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Introduction

QFT and geometry
Motivation and context, in a nutshell:
I QFT is hard (and mathematically shaky...).
I Supersymmetry often gives rise to more geometric approaches to quantum fields.
I We can engineer SQFT in string theory (using open and/or closed strings).

Recall the basic string-theory framework from the point of view of 10d (or 11d)
space-time:

We have a low-energy effective quantum field theory in d-dimensional space-time coupled
to gravity, with an effective Newton constant:

GN ∼
1

vol(X)
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Introduction

QFT and geometry
Consider X being a non-compact variety. Then gravity decouples.

Specifically, in this talk:
I we will take X to be a canonical threefold singularity in the sense of [Reid, 1983].
I we place ourselves in 11-dimensional M-theory. Note the identity:

11 = 5 + 6

I We then obtain a quantum field theory in five dimensions.
[Seiberg, 1996; Morrison, Seiberg, 1996; Morrison, Seiberg, Intriligator 1996]
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Introduction: the SW solution for SQCD

Introduction: the SW solution for SQCD
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Introduction: the SW solution for SQCD

The Seiberg-Witten solution
Let us first go back to ‘basics’: [Seiberg, Witten, 1994]
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Introduction: the SW solution for SQCD

4d N = 2 SQCD

We are interested in 4d N = 2 supersymmetric gauge theories. For simplicity, focus on
SQCD with SU(2) gauge group:
I Vector multiplet for gauge group SU(2):

V = (φ,Aµ, λI , λ̄I , DIJ)

Scalar potential includes term V =
∣∣[φ̄, φ]

∣∣2 ≥ 0.
I Nf ‘flavors’: hypermultiplets in the fundamental, 2⊕ 2̄, with masses mi.
I Flavour symmetry algebra gF : so(2Nf ) if mi = 0, ∀i, u(Nf ) if mi = m, and u(1)Nf

with generic masses.
I Asymptotic freedom implies Nf ≤ 4. The theory with Nf = 4 and gF = so(8) is a

4d SCFT with an exactly marginal gauge coupling.
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Introduction: the SW solution for SQCD

4d N = 2 SQCD

I Generic vacuum is on the Coulomb branch:

φ = − i√
2

(
a 0
0 −a

)
, SU(2)→ U(1)

The SW solution gives the exact low-energy effective action for the IR U(1):

S =
∫
d4x Im

(
τ(a)

)
(FµνFµµ + ∂µa∂

µa+ · · · )

By supersymmetry, the CB metric is determined by an holomorphic function, the
prepotential:

τ = ∂2F
∂a2

The CB is parameterised by the gauge-invariant parameter:

u = 〈Tr(φ2)〉 ≈ −a2 + · · ·

The CB of 4d N = 2 SQCD is ‘the u-plane’.
The point at infinity, u =∞, is the weak coupling point.
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Introduction: the SW solution for SQCD

The u-plane of SQCD
Electric-magnetic duality of a U(1) vector multiplet:(

aD
a

)
→ M∗

(
aD
a

)
, M∗ ∈ SL(2,Z) ∼=

〈
S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)〉
with SL(2,Z) monodromies of the ‘electromagnetic periods’ (modulo constant shifts if
mi 6= 0). We have:

aD = ∂F
∂a

, τ = ∂aD
∂a

.

For fixed masses, the u-plane has the form:

I paths γv, v = 1, · · · , k, and v =∞.
I γ∞ = −(γ1 + · · ·+ γk)
I If mi generic, k = Nf + 2.
I M∞

∏k

l=1 M∗l = 1 .

We will think of the u-plane as a projective
plane, P1 ∼= {u} with a distinguished point
u =∞.
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Introduction: the SW solution for SQCD

The SW solution

Postulate that τ with Im(τ) ≥ 0 is the modular parameter of an elliptic curve, Eu:

I We then have:

τ = ωD
ωa

= ∂aD
∂a

,

ωD = daD
du

=
∫
γB

ω ,

ωa = da

du
=
∫
γA

ω .

I The SW solution is a specific elliptic fibration over
the CB. The one-parameter family of curves Eu is
usually called ‘the SW curve’.

I The ‘Seiberg-Witten geometry’ is the total space of
the SW fibration over the u-plane.

I It necessarily has singular fibers.
Kodaira classification.
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Introduction: the SW solution for SQCD

The SW solution
I Singularity at infinity determined at weak coupling (1-loop β-function):

I∗4−Nf : M∞ = −T 4−Nf

I Simple singularities in the interior: In singularity (multiplicative fiiber):

In : M∗ = Tn

The actual monodromy is conjugate to Tn.
If a single dyon of charge (m, q) becomes massless at u = u∗:

M(m,q)
∗ = B−1TB =

(
1 +mq q2

−m2 1−mq

)
.

I Other possibilities, from the Kodaira classification of singular elliptic fibers:

II : M∗ = (ST )−1 , II∗ : M∗ = ST ,

III : M∗ = S−1 , III∗ : M∗ = S ,

IV : M∗ = (ST )−2 , IV ∗ : M∗ = (ST )2 .
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Introduction: the SW solution for SQCD

The u-plane of massless SQCD

For massless SQCD, we have: [Seiberg, Witten, 1994]

In singularity: n mutually local particles become massless.
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Introduction: the SW solution for SQCD

The symmetry group of 4d N = 2 SQCD

The (global) symmetry group of a theory is, by definition, the group that acts effectively
on gauge-invariant states. In particular, we must quotient by gauge redundancies.

The global symmetry of massless SQCD is easily determined in the UV:

GF = SO(2Nf )/Z2

We also write this as:

Nf 0 1 2 3 4
GF - U(1) (SU(2)/Z2)×(SU(2)/Z2) SU(4)/Z4 Spin(8)/(Z2 × Z2)

The pure SU(2) gauge theory (Nf = 0) has a one-form symmetry:
[Gaiotto, Kapustin, Seiberg, Willett, 2014]

Z [1] = Z2

which acts on Wilson loops in the fundamental (i.e. background quark worldlines):

Z2 : W → −W
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Introduction: the SW solution for SQCD

The symmetry group of 4d N = 2 SQCD

We would like to determine the symmetry directly in the IR.

Let us start with a partial answer:

Claim: The semi-simple part of the flavor symmetry algebra gNA
F = Lie(GF )NA is given

in terms of the Kodaira singularities in the interior:

gNA
F =

k⊕
v=1

gv ,

with:

Fv In I∗m II III IV II∗ III∗ IV ∗

gv su(n) so(8 + 2m) − su(2) su(3) e8 e7 e6

We will soon explain how to determine GF itself, directly from the SW geometry.
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Rational elliptic surfaces

Rational elliptic surfaces
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Rational elliptic surfaces

SW curve and periods: generalities

It is convenient to bring the SW curve into the Weierstrass normal form:

y2 = 4x3 − g2(u,m)x− g3(u,m)

The singular fibers are located along the zeros of the discriminant:

∆(u) = g2(u)3 − 27g3(u)2

For SQCD, this is a polynomial of order Nf + 2. At generic masses, we have Nf + 2
simple roots in u (giving rise to I1 singularities).

Example: For pure SU(2), we have:

g2(u) = 4u2

3 − 4Λ4 , g3(u) = −8u3

27 + 4
3uΛ4 ,

and the discriminant:
∆ = 16Λ8 (u2 − 4Λ4)
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Rational elliptic surfaces

SW curve and periods: generalities

Kodaira’s classification of singularities of elliptic fibrations:

g2 ∼ (u− u∗)ord(g2) , g3 ∼ (u− u∗)ord(g3) , ∆ ∼ (u− u∗)ord(∆) .

fiber τ ord(g2) ord(g3) ord(∆) M∗ flavor
Ik i∞ 0 0 k Tk su(k)
I∗k i∞ 2 3 k + 6 −Tk so(2k+8)
I∗0 τ0 ≥ 2 ≥ 3 6 −1 so(8)
II e

2πi
3 ≥ 1 1 2 (ST )−1 -

II∗ e
2πi

3 ≥ 4 5 10 (ST ) e8
III i 1 ≥ 2 3 S−1 su(2)
III∗ i 3 ≥ 5 9 S e7

IV e
2πi

3 ≥ 2 2 4 (ST )−2 su(3)
IV ∗ e

2πi
3 ≥ 3 4 8 (ST )2 e6
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Rational elliptic surfaces

SW curve and periods: generalities

We are interested in the ‘physical periods’:

aD =
∫
γB

λSW , a =
∫
γA

λSW .

with the Seiberg-Witten differential such that:

dλSW

du
= ω , ω ≡ dy

x

Thus, we can find the physical periods from the ‘geometric periods’:

ωD =
∫
γB

ω , ωa =
∫
γA

ω .

At any fixed m, they satisfy a standard Picard-Fuchs equation:

∆(u)d
2ω

du2 + P (u)dω
du

+Q(u)ω = 0
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Rational elliptic surfaces

SW geometry and rational elliptic surface
The low-energy physics on the CB is determined by the (affine) bundle:

C2 → (SW geom)→ B ∼= {u}

with the fibers given by the periods (aD, a).

Once we geometrize the periods by introducing the SW curve Eu, we have:

E → S → B

We compactify the base by adding the point at infinity:

B ∼= {u} ∼= P1

The SW geometry S is then a rational elliptic surface (RES) with a section.

Note: Any (resolved) RES S̃ can be obtained as a blow up of the projective plane at 9
points, dP9 = Bl9(P9). This is also called ‘half-K3 surface’ by string theorists. A deep
fact is then that:

H2(S̃,Z) ∼= 〈(O), E〉 ⊕ (−E8)

with E8 denoting the E8 lattice, for the 2-cycles with the intersection pairing.
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Rational elliptic surfaces

SW geometry and rational elliptic surface
The singular fibers lead to ADE singularities on S, in correspondence with the ADE
‘flavor’ type.
They admit a standard resolution, S̃ → S. (Kodaira-Neron model.)

π−1(U∗,v) = Fv ∼=
mv−1∑
i=0

m̂v,iΘv,i ,

Example: The En family.
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Rational elliptic surfaces

The Mordell-Weil group of rational section

Elliptic curves are additive groups:

P1 + P2 = P3

Given an elliptic fibration E → S → P1, there may exist non-trivial rational sections. In
Weierstrass form:

P = (x(u), y(u)) , x(u), y(u) ∈ C(u)

They form a finitely generated abelian group, the Mordell-Weil group:

Φ = MW(S) ∼= Zrk(Φ) ⊕ Zk1 ⊕ · · · ⊕ Zkt .

The number of free generators, rk(Φ) ≥ 0, is called the rank of the MW group.

The trivial element in Φ is the zero section, O = (∞,∞).

Importantly, the MW group can have non-trivial torsion elements, kiPtor = O.
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Rational elliptic surfaces

The classification of rational elliptic surfaces

Rational elliptic surfaces S are fully classified. [Persson, 1990; Miranda, 1990]

They are characterised by:
I A set of ‘allowed’ singular fibers, (Fv).
I The MW group Φ.

In fact, in most cases, the set of singular fibers fully determines S.

A basic but powerful global constraint is:∑
v

ord(∆)|U∗v = 12

where the sum includes ‘v =∞’. There is thus a finite set of allowed singularities.
Additional considerations show that these are the following 20:

I1, · · · , I9 , I∗0 , · · · , I∗4 , , II , III , IV , II∗ , III∗ , IV ∗ .

Total number of distinct RES: 289.

22 / 72



4d SQFTs of rank one, revisited

4d SQFTs of rank one, revisited
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4d SQFTs of rank one, revisited

Fixing the fiber at infinity
The RES perspective, and Persson’s classification, gives us a bird’s-eye view of rank-one
4d N = 2 theories.
The basic idea, generalising [Caorsi, Cecotti, 2018], is that the UV N = 2 SQFT is determined
by the fiber at infinity:

TF∞ ←→ {S | π−1(∞) = F∞} .
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4d SQFTs of rank one, revisited

Fixing the fiber at infinity

Some comments:
I Fixing F∞, the list of distinct RES with such a fiber gives the number of distinct CB

configurations for TF∞ , which we denote by:

S ∼= (F∞, F1, · · · , Fk)

For instance, pure SU(2) has a single CB configuration, S ∼= (I∗4 , I1, I1).
I The above ‘periodic table’ includes the 3 ‘classic AD SCFTs [Argyres, Douglas, 1995] and

the 3 En MN theories [Minahan, Nemeschansky, 1996].
I It does not include the other 4d SCFTs [Argyres, Wittig, 2007; Argyres, Lotito, Lu, Martone, 2016]

with enhanced CB (although, see [Caorsi, Cecotti, 2016]).
I Conjecture (?): the table gives the full list of CB configurations for rank-one 4d
N = 2 SQFTs with a ‘trivial’ CB (i.e. with only a U(1) vector multiplet).

I The top row corresponds to 5d SCFTs on R4 × S1, as we will show.
I If we choose F∞ = I0 (the trivial fiber), we get the E-string on R4 × T 2. There are

therefore 289 distinct CB configurations for that theory.
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

We claimed above that the non-abelian part of the flavour symmetry was captured by the
singular fibers (in the interior), Fv 6=∞.

We also claim that each generator of Φfree = Φ/Φtor gives rise to a U(1) flavor
symmetry.

The full flavour symmetry algebra is then:

gF =
rk(Φ)⊕
s=1

u(1)s ⊕
k⊕
v=1

gv ,

One can also show that:
rank(gF ) = 8− rank(g∞) .

Example: SU(2), Nf = 1. The massless CB configuration is S ∼= (I∗3 , 3I1). In that case,
one indeed finds Φ ∼= Z, in agreement with gF = u(1).
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

The global form of flavour group can be determined by analysing the full MW group.
For simplicity, assume that rk(Φ) = 0, so that GF is semi-simple:

Φ = Φtor = Zk1 ⊕ · · · ⊕ Zkt

Let G̃F denote the simply-connected group such that gF = Lie(GF ).

Define the subgroup of Φtor of ‘interior-narrow sections’:

Z [1] =
{
P ∈ Φtor

∣∣ (P ) intersects Θv,0 for all Fv 6=∞
}
,

and denote by F the cokernel of the inclusion map Z [1] → Φtor:

0→ Z [1] → Φtor → F → 0 .

Then, we claim that:
I GF = G̃F /F is the flavour symmetry group.
I Z [1] is the one-form symmetry group.

This is very similar to discussions of the gauge group in F-theory [Anspinwall, Morrison, 1998;

Morrison, Park, 2012; ....] (not coincidentally).
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

Example: SQCD. For massless SQCD, one finds:

Nf 0 1 2 3 4
S (I∗4 , 2I1) (I∗3 , 3I1) (I∗2 , 2I2) (I∗1 , I4, I1) (I∗0 , I∗0 )
Φ Z2 Z Z2

2 Z4 Z2
2

This matches the results expected from the UV:
I Nf = 0: we have Φtor = Z [1] = Z2, in agreement with known results.
I Nf = 2: we have Φtor = F and GF = SU(2)× SU(2))/(Z2 × Z2).
I Nf = 3: we have Φtor = F and GF = SU(4)/Z4.
I Nf = 4: we have Φtor = F and GF = Spin(8)/(Z2 × Z2).
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

The general result can also be applied to non-Lagrangian theories. We have the following
interesting RES: [Miranda, Persson, 1986]

I S = (II, II∗), with Φ = 0.
• If F∞ = II∗, we have the AD point H0 with trivial flavour group.
• If F∞ = II, we have the E8 MN SCFT, with GF = E8.

I S = (III, III∗), with Φ = Z2.
• If F∞ = III∗, we have the AD point H1 with flavour group GF = SO(3).
• If F∞ = III, we have the E8 MN SCFT, with GF = E7/Z2.

I S = (IV, IV ∗), with Φ = Z3.
• If F∞ = IV ∗, we have the AD point H2 with flavour group GF = PSU(3).
• If F∞ = IV , we have the E8 MN SCFT, with GF = E6/Z3.

All these flavour groups are centerless. For the MN theories, this determination
reproduces recent results [Bhardwaj, 2021]. The H1 flavour group was determined in [Buican,

Jiang, 2021], and the H2 flavour group is a new result.
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4d SQFTs of rank one, revisited

Systematic analysis of CB configurations
Using the Persson classification and some direct computations, we can map out the full
set of CB configurations of a given SQFT T∞, in principle.
Example: SU(2), Nf = 3. There are 13 allowed configurations:
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Modularity

Modularity
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Modularity

Modularity of the u-plane

For any 4d N = 2 SQFT with mass parameters m, we have an ‘extended CB’ where m
are viewed as VEVs for background vector multiplets.

There are many ‘special loci’ on the extended Coulomb branch which have modular
properties. More precisely, it can happen that, at some fixed values of the masses, the
u-plane is a modular curve:

B ∼= H/Γ , Γ ⊂ SL(2,Z)

for some particular modular subgroup Γ. When this happens, the map:

u : H/Γ→ B : τ 7→ u(τ)

is an isomorphism. The Γ-invariant function u(τ) is called the Hauptmodul (or principal
modular function) of Γ.

When the CB is modular, the singularities are in one-to-one correspondence with cusps
and elliptic points of Γ. This simplifies the analysis of e.g. the monodromy group.

Note: even when the CB is not modular, it is advantageous to work on the τ -plane.
See [Aspman, Furrer, Manschot, 2000, 2021] for recent discussions.
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Modularity

Modular curves for SQCD

Massless SQCD with Nf 6= 1 is modular: [Seiberg, Witten, 1994; Nahm, 1996]

Note: Massless Nf = 1 is not modular.
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Modularity

Modular curves for SQCD
Example: pure SU(2). Modular curve for Γ0(4). Two cusps of width 1.

u(τ) = 1
8

(
q−

1
4 + 20q

1
4 − 62q

3
4 + 216q

5
4 − 641q

7
4 + 1636q

9
4 +O

(
q

11
4

))
.

Associated monodromies:
Mu=1 = STS−1 , Mu=−1 = (T 2S)T (T 2S)−1 , M∞ = PT 4 .
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Modularity

Modular curves for SQCD
Another example: SU(2), Nf = 1.

Two configurations: massless one is not modular. The other is modular for Γ = Γ0(3):

u(τ) = −
5
3
−

1
9

(
η
(
τ
3

)
η(τ)

)12

,

Note the AD points H0 as an elliptic point: [ Argyres, Plesser, Seiberg, Witten, 1995]
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5d SCFTs on a circle and geometric engineering

5d SCFTs on a circle and geometric engineering
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5d SCFTs on a circle and geometric engineering

5d SCFT from M-theory

M-theory is expected to define a surjective map:

{CY threefold singularity} → {5d SCFTs} : X 7→ T 5d
X

This is poorly understood in general.

Most basic quantity:

r = rank(T 5d
X ) = number of exceptional divisor in generic crepant resolution X̃→ X

If X̃, the N = 1 SUGRA approximation is valid for large Kähler volumes. We then have
a gauge theory U(1)r with 5d prepotential determined classically:

F5d = 1
6
∑
i,j,k

Fi,j,kSi · Sj · Sk
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5d SCFTs on a circle and geometric engineering

5d SCFT from M-theory
Geometric realization of the full moduli space of T 5d

X .
I Kähler moduli of X̃ = ECB moduli
I C-structure moduli of X̂ = Higgs branch moduli (+ irrelevant couplings)
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5d SCFTs on a circle and geometric engineering

5d SCFT from M-theory: rank one

Here we focus on the simplest example, of rank one: [Morrison, Seiberg, 1996]

X̃ = Tot(K → S) , S = F0 or dPn (n 6= 8)

Singularity X: blow-down the zero section S, which is a Fano surface.

Two ways of describing the del Pezzo surface:
(i) dPn ∼= Bln(P2): blow up of P2 at n generic points.

(ii) dPn ∼= Bln−1(F0): blow up of F0 = P1 × P1 at n− 1 generic points.

Intersection form H2(S,Z)×H2(S,Z)→ Z can be written as:(
9− n 0

0 −AEnIJ

)
, I, J = 1, · · · , n , 9− n = deg(S) = K · K

⇒ M2-brane particles on CB form representations of En = en algebra.
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5d SCFTs on a circle and geometric engineering

En theories from del Pezzos

These SCFTs are all related by RG flows triggered by massive deformations:

dP8 dP7 dP6 dP5

dP4 dP3

u(1)

dP2

u(1)

dP1

F0 P2
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5d SCFTs on a circle and geometric engineering

En theories from del Pezzos

dP8 dP7 dP6 dP5

dP4 dP3 dP2 dP1

F0 P2

for ‘generalized toric’ (GTP) description, see [Benini, Benvenuti, Tachikawa, 2009]
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5d SCFTs on a circle and geometric engineering

The 5d gauge theory limit
I These 10 rank-one SCFTs were first discovered by Seiberg as UV fixed points of 5d
N = 1 gauge theories. [Seiberg, 1996]

I Recall that 5d gauge theories are IR-free effective theories. The perturbative
gauge-theory description is valid for RG scales:

µ� m0 ≡
1
g2

5d

I T 5d
En admits a mass deformation to a 5d N = 1 gauge theory in the IR:

E � m0 = 1
g2

5d
: 5d N = 1 SU(2) with Nf = n−1 fundamentals.

This mass deformation breaks the flavor algebra as:

En → so(2n− 2)⊕ u(1)

α1 α2 α4 α5
· · ·

αn

α3

→
α2 α4 α5

· · ·
αn

α3
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5d SCFTs on a circle and geometric engineering

5d theories on R4 × S1: generalities

Consider the SCFT T 5d
X compactified on a finite-size circle, of radius β.

This gives us a 4d N = 2 supersymmetric Kaluza-Klein (KK) field theory:

DS1T 5d
X on R4 ∼= T 5d

X on R4 × S1
β

Note:
I DS1T 5d

X is not conformal. Scale µKK = 1
β
.

I The Coulomb branch is complexified. In terms of the low-energy abelian vector
multiplet:

B : a = i(ϕ+ iA5) , e2πiA5 ≡ e
∫
S1 A

IR vector multiplet is not globally defined on B, just like for any 4d N = 2 SQFT.
see e.g. [Nekrasov, 1996]
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5d SCFTs on a circle and geometric engineering

5d theories on R4 × S1: generalities

� At any point U ∈ B, we have massive half-BPS particle excitations. Their masses:

Mγ = |Zγ | = |eiai +mia
i
D + qIµI + nµKK| ,

are determined by their electro-magnetic charges:

γ = (e,m, q, n) ∈ Γ ⊂ Z2r+f+1

To determine the BPS spectrum {γ} is a complicated, unsolved problem in general.
(Recent studies for 5d KK theories: [Eager, Selmani, Walcher, 2016; Banerjee, Longhi, Romo, 2019, 2020;

CC, Del Zotto, 2019; Longhi, 2020; Mozgovoy, Pioline, 2020])

� Note: the charge lattice includes, electromagnetic charges, 5d flavor charges and the
KK charge.

� Key features of any SW geometry are its singular loci: the complex-codim-1 loci on
the CB where some BPS particles become massless.
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5d SCFTs on a circle and geometric engineering

The U -plane for a 5d SCFT on S1

As a first approximation, let us think of our En theories as 5d SU(2) gauge theories.
The low-energy U(1) scalar is:

a = i(ϕ+ iA5) , e2πiA5 ≡ e
∫
S1 A

and the gauge-invariant order parameter is:

U = 〈W 〉 = e2πia + e−2πia + · · ·

Here W is a supersymmetric Wilson line in 5d, wrapped along the S1.

Similarly, the complexified mass parameters are flavor Wilson lines:

MI = e2πiµI = e−βmI+iϑI
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5d SCFTs on a circle and geometric engineering

The U -plane for a 5d SCFT on S1

At fixed MI , the Coulomb branch is one-dimensional, with local coordinate U ∈ C.
This is the U-plane.

As in 4d, the low-energy physics is fully determined by some Seiberg-Witten geometry,
which was derived in [Ganor, Morrison, Seiberg, 1996; Eguchi, Sakai, 2002].

All our computations are done using the En SW curves of [Eguchi, Sakai, 2002]. (Matches
Hori-Vafa mirror in toric case.)
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5d SCFTs on a circle and geometric engineering

The U -plane from local mirror symmetry

The SW solution is essentially local mirror symmetry: [Katz, Mayr, Vafa, 1996]

CB of DS1T 5d
X ←→ IIA string theory on R4 × X̃

←→ IIB string theory on R4 × Ŷ

We have the local mirror symmetry between smooth threefolds:

X̃ ↔ Ŷ , D(X̃) ↔ Fuk(Ŷ)

In particular:
I U,MI are complex structure parameters of Ŷ.
I a, µI are Kähler parameters of X̃.
I The exact expression:

a(U) = 1
2πi log 1

U
+
∑
k

ckU
k

is the mirror map.

47 / 72



5d SCFTs on a circle and geometric engineering

The U -plane for a 5d SCFT on S1

For our local dPn geometries, the mirror threefold Ŷ can be written as the suspension of
an affine elliptic curve, E:

v1v2 + P (w, t) = 0 , E = {(w, t) ∈ C∗ × C∗ | P (w, t) = 0}

� For the five toric geometries, E0, Ẽ1, E1, E2 and E3, we have P (w, t) equal to the
Newton polygon of the toric diagram. [Chiang, Klemm Yau, Zaslow, 1999; Hori, Vafa, 2000]

� For the higher del Pezzos, the mirror curves are also known. They are all limits of
the E-string theory Seiberg-Witten curve [Ganor, Morrison, Seiberg, 1996; Eguchi, Sakai, 2002]

� We have:
H3(Ŷ,Z) ∼= Z|Q0| , |Q0| = 2r + f + 1 = n+ 3
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5d SCFTs on a circle and geometric engineering

Large-volume perspective
Coming back to Type IIA on:

X̃ = Tot (K → dPn) , dPn ∼= Bln−1(F0)

we have:
I A four-cycle B4 = [dPn]. The D4-brane on B4 gives the ‘monopole.’
I A 2-cycle Cf such that C2

f = 0 and Cf · B4 = −2.
The D2-brane on Cf is ‘the W -boson.

I Exceptional 2-cycles Ea, a = 1, c . . . , n− 1: gives the hypermultiplets.

BPS particles are wrapped branes, with central charge:

Z = mΠD4 + nD2f ΠD2f +
∑

nD2Ea ΠD2Ea + nD0

The D-brane periods are well known at large volume, where the supergravity
approximation holds (as an asymptotic expansion):

ΠD2C =
∫
C
(B + iJ) ,

ΠD4 = 1
2

∫
B4

(B + iJ)2 + χ(B4)
24 + · · · .
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5d SCFTs on a circle and geometric engineering

Large-volume perspective

The exact periods receive worldsheet instanton corrections, which can be obtained using
local mirror symmetry.

There are n+ 3 D-brane periods, but n+ 1 are known exactly (no quantum corrections):

ΠD0 = 1 , ΠCI = 1
2πi log(zI) = µI

in other words, zI = MI for the flavor curves. These are such that CI · B4 = 0.
The non-trivial periods are:

ΠCf ≡ 2a = 1
2πi log

( 1
U2

)
+ · · ·

and:
ΠD4 = aD = 1

(2πi)2 log
( 1
U2

)
log
(
M0

U2

)
+ χ

24 + · · ·

Note the normalisation of the a-period. (W -boson of electric charge 2 for SU(2).)
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5d SCFTs on a circle and geometric engineering

Local mirror threefold and curve

In the mirror Ŷ, we have to compute classical periods:

a =
∫
S3
a

Ω , aD =
∫
S3
D

Ω , S3
a · S3

D = 1 .

The corresponding cohomology classes fit in a mixed Hodge structure:

H3(X̃) ∼= H2,1 ⊕H1,2 ⊕H2,2 ∼= C⊕ C⊕ Cn+1

This can be reduced to the periods of the elliptic (or affine) curve E:

aD =
∫
γB

λSW , a =
∫
γA

λSW .

Thus, we may focus on that ‘SW curve’ to describe the mirror geometry.
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5d SCFTs on a circle and geometric engineering

BPS states and flavour symmetry
Write the 3-fold Ŷ as a double-fibration on ‘the W -plane’:

E × C∗ → Ŷ→ C ∼= {W}

with:
F (x, y;W ) = 0 , v1v2 = U −W .

I At U = W , the C∗ fiber degenerates.
I The elliptic fiber E degenerates at W = U∗.
I U is a complex structure parameter, and W and ambiant coordinate of the CY3

geometry. But we can substitute one for the other in the obvious way.
I Thus, we can view the RES S as part of Ŷ itself, as E → S → {W}.
I We can build supersymmetric 3-cycles S3

γ as torus fibrations over paths on the
W -plane. [Hori, Vafa, 2000]

Let Γ2 ⊂ S3
γ be the two-chain with boundary along γ ∈ EU above the fiber at W = U .

We have:
Πγ =

∫
S3
γ⊂Ŷ

Ω =
∫

Γ⊂S
Ω2 =

∫
γ∈E

λSW ,

with ∂Γ = γ, provided that:
Ω2 = dλSW = ω ∧ dU

inside S.
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5d SCFTs on a circle and geometric engineering

BPS states and flavour symmetry
There is an F-theory perspective on this IIB geometry, by viewing τ itself as the
axio-dilaton. In that interpretation:
I The singular fibers are 7-branes of type ADE.
I One interprets W = U as the position of a single probe D3-brane.
I BPS states are string junctions between the D3-brane and the 7-branes.

To discuss the flavour group, we consider (formal) pure flavour states which are open
strings between 7-branes. They correspond to closed 2-cycles Γ ∈ NS(S̃). Their flavor
weights under gNA = ⊕vgv are determined by the intersection with the exceptional fibers:

w
(gv)
i (Γ) = Θv,i · Γ

The abelian charges are given in terms of the so-called Shioda map: [Shioda, 1990]

qs(Γ) ≡ ϕ(Ps) · Γ .

Moreover, physical states should not intersect the fiber at infinity:

Γ physical ⇔ w
(F∞)
i (Γ) = Θ∞,i · Γ = 0 ,
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5d SCFTs on a circle and geometric engineering

BPS states and flavour symmetry
Recall our definitions:

Z [1] =
{
P ∈ Φtor

∣∣ (P ) intersects Θv,0 for all Fv 6=∞
}
,

and:
0→ Z [1] → Φtor → F → 0 .

The Shioda map. An important mathematical result [Shioda, 1990] is that there exists a
group homomorphism:

ϕ : Φ→ NS(S̃)⊗Q ,

which maps sections to horizontal divisors (with rational coefficients). This map is given
explicitly by:

ϕ(P ) = (P )− (O)− ((P ) · (O) + 1)F +
∑
v

rank(gv)∑
i=1

λ
(P )
v,i Θv,i ,

with the rational coefficients:

λ
(P )
v,i =

rank(gv)∑
j=1

(A−1
gv )ij Θv,j · (P ) ,

given in terms of the inverse of the Cartan matrix of gv.
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5d SCFTs on a circle and geometric engineering

BPS states and flavour symmetry
Then, the argument for determining:

GF = G̃F /F

(in the semi-simple case, for simplicity) is similar to the F-theory argument in e.g.
[Aspinwall, 1998; Mayrhofer, Morrison, Till, Weigand, 2014; Cvetic, Lin, 2017].
For any state, we have:

rank(F∞)∑
l=1

λ
(Ptor)
∞,l w

(F∞)
i +

rank(gNA
F )∑

i=1

λ
(Ptor)
v,i w

(gNA
F )

i ∈ Z .

For the pure flavour states that satisfy the physical state condition:

rank(gNA
F )∑

i=1

λ
(Ptor)
v,i w

(gNA
F )

i ∈ Z , ∀Ptor ∈ F .

This directly implies the advertised result. To determine the precise action of F , we
compute the intersection of the sections with the fibers explicitly.
(Further arguments confirm our general results [CC, Magureanu, 2021].)
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The U -plane of the En 5d SCFTs
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The U -plane of the En 5d SCFTs

The fiber at infinity
Consider the En theory. One can determine the large volume monodromy from the
semi-classical periods.

Let us give a more "5d QFT" derivation: Take a limit where the 5d SU(2), Nf = n− 1
gauge-theory description is valid. At one-loop, the prepotential of the theory on R4 × S1

reads: [Nekrasov, 1998]

F = µ0a
2 + 2

(2πi)3 Li3
(
e4πia)− 1

(2πi)3

n−1∑
a=1

∑
±

Li3
(
e2πi(±a+µa))

and aD = ∂F
∂a

. The large volume monodromy is:

aD → aD + (9− n)a+ µ0 −
n−1∑
a=1

µa , a→ a+ 1

We thus have:

M∞ = T 9−n =
(

1 9−n
0 1

)
This determines the fiber at infinity, F∞ = I9−n, as anticipated.
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The U -plane of the En 5d SCFTs

Rational elliptic surfaces and generic masses:

The Ik fiber has monodromy conjugate to T k. The bulk I1 corresponds to a single BPS
particle becoming massless:

M (m,q)
∗ = B−1TB =

(
1 +mq q2

−m2 1−mq

)
.
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The U -plane of the En 5d SCFTs

The massless curves

Consider now MI = 1. One finds:

E8 : II∗ ⊕ I1
E7 : III∗ ⊕ I1
E6 : IV ∗ ⊕ I1
E5 : I∗1 ⊕ I1
E4 : I5 ⊕ I1 ⊕ I1
E3 : I3 ⊕ I2 ⊕ I1
E2 : I2 ⊕ I1 ⊕ I1 ⊕ I1
E1 : I2 ⊕ I1 ⊕ I1
Ẽ1 : I1 ⊕ I1 ⊕ I1 ⊕ I1
E0 : I1 ⊕ I1 ⊕ I1

in agreement with old ‘classic’ results. [Ganor, Morrison, Seiberg, 1996]

� This reproduce the En flavor symmetry, including abelian factors.
� The 4d LEEFT is IR free for n < 6
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The U -plane of the En 5d SCFTs

The massless curves

I It reproduces the 5d Higgs branches (one En-instanton moduli spaces).
I Note the case of E5: 4d SU(2) with Nf = 5 in the IR.
I 5d RG flows En → En−1 reproduced.
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The U -plane of the En 5d SCFTs

RG flows to 4d

Two types of flows:
I “zooming in”:

Here we just decouple the KK
scale.

I “geometric engineering
limit”:
We decouple the KK scale and
the instanton particles.

61 / 72



The U -plane of the En 5d SCFTs

Extremal rational elliptic surfaces
Subclass of rational elliptic surfaces with a section and with rk(MW) = 0. Classification
by [Miranda, Persson, 1986]. Small list of 16 surfaces.
I Four of them have only 2 singular fibers:

(II, II∗) , (III, III∗) , (IV, IV ∗) , (I∗0 , I∗0 ) .

They describe the 7 “classic” 4d SCFTs of rank one we just reviewed.
I The other 12 extremal surfaces all describe points on the extended Coulomb branch

of the 5d En SCFTs. They are all the possible maximal Dynkin subalgebras of En
(n 6= 1̃, 2). For instance:

I Recall that the same surface can describe different theories, by choosing ‘the point
at infinity’:
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The U -plane of the En 5d SCFTs

New 5d→ 4d limits

� Other interesting points on the 4d CB of each En KK theory?
� Most of these points are at |MI | = 1. In field theory, that corresponds to turning on
Wilson line along the S1 in an otherwise massless theory. In IIA or M-theory, this
corresponds to ‘quantum periods’ on vanishing cycles:

MI ∼ e
i
∫
CI
B

= e
i
∫
CI×S1 C3 with vol(CI) = 0

� The most interesting points are Argyres-Douglas points H0, H1, H2 which are not
the ones we would obtain by tuning the masses in 4d SU(2) with Nf = 1, 2, 3
flavors.
� The existence of such non-trivial limits was recently argued by [Bonelli, del Monte, Tanzini,

2020] using the 5d BPS quiver, as well as from a correspondence between these
SCFTs and (difference) Painlevé equations [Bonelli, Lisovyy, Maruyoshi, Sciarappa, Tanzini, 2016].
We construct these limits explicitly.
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The U -plane of the En 5d SCFTs

Example: E3 and AD points

Consider the E3 SCFT. Its SW curve can be written as:

E3 :
√
λ

t

(
1 + M2

w

)
+ t
√
λ (1 +M1w) + 1

w
+ w − 2U = 0 .

I Recall that this is “5d SU(2), Nf = 2”.

I We have M0 = λ ∼ e
− β

g2
5d and two ‘hypermultiplet masses’ M1,M2.

I On the other hand, the AD theories are known to exist on the CB of 4d SU(2) with
Nf flavors:
• H0 ⊂ 4d SU(2), Nf = 1
• H1 ⊂ 4d SU(2), Nf = 2
• H2 ⊂ 4d SU(2), Nf = 3

So, we may expect H0 and H1 to appear here too. We get ‘more’.
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The U -plane of the En 5d SCFTs

Example: E3 and AD points
Starting from the massless curve λ = M1 = M2 = 1, we can get the AD fixed point H2
at:

IV : (λ,M1,M2) =
(

1, e
iπt

2 , e−
iπt

2

)

I2

I3 I1

I1

I1

I3

I1 I1 IV

I1

We can then “zoom in” to the 4d SCFT. Similarly, we find H1:

III : (λ,M1,M2) =
(
e

4iπt
3 , e

2iπt
3 , e

2iπt
3

)

I2 I3

I1 I2
III
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The U -plane of the En 5d SCFTs

Modularity of the U -plane
In many interesting special limits, the U-plane is a modular curve:

B ∼= H/Γ , Γ ⊂ SL(2,Z)

This means, in particular, that the mirror map is a modular function:

a = a(U) ↔ U = U(τ)

Example: the massless curves:

E7 : III∗ ⊕ I1 : Γ0(2)
E6 : IV ∗ ⊕ I1 : Γ0(3)
E5 : I∗1 ⊕ I1 : Γ0(4)
E4 : I5 ⊕ I1 ⊕ I1 : Γ1(5)
E3 : I3 ⊕ I2 ⊕ I1 : Γ0(6)
E1 : I2 ⊕ I1 ⊕ I1 : Γ0(8)
E0 : I1 ⊕ I1 ⊕ I1 : Γ0(9)

The massless E8, E2 and Ẽ1 are not modular.
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The U -plane of the En 5d SCFTs

MW group and global symmetry

The general prescription for the global symmetry works here too. We find:

GF = En/Z(En)

for the massless theories with semi-simple symmetry group.
I This agrees with the 5d result of [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021], which found GF

centerless using directly the M-theory geometry.
I The fiber F∞ = I8 does not determine the SQFT uniquely.

Two distinct choices for Z [1], either Z2 or trivial. This gives E1 or Ẽ1.
I The case E1 is special, with Φ = Z4 and Z [1] = Z2, with:

Z2 → Z4 → F = Z2

so that GF = SO(3).
I All other theories have Z [1] = 0.
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The U -plane of the En 5d SCFTs

Example: the massless E1 theory
This is “5d pure SU(2)0 at infinite coupling.”

The CB of the massless is a modular curve for the congruence subgroup Γ0(8):

F TF T 2F T 3F T 4F T 5F T 6F T 7F

SF T 2SF T 4SF
T 2ST

Singularities and monodromies:
M(−2) = STS−1 , M(0) = (T 2S)T 2(T 2S)−1 , M(−2) = (T 4S)T (T 4S)−1 .

I At U = −2, the monopole (1, 0) is massless, aD → 0. “Conifold point.”
I At U = 0, two dyons (−1, 2) are massless.
I At U = 2, the dyon (1,−4) is massless.
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The U -plane of the En 5d SCFTs

Modular curves and quiver points
We can classify all modular CB configurations for any of the rank-one theories.

For instance, for DS1E8 and restricting to congruence subgroups (for simplicity):
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The U -plane of the En 5d SCFTs

Modular curves and quiver points

One can then identify the light particles and, in favourable cases, the 5d BPS quiver.
[Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa, 2011; CC, Del Zotto, 2019]

Example: The DS1E8 CB configuration S = (I1, I6, I3, I2), with:

S : I6 : 6(1, 0) , I2 : 2(−3, 1) , I3 : 3(2,−1) ,

This is a correct 3-blocks quiver for dP8 [Wijnholt, 2002].

By removing γ1, we get a BPS quiver for the 4d E8 MN theory.

In favourable cases, we can prove that the quiver point exists, by computing the periods
exactly.
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Conclusions

Summary and outlook

Summary:
� We revisited a general approach to rank-one 4d N = 2 SQFT in terms of rational
elliptic surfaces.
� We pointed out that the Persson classification of RES gives classification of CB
configurations.
� We determined the flavour symmetry group directly from the SW geometry.
� We discussed the Coulomb branch physics of 5d SCFTs on R4 × S1.
� We observed some interesting new relations between 5d En SCFTs and 4d
Argyres-Douglas theories.
� We studied global properties of the U -plane, such as modularity.

Outlook:
� We initiated a study of quiver points on the U -plane. More systematic analysis
needed.
� These elementary considerations are fundamental to a better understanding of
partition functions of 5d SCFTs on five-manifolds. Work in progress.
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