I_{2}$	0	\mathbb{Z}_{6}	$A_{5} \oplus A_{2} \oplus A_{1}$	$\Gamma_{0}(6)$
$2 I_{1}, I_{8}, I_{2}$	0	\mathbb{Z}_{4}	$A_{7} \oplus A_{1}$	$\Gamma_{0}(8)$
$3 I_{1}, I_{9}$	0	\mathbb{Z}_{3}	A_{8}	$\Gamma_{0}(9)$
$I_{1}, I I I^{*}, I I$	1	-	E_{7}	$P L S(2, \mathbb{Z})$
$I_{1}, I I I, I V^{*}$	1	-	$E_{6} \oplus A_{1}$	$P L S(2, \mathbb{Z})$
$I_{1}, I_{2}^{*}, I I I$	1	\mathbb{Z}_{2}	$D_{6} \oplus A_{1}$	$\Gamma_{0}(2)$
$I_{1}, I_{3}^{*}, I I$	1	-	D_{7}	$\Gamma_{0}(3)$
$I_{1}, I_{5}, 2 I I I$	2	-	$A_{4} \oplus 2 A_{1}$	$\Gamma_{0}(5)$
$I_{1}, I_{7}, 2 I I$	2	-	A_{6}	$\Gamma_{0}(7)$

Modular curves and quiver points

One can then identify the light particles and, in favourable cases, the 5d BPS quiver.
[Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa, 2011; CC, Del Zotto, 2019]
Example: The $D_{S^{1}} E_{8} \mathrm{CB}$ configuration $\mathcal{S}=\left(I_{1}, I_{6}, I_{3}, I_{2}\right)$, with:

$$
\mathscr{S}: \quad I_{6}: 6(1,0), \quad I_{2}: 2(-3,1), \quad I_{3}: 3(2,-1),
$$

This is a correct 3 -blocks quiver for $d P_{8}$ [Wijnholt, 2002].
By removing γ_{1}, we get a BPS quiver for the $4 \mathrm{~d} E_{8} \mathrm{MN}$ theory.
In favourable cases, we can prove that the quiver point exists, by computing the periods exactly.

Summary and outlook

Summary:

\diamond We revisited a general approach to rank-one $4 \mathrm{~d} \mathcal{N}=2$ SQFT in terms of rational elliptic surfaces.
\diamond We pointed out that the Persson classification of RES gives classification of CB configurations.
\diamond We determined the flavour symmetry group directly from the SW geometry.
\diamond We discussed the Coulomb branch physics of 5d SCFTs on $\mathbb{R}^{4} \times S^{1}$.
\diamond We observed some interesting new relations between 5d E_{n} SCFTs and 4d Argyres-Douglas theories.
\diamond We studied global properties of the U-plane, such as modularity.
Outlook:
\diamond We initiated a study of quiver points on the U-plane. More systematic analysis needed.
\diamond These elementary considerations are fundamental to a better understanding of partition functions of 5d SCFTs on five-manifolds. Work in progress.

