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Some words of motivation

Talk deals with aspects of Swampland Program:

[dentify the general principles that have to be satisfied
in an effective theory compatible with quantum gravity.

Swampland

|
QFTs that can be coupled

to quantum gravity

apparently consistent QFTs
that cannot be coupled
to quantum gravity



Field spaces and scalar potentials

~ Consider effective theory with a cut-off A
- scalar fields ¢’ spanning field space M
- scalar potential V' (¢) : maps from M to real line

= Which field spaces M can appear in the landscape? Related when
Which scalar potentials V' (¢) are in the landscape? lowering cut-off

A integrate out

M M ) heavy fields
1 Al

) integrate out

Ao heavy fields

Multiple new effective theories




Finiteness as a key principle of the landscape

~ Is the number of distinct effective theories compatible with quantum
gravity / string theory finite?

long part of the string phenomenology program e.o. [Douglas "03]
[Acharya,Douglas "06]

much recent activity: finiteness of spectra, ranks of gauge groups

Adams,DeWolfe, Taylor] [Kim,Shiu, Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang]
Dierigl, Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas| [Hamada, Vafa]
‘Taylor etal],[Kim,Shiu, Vafa],[Lee, Weigand],[Tarazi, Vafa]

~ In this talk: indicate a new non-trivial finiteness proof and promote
finiteness to a new universal principle to constrain
effective theories (no susy, no holomorphicity...)



Outhne

Part 1: Lessons about the complex structure moduli space
and flux vacua

— Scalar field spaces and scalar potentials in Type IIB flux
compactifications are remarkably constrained.

Part 2: Finiteness of self-dual flux vacua and the structure
of the flux vacuum landscape

— Constraints are ‘just enough’ to ensure non-trivial finiteness property.

Part 3: Structure ensuring finiteness: a new principle

— o-minimal structures and tame topology to describe the landscape



F'lux compactifications:
some lessons we learned




lype 1B / F-theory flux compactfications

Type IIB flux compactifications review: [Grafia] [Kachru,Douglas] ...
background flux: F3, H3 € HB(Yg,Z) / Fs AH; < K
Y3

vacuum condition: *G3 = iG] Gz = F5 — 7Hj

lift to F-theory flux compactifications
background flux: G4e H*(Ya,Z) / GaNGy < K
Yy

vacuum condition: *G,4 = Gy

— well studied set of N=0,1 vacua with (partially) fixed complex

structure moduli, backreaction under control, higher-derivative
corrections consistently included

[Becker,Becker]...[TG,Pugh,Weissenbacher]...[Cicoli,Quevedo,Savelli,Schachner, Valandro]



Using supersymmetry of the effective theory?

-~ Hodge star * changes over complex structure moduli space — complicated

-~ an alternative picture: express theory in terms of N=1 data

K — —log/ QOAQ e = Gp NS
YD YD
D-5

12,0 . ° B 0)-f the Calabi-Yau D-fold
O c H unique (D,0)-form on the Calabi-Yau O <D:4

= vacuum condition: D_:W =10 (DWW —0) (self-dual fluxes)

- periods of e — / () — complicated transcendental functions
&,

— hard to compute or ‘see’ properties
8



Complex structure moduli space

~ General conclusions in certain regions of the moduli space?

-~ Complex structure moduli space /M has boundaries + asymptotic regions
Example: mirror quintic

conifold point

o large complex

structure point

/



Complex structure moduli space

~ General conclusions in certain regions of the moduli space?

-~ Complex structure moduli space /M has boundaries + asymptotic regions

Example: mirror quintic

large complex
structure regime

/ mirror symmetry

large volume
regime

near-conifold
/

regime




Complex structure moduli space

= Note: geometry of boundaries + asymptotic regions can be very involved
for higher-dimensional moduli spaces

, 11 169 [Candelas,Font,Katz,Morrison]
Example: mirror [0 [18] |Candelas,De La Ossa,Font,Katz,Morrison]

conifold locus S

large complex
structure point




Complex structure moduh space

~ Systematic understanding of asymptotic moduli space without
scanning through explicit examples?

~ Identify states and flux vacua in the asymptotic regions of M ?

~ Test conjectures: distance conjecture, WGC, axionic/emergent string
conjecture, tadpole conjecture, finiteness conjectures



Complex structure moduh space

~ Systematic understanding of asymptotic moduli space without
scanning through explicit examples?

~ Identify states and flux vacua in the asymptotic regions of M ?

~ Test conjectures: distance conjecture, WGC, axionic/emergent string
conjecture, tadpole conjecture, finiteness conjectures

— reviews: [Palti] [Valenzuela etal.] [Grana,Herraez]

see also [Lee,Lerche, Weigand],[Cecotti]

— develop tools in asymptotic Hodge theory %g{gll’gi,l\ﬁlenzuela]
L1 Palti
and apply them to test conjectures 'TG,Li Valenzuela]

full power starts to become apparent in our more recent works
[TG,Ruehle,vd Heisteeg],[TG],[TG,Monnee,vd Heisteeg][Bastian, TG,vd Heisteeg]



Hodge structures and their variation

~ well-known Hodge decomposition of cohomology groups:

HD(YD,(C) = HD,O an HD—l,l a Hl,D—l D HO,D

— (p,q)-forms in H*4

14



Hodge structures and their variation

~ well-known Hodge decomposition of cohomology groups:

HD(YD,C) - HD,O s HD—l,l any Hl,D—l D HO,D

|

spanned by ()

~ (p,q)-splitting changes when moving in complex structure moduli space

g g2 P g\l L) — moduli dependence of ()

£ Hodee star on (p,q)-forms: kg = 177 1w w e AP

— (p,q)-splitting determines Hodge star and

Hw|\2:/ e
Yp

Hodge norm:

15



lL.esson 1: Classification of boundaries

- On each co-dimension 1 boundary in complex structure moduli space:

Middle cohomology H D (Yp,C) admits boundary (p,q)-decomposition
and decomposition into representations of sl(2,C)"

[Schmid][Cattani,Kaplan,Schmid]

Example: Y3 sending one parameter to boundary: sl(2,C)

H(Ys,C) = H @ HY' @ HY! © HY
HI3—1 — span@{|d,l>, d=0,..3 |=—3 3}

see, e.g., [ TG "20] for details
sl(2)-highest-spin  sl(2)-spin

In general: multiple sl(2)-spins



lL.esson 1: Classification of boundaries

- On each co-dimension 1 boundary in complex structure moduli space:

Middle cohomology H D (Yp,C) admits boundary (p,q)-decomposition
and decomposition into representations of sl(2,C)"

[Schmid][Cattani,Kaplan,Schmid]

Classification of boundaries using sl(2)-representations and positivity

|

works for all Kdhler manifolds ensure: / a N xsoa >0



Calabi-Yau threefold examples

- All cases: h*! =1 (‘mild’ degeneration Iy)

Ly conifold point,
Iy : Tyurin degeneration
IV, : large complex structure point

# Allcases: ho — 2 (‘mild” degeneration+one-modulus) [Kerr, Pearlstein, Robles|

(TG L]
Is cl : I I o151 o151
di 1T2l1), (TofTz|h) s {T2[T[T2) [Alvarez—Garcia,Blumenhe}gen et al. 120}
Coni-LCS class : I IV2‘1V1> , <11|IV2|IV2> : / [Demirtas et al. "20]

Seiberg-Witten
theory

<

<
IT; class: (Ip|[ITy|Ty), (IIqy|11q|11), (TMg|ITq|[ITy), (IIq |11 |11;) ;1
LCS class: ¢

[T, [TV |Iy) , (I11|IV2|IVe), (I11y|IVo|IILy), (I11n|IVa|IVy),

(Io[IV2[IVa) , (IV1[IV2[IVa), (IV2|IV|IVy), LCS: in [Kreuzer,Skarke]

(after mirror symmetry) 3




Liesson 2: Approximating the Hodge star

- In any asymptotic regime of the complex structure moduli space:

Hodge star can be approximated using sl(2, C)" - spins

Example: Yp boundary at t; = x; + 4y; — 00, o € H”(Yp,C)

regime: Y > Yo > ... > Yp (strict asymptotic’)

lall> ~ > )T T (e M), s

sl(2)-spins

— leading, most ‘crude’ approximation, but easy to handle




L.esson 3: Reconstructing the moduli space

- In any asymptotic regime of the complex structure moduli space:
Asymptotic moduli space geometry (Hodge star and periods) can be
reconstructed from data associated to boundaries

boundary data:
- s1(2, C)"- data, boundary (p,q)-decomposition

— classified + simple normal forms

Extra: chain of phase operators Oy, ..., 01
— used: most general Ansatz compatible with other boundary data

- Holographic perspective for n=1: sl(2,C) boundary data can be used to

reconstruct bulk Hodge star in a near boundary expansion

[TG][TG,Monnee,vd Heisteeg]
+ to appear

— WZW model on the moduli space



L.esson 3: Reconstructing the moduli space

In any asymptotic regime of the complex structure moduli space:
Asymptotic moduli space geometry (Hodge star and periods) can be
reconstructed from data associated to boundaries

boundary data:
- s1(2, C)"- data, boundary (p,q)-decomposition

— classified + simple normal forms

Extra: chain of phase operators Oy, ..., 01
— used: most general Ansatz compatible with other boundary data

reconstruction of CY3 periods - [Bastian, TG,vd Heisteeg]

combine [Cattani,Kaplan,Schmid],[Fernandez,Cattani],[Brosnan,Pearlstein,Robles]

10



L.esson 3: Reconstructing the moduli space

In any asymptotic regime of the complex structure moduli space:

Asymptotic moduli space geometry (Hodge star and periods) can be
reconstructed from data associated to boundaries

reconstruct periods with polynomial and essential instantons
at almost all boundaries in

essential exponential ‘instanton” corrections accordance with conjecture
[Palti, Weigand, Vafa]

v N 27t
il 1L (b F1L. ) =¢e g+ 0l )
cannot be dropped: required e.g. to ensure non-degeneracy of moduli metric

10



Modeling one-parameter periods

= Results for one parameter example:

I; — finite distance

IIg — infinite distance

11
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Modeling two-parameter periods

= Results for two-cubes: II; class:

(I |11 |17)

(ITq (111 |1y)

(I [IT¢ |T14 ) ,

(ITq [IT1 [Ty ) ,

( 14+ cz1 + = (a n122 + Qabzlzgllm 2 4+ b%n zl) \
I el (a2n1z2 + 2abz1 29 11 nnn2 + b%n z%)
bnozi1 + azo
1 log[zl]—;:? log|z2] (1 4oy L }l(a2n122 + 2abz129 11 i L 5271221)) )
1og[z1]+27;2 log|22] (1 —cz21 — }l(a2n 125 + 2abzy 22 11 nln? + b2n221)) —if(2)
\ i(bngz, + azg) 2 log[zé];log[@] - 12”711.”2(19,21 — az9) )
e L —nino L
file b — - = (a 25 + 2ab 2z, nz - b2n2z%)
parameters <IIO|111|11> <IIl‘IIl’Il> <IIQ|IIl|IIl> <IIl|IIl|IIl>
log-mon. n=n2=0| n1€Qs0,n2=0 | n1=0,n2€Q50 | n1,n2 € Qsg, nina # 1
inst. coeth i ab e R ige e Cll ae R . beC a,b e R—{0},c=0

11



L.esson 4: Systematic moduli stabilization

=~ New procedure to find flux vacua: [TG,Plauschinn,vd Heisteeg]

Example: (imaginary) self-dual flux *xG3 = 1G3

s1(2)-approximation * asymptotic periods full periods with
w. essential expon. all exponential
corrections corrections (hard
(nilpotent orbit) to find in practice)
| |
polynomial, ‘refinement’ of exact vacua
vacua easy to find of sl(2)-vacua

|TG,Li,Valenzuela]

Note: flat directions in sl(2)-approx. might be stabilized in successive steps

e.g. linear scenario [Palti, Tasinato,Ward] [Marchesano,Prieto, Wiesner] -



Liesson 4: Systematic moduli stabilization

=~ New procedure to find flux vacua: [TG,Plauschinn,vd Heisteeg]

sl(2)-approximation * asymptotic periods » full periods with
w. essential expon.
. all exponential
corrections
corrections

(nilpotent orbit)

= Remarks:

algorithmic approach to stabilize moduli (also away from large complex
structure) — abstract results, favorable numeric

naturally implement hierarchies (e.g. moduli masses, small Wy) linked to
classification of boundaries [Bastian, TG,vd Heisteeg]

possible for large number of moduli + fluxes [Grafia, TG,Herraez,

— tadpole conjecture? [Bena,Blabéck,Grafia,Liist] Plauschinn, vd Heisteeg]
— INn progress



Fimiteness of self-dual
flux vacua

14



Self-dual flux vacua

~ Recall: integral (G4 € H4(Y4, 7)), self-dual G4 = *G 4, tadpole / Gi NGy — B
Yy

= Important note: fix Y, in this discussion (finitely many CY)

=~ Evidence for finiteness of flux choices:
[Ashoke,Douglas],[Douglas,Shiffman,Zelditch],[Douglas,Lu] using vacuum density

~ This is a very hard math problem!
/G4/\G4:/G4/\*G4<K

— key challenge: cut off infinite tails at asymptotic regimes of M when
Hodge star degenerates = control near boundary regions
15



Direct approach to finiteness proof

- firstidea: show that on every path to
every boundary only finitely
many vacua can arise

can be done for co-dimension one boundary

i.e. one coordinate send to limit
= use full power of sl(2) asymptotic techniques [Schnell][TG]

= general story is orders of magnitude more complicated

~ susy (2,2)-fluxes (W=0) — Hodge classes H Yy HA G
apply theorem by [Cattani,Deligne, Kaplan] (paper is strongest evidence for

& Hodge conjecture)
use sl(2)-techniques to control every path to every boundary

however: they use holomorphicity (‘Susy vaccum’) -



General proof - What 1s behind this?

=~ self-dual fluxes: more general questions [Bakker, TG,Schnell, Tsimerman]

— use recent breakthrough by [Bakker,Klingler, Tsimerman]

Hodge theory tame topology (build-in finiteness)
— period map: e MNG/K
[BKT] show:

(1) arithmetic quotients have certain ‘tame topology’
(2) period map is special map that is “tame’ (e.g. near boundaries)

& shown by using sl(2)-techniques

(3) alternative proof to the theorem of [Cattani,Deligne,Kaplan]

17



General proof - What 1s behind this?

=~ self-dual fluxes: more general questions [Bakker, TG,Schnell, Tsimerman]

— use recent breakthrough by [Bakker,Klingler, Tsimerman]

Hodge theory tame topology (build-in finiteness)
— period map: e MNG/K
Very roughly:

(1) arithmetic quotients can be covered by ‘finitely many patches’

(2) period map maps ‘finitely many sets to finitely many sets’

17



General proof - What 1s behind this?

=~ self-dual fluxes: more general questions [Bakker, TG,Schnell, Tsimerman]

— use recent breakthrough by [Bakker,Klingler, Tsimerman]

Hodge theory tame topology (build-in finiteness)

= What about the self-dual vacua?

vacuum condition: V(t*7 G4) — CH x (G4 — G4H2 e 0 finitely many

zero-sets?

Vi M X (ﬂIJ.X lattice) — R infinite discrete set
‘\/

— we show that ‘tameness’ is obtained when imposing tadpole bound

17



General proof - What 1s behind this?

=~ self-dual fluxes: more general questions [Bakker, TG,Schnell, Tsimerman]

— use recent breakthrough by [Bakker,Klingler, Tsimerman]

Hodge theory tame topology (build-in finiteness)

g W

= pairs form finitely many subsets of M x (flux lattice)

19



Minimal structure for the
landscape

20



A mathematical structure with finiteness

~ develop a mathematical framework that respects finiteness:

» remove pathologies that can occur in ‘ordinary topology’

» Grothendieck’s dream of a tame topology [Esquisse d’un programme]

~ theory of o-minimal structures gives a generalization of algebraic geometry

and provides a tame topology intro book [van den Dries]

|
- recall:  V(ty,G4) = 0 with tadpole to have finitely many
solutions V has to be special

many functions do not work: discussed by

V(qb) — sin(¢_1) V(¢) — ¢8 Sin(gb_l) [Acharya,Douglas]
— infinitely many zeros near ¢ = 0 6

21



A mathematical structure with finiteness

~ develop a mathematical framework that respects finiteness:

» remove pathologies that can occur in ‘ordinary topology’

» Grothendieck’s dream of a tame topology [Esquisse d’un programme]

~ theory of o-minimal structures gives a generalization ot algebraic geometry

and provides a tame topology intro book [van den Dries]

~ theory of o-minimal structures gives a precise answer to what
this special property for the flux scalar potential is

21



Fimite subsets on the real hine

~ simplest situation: finite subsets of [R

o o oo o o o finitely many point

finitely many intervals

open intervals
(infinitely long)

- much harder to extend this to R", Some intuitive requirements:

» projections to IR should give the above sets

> finite unions, intersections, and products should be allowed

22



O-minimal structure as a tame topology

- Definition: An o-minimal structure S of sets {Sn}n:o,L,,:

S,, are subsets of R"

Sy, is closed under finite intersections, finite unions and complements

v

v

v

collection {5y} closed under finite Cartesian products & coordinate
projections

v

Sy, contain zero set of every polynomial in 7 variables is in IR

v

S1 is the finite union of intervals and points

23



O-minimal structure as a tame topology

Now there is a clear definition of ‘tame’ functions:

~ S-definable functions among the S,/'s are those whose graph is part
of the o-minimal structure

Remarkable consequence: definable f : R — R

split R into finite number
of intervals f is either

/ \ constant, or monotonic

L and continuous in

< > ' < > | < >

each open interval

Another consequence: definable + holomorphic f : C — C is algebraic

23



Examples of o-minimal structures

. . . i T
~ there is no unique choice of o-minimal structure on [R"™ :

+examples are obtained by stating which functions are allowed
to generate some of the sets

= Some remarkable examples:
structure generated by graphs of real polynomials: Ry)¢
Ra1g plus graphs of restricted real analytic functions: Ry

Ralg plus graph of exponential function: Rexp [Wilikie “96]

combination of Ran and Rexp : Ran’exp [vd Dries, Miller ’94]

= Note: period mapisa R,y ¢xp- definable function [BKT "18]

29



A conjecture

Set of effective theories collect vectors:
arising from string theory moduli space
(rank gauge group)
matter spectrum

Conjecture : The string landscape is definable in an
Ran,exp o-minimal structure and all coupling
functions in the effective theory are definable.

26




Conclusions

=~ Uncover the structure of complex structure moduli space using
asymptotic Hodge theory

- s1(2) structure allows for a classification of boundaries
- reconstruction of the near boundary periods

= 1o need to scan through CY-examples
= ready to make general proofs of recent conjectures

= Highly non-trivial finiteness result for the number of self-dual flux vacua

= Suggested to use o-minimal structure to describe the string theory vacuum
landscape

= build-in finiteness properties
= general enough for also non-supersymmetric situations

27



Thanks for listening!

43



An application: vacua with small vacaum W

-~ construction of vacua with exponentially small vacuum superpotential

near LCS + conifold [Demirtas, Kim,McAllister,Moritz] (LCS “19) (coni "20)
[Alvarez-Garcia, Blumenhagen,Brinkmann,Schlechter|[Honma,Otsuka][Broekel etal]

= constructions can be conceptually understood using asymptotic Hodge
theory near every boundary + new vacua using essential instantons

recall: H(t) o Hpol(t) e (t) |[Bastian, TG,vd Heisteeg]
KCS == —1Og(ICpO] ]Cinst) i Wpol -+ Winst

vacua?: Wpol|* — () aaWp01|* = ( 87Wp01|* — )

Inconsistent near many boundaries (only approximation near LCS):
restriction to polynomial behavior does not exchange with derivative

11



Small W from essential instantons

-~ Example: boundaries with “Type II points” (Seiberg-Witten points)

K. = —log(y1 + ny2 + Kinst) needs essential instantons for non-
‘\/ degeneracy of metric constructed
— metric has exponentially small eigenvalue metric-essential
instantons

~ flux superpotential has polynomial and exponentially suppressed terms

solve: Wi, =0 D W =0 DuW =0 become polynomial

=~ moduli stabilized by metric-essential instantons in W: polynomial masses

— leading polynomial scalar potential after cancellation of exponentials

— matches the result for the Hodge norm in asymptotic Hodge theory
45



