Hall fluid at strong coupling

Niko Jokela

virtually in Ecole Polytechnique - 10 February 2022

Key references	
Mostly about recent work	
Gravity dual of (spontaneous) SDVV+CDVV	[1408.1397]
Conductivities: sliding stripes	[1612.07323]
Pinning them	[1708.07837]
Nonzero magnetic field with all above	[2111.14885]

- with
 - Matti Järvinen (APCTP, South Korea)
 - Matthew Lippert (Old Westbury, Long Island US)

Apologies for not citing all relevant papers along the way...

Outline

- 1. Introduction
- 2. Hall fluid model
- 3. Conductivities
- 4. Discussion/outlook

Quantum Hall Effect

- Integer filling fraction v: Landau levels plus impurities pretty well understood
- Fractional ν is a strong coupling effect less well understood
 - Different descriptions: Laughling wave function, Chern-Simons theory, Jain's composite fermions...

Semicircle from Law of Corresponding States

Semicircle: An exact relation in the Integer and Fractional Quantum Hall Effect

$$\sigma_{xx}^2 + (\sigma_{yx} - \sigma_0/2)^2 = (\sigma_0/2)^2$$
, $\sigma_0 = \nu e^2/h$

 Indications that similar law holds for striped Hall fluids [MacDonald-Fisher'99,von Oppen-Halperin-Stern'99]
 Duality transformation behind [Burgess-Dolan, also Kivelson-Lee-Zhang]

 $\sigma = \sigma_{yx} + i\sigma_{xx} \rightarrow \frac{a\sigma + b}{c\sigma + d}$, ad - bc = 1, c even
 5/30

Striped phases

- Predicted by Peierls in 1930 in quasi-1D metals
- Different kinds of stripes
 - Charge/current density wave (CDW)
 - Spin density wave (SDW) etc.
- Spatially modulated phases often appear in condensed matter systems
 - QH samples w/ high LL

```
[Lilly-Cooper-Störmer-Pfeiffer-West]
[Du-Tsui-Störmer-Pfeiffer-West]
```

- pseudogap phase of cuprate superconductors [Emery-Kivelson-Tranquada]
- thin films of superfluid ³He

[Sauls-Wiman]

Calcium-doped graphene

Holographic striped phases

Translation symmetry-breaking in holographic models

- Mostly explicit breaking
- Modulated sources model ionic lattice and impurities
- Linear scalars (massive gravity, Q-lattice, Bianchi VII etc.) homogeneous
- ► Symmetry breaking → Drude-like conductivity

[Horowitz-Santos-Tong 1204.0519]

[Vegh 1301.0537]

[Arean et al. 1308.1920]

[Blake et al. 1308.4970]

[Goutéraux 1401.5436]

[Donos-Gauntlett 1409.6875]

[...]

[Amoretti-Areán-Goutéraux-Musso 1812.08118]

[Andrade-Krikun 1812.08132]

[...]

Holographic striped phases

Spontaneous breaking of translation symmetry

- Interesting phenomena
 - Phase transition
 - Goldstone mode
 - Interaction with lattice/impurities
- Modulated instabilities in several models [typically due CS interactions: Nakamura-Ooguri-Park 0911.0679]

Inhomogeneous ground state constructed in some examples [Donos 1303.7211]

[Withers 1304.0129]

[Rozali et al. 1304.3130]

[...]

Limited work on transport

Recently, works on both spontaneous and explicit breaking...

Our approach

- Top-down: a concrete string theory set-up
- Control over the dual field theory
- Criterion: system with only fermion matter in the fundamental representation*
- Specific models with 2+1 d fermions interacting with 3+1 d gauge fields: D3-D7' systems

Holographic cousin models

Brane intersections with $\#\mathrm{ND}=6$	[Rey]	
Fundamental fermions	[Davis,Kraus,Shah]	
 Probe Dq in Dp background No SUSY → stability? 	[Myers,Wapler]	
 Chern-Simons terms 	[Alanen,Keski-	
Familiar example: Sakai-Sugimoto D4-D8	Vakkuri,Kraus,Suur-Uski] 8-108	
1. The D3-D7' model	[Bergman-NJ-Lifschytz-Lippert]	
▶ 2+1 d defect, filling fraction ν irrational		
2. The D2-D8' model	[NJ-Järvinen-Lippert]	
Fully 2+1 d, $\nu = 1$	[Rai-Mukhopadhyay 1909.03458]	
*Unquenched (massive) ABJM: fully 2+1 d, $\nu = M/2 + func(N_f)$, SUSY even w/ $d \neq 0 \neq B$		
	[Bea-NJ-Lippert-Ramallo-Zoakos] _{10/30}	

D3-D7' model

$$S_{\text{defect}} = \int d^3x \sum_{a=1}^{N_f} \left(\bar{\psi}^a(x) i \gamma^\mu (\partial_\mu - i A_\mu) \psi^a(x) + \ldots \right)$$

Defect ψ are doublets of SO(2,1) and singlets of SO(3)× SO(3)

D3-D7' model

▶ D3 background, $AdS_5 \times S^5$ (finite temperature)

$$ds_{10}^{2} = r^{2} \left(-h(r)dt^{2} + dx^{2} + dy^{2} + dz^{2}\right) + \frac{1}{r^{2}} \left(\frac{dr^{2}}{h(r)} + r^{2}d\Omega_{5}^{2}\right)$$
$$h(r) = 1 - \left(\frac{r_{T}}{r}\right)^{4}$$

Five-form flux

$$F_5 = dC_4 = (1+*)dt \wedge dx \wedge dy \wedge dz \wedge d(r^4) , \ \int_{S^5} F_5 = N$$

Dilaton is a constant: CFT (w/ D7: dCFT)
 S⁵ fibering: S² × S² over an interval

$$d\Omega_5^2 = d\psi^2 + \cos^2\psi \ d\Omega_{2(1)}^2 + \sin^2\psi \ d\Omega_{2(2)}^2$$

Probe D7-brane

- Wraps $S^2 \times S^2 \subset S^5$
- Embedding $\psi(r)$ is tachyonic
- Stabilized by wrapped flux on S²'s

Add magnetic field $F_{12} = B$ and charge density $F_{r0} = A'_0(r)$

D7 probe action

$$S = S_{\text{DBI}} + S_{\text{CS}} = -T_7 \int d^8 x \, e^{-\Phi} \sqrt{-\det(g_{\mu\nu} + 2\pi\alpha' F_{\mu\nu})} \\ - \frac{(2\pi\alpha')^2 T_7}{2} \int \underbrace{P[C_4] \wedge F \wedge F}_{\text{all physics here!}}$$

- D7 enters horizon
- Metallic ferromagnetic phase
- This talk

 $\blacktriangleright \psi \sim \psi_{\infty} + \frac{m_{\psi}}{r^{\Delta_{+}}} + \frac{c_{\psi}}{r^{\Delta_{-}}}$

• Choose wrapped S^2 fluxes: $\Delta_+ = 1$ and $\Delta_- = 2$.

- \triangleright D7 ends where S^2 shrinks
- QH phase, $\nu = \frac{2\pi D}{R} = f(\psi_{\infty})$

$$\sigma_{xx} = 0 + e^{-m_{gap}/T}$$
$$\sigma_{yx} = \frac{\nu}{2\pi}$$

magnetoroton, anyon superfluid

14/30

Radial charge distribution

$$c(\psi(r))=\psi(r)-rac{1}{4}\sin(4\psi(r))-\psi_{\infty}+rac{1}{4}\sin(4\psi_{\infty})\;,\;\psi\sim$$
axion

Striped instability

Analysis of quasinormal modes \Rightarrow instability (Nakamura-Ooguri-Park)

[Bergman-NJ-Lifschytz-Lippert arXiv:1106.3883]

Striped ground state

D7 probe action

$$S = S_{\text{DBI}} + S_{\text{CS}} = -T_7 \int d^8 \xi \, e^{-\Phi} \sqrt{-\det(g_{\mu\nu} + 2\pi\alpha' F_{\mu\nu})} \\ - \frac{(2\pi\alpha')^2 T_7}{2} \int P[C_4] \wedge F \wedge F$$

Look for inhomogeneous ground state [Järvinen-NJ-Lippert 1408.1397]

- Periodic with period L in x-direction (wave number $k = 2\pi/L$)
- Translation symmetry intact in y-direction
- ▶ Inhomogeneous embedding of the D7-brane $\psi(x, u)$, z(x, u) and gauge fields $a_0(x, u)$, $a_y(x, u)$ with $u = r_T/r$.

Example solution

► "SDW" ≫ CDW

• Modulated persistent current $J_y(x)$ and magnetization $\frac{\partial \mathcal{L}}{\partial b}(x)$

Phase diagram

Homogeneous: DC Conductivities

- Use Karch-O'Bannon method [Karch-O'Bannon 0705.3870]
- Yields nonlinear DC conductivity at finite (can be large) E_x

 $E_{\mathbf{r}}$

DC Conductivities

Hall angle

$$\tan \theta_H = \frac{\sigma_{yx}}{\sigma_{xx}} \sim \begin{cases} T^{-2} & , \ T \to 0 \\ T^{-4} & , \ T \to \infty \end{cases}$$

DC Conductivities

Find novel semicirle law analytically (homogeneous):

$$\left(\sigma_{yy}^{DC} - \frac{\sqrt{2}\pi D}{\sqrt{\lambda}N_cT^2}\right)^2 + \left(\sigma_{yx}^{DC}\right)^2 = \left(\frac{\sqrt{2}\pi D}{\sqrt{\lambda}N_cT^2}\right)^2$$

in the limit $D/T^2 \rightarrow \infty$ (N.B. $D \gg B$ huge filling fraction) Holds also for (unpinned) (striped) phases

Optical Conductivities

▶ Turn on oscillating electric field (DC limit $\omega \rightarrow 0$): $E_x e^{i\omega t}$

 ▶ Good fit to hydro model (ω_c = κ_ωB, γ = γ̂B²) also for (unpinned) stripes [Hartnoll-Kovtun-Müller-Sachdev 0706.3215] [Delacrétaz-Goutéraux-Hartnoll-Karlsson 1612.04381,1702.05104]

$$\sigma_{xx}|_{E_x=0} = \sigma_Q \left[\frac{(\omega+i/\tau)(\omega+i\gamma+i\omega_c^2/\gamma+i/\tau)}{(\omega+i\gamma+i/\tau)^2-\omega_c^2} \right] \stackrel{\dots?}{=} \sigma_Q + \frac{\sigma_D}{1-i\omega\tau}$$

$$\sigma_{yx}|_{E_x=0} = -\frac{\rho}{B} \left[\frac{\omega_c^2+\gamma^2-2i\gamma(\omega+i/\tau)}{(\omega+i\gamma+i/\tau)^2-\omega_c^2} \right] \stackrel{\dots?}{=} \frac{2\hat{\gamma}\rho\tau B}{B\to 0} \frac{2\hat{\gamma}\rho\tau B}{1-i\omega\tau} - \frac{\rho\kappa_{\omega}^2 B}{(\omega+i/\tau)^2} \frac{23/36}{23/36}$$

Striped phases: conductivities

Study time-dependent fluctuations of D7' fields

- $\blacktriangleright \ \delta f(t,x,u), \ f=\psi,z,a_t,a_x,a_y$
- All sources vanish, except δE_x or δE_y

Goldstone mode

- Translation symmetry spontaneously broken
- For any solution

 $f(t, x, u) \rightarrow f(t, x + \kappa, u)$

Striped phases: conductivities

Determine speeds e.g. from time-independent fluctuation [NJ-Järvinen-Lippert 1612.07323] [Goutéraux-NJ-Pönni 1803.03089]

$$\delta f(t,x,u) = \kappa \partial_x f(x,u)$$

► Even for $v_s \neq 0 \exists (\langle \text{averaged} \rangle) \text{ conserved currents}$ $\mathcal{J}_i \propto \frac{\delta S}{\delta \partial_u \delta a_i}$: $\mathcal{J}_x = \text{const.}, \quad \lim_{u \to 0} \mathcal{J}_x = \delta j_x(x) - v_s d(x)$ $\langle \mathcal{J}_y \rangle = \text{const.}, \quad \lim_{u \to 0} \mathcal{J}_y = \delta j_y(x, \mathbf{X}) + v_s t J'_y(x)$ allowing to write ($\langle \text{averaged} \rangle$) $\sigma^{\text{DC}}(x)$ at the BH horizon • $\sigma^{AC}(x, \omega)$ numerically

DC conductivities at finite b

Pinning

Mimic impurities via explicit deformed bdry conditions:

Magnetic lattice : $a_y(x, u = 0) = bx + \alpha_b \sin(k_0 x)$ OR

Ionic lattice : $a_t(x, u = 0) = \mu + \alpha_\mu \cos(2k_0x)$

Fixed lattice wavelength = dynamical wavelength

Commensurability by hand; could take to be different [Andrade-Krikun 1701.04625,...]

Pinning

Expect to be in preferred phase for small α 's

Glimpse on results

Pinned stripes also satisfy a semicircle law

 $\langle \sigma_{xx}^{\rm DC} \rangle \langle \sigma_{yy}^{\rm DC} \rangle + \langle \sigma_{xy}^{\rm DC} \rangle^2 = \langle \sigma_{xx}^{\rm DC} \rangle \sigma_{yy}^0$

Optical conductivities: tested hydro models for either
 α = 0: as above for homogeneous phase
 b = 0: Drude-Lorentz, e.g. pseudo-Goldstone pole fits well

Discussion/outlook

- Understand the various novel (semi-circle) laws
- Measurables for this strongly coupled Hall fluid
- Probe branes vs. hydro
- Phase diagram for $\alpha \neq 0$: away from locking
- QNM, especially the y-dependent fluctuations: bubble phase?
- Construct stripes w/ finite E_x
- Transport of anyonic stripes
- Stripy quantum Hall phase?
- Backreaction

Back-up slides

Duality symmetry in QH

► Landau Level Addition Transformation (L) $\sigma_{yx}(\nu + 1) \leftrightarrow \sigma_{yx}(\nu) + 1$, $\sigma_{xx}(\nu + 1) \leftrightarrow \sigma_{xx}(\nu)$

Flux Attachment Transformation (F) $\rho_{yx}\left(\frac{\nu}{2\nu+1}\right) \leftrightarrow \rho_{yx}(\nu) + 2 , \ \rho_{xx}\left(\frac{\nu}{2\nu+1}\right) \leftrightarrow \rho_{xx}(\nu)$

► Particle-Hole Transformation (P) $\sigma_{yx}(1-\nu) \leftrightarrow 1 - \sigma_{yx}(\nu), \ \sigma_{xx}(1-\nu) \leftrightarrow \sigma_{xx}(\nu)$

Obtain e.g. series Integer $\sigma = 1 \rightarrow n \text{ w}/ \mathbb{L}^{n-1}$ Laughlin $\sigma = 1 \rightarrow \frac{1}{2m+1} \text{ w}/ \mathbb{F}^m$ Jain $\sigma = 1 \rightarrow \frac{p}{2m+1} \text{ w}/ \mathbb{F}^m \mathbb{L}^{p-1}$

Minimizing the energy

Grand canonical ensemble, $\Omega(\mu, b, L)/L$

DC conductivity: $\sigma_{\rm xx}$

Ansatz: Turn on constant electric field δE_x

Must allow stripes to slide

$$\delta f(t, x, u) = \delta f(x, u) - v_s t \partial_x f(x, u)$$

Follow "standard recipe"

• write bdry quantities (e.g. δJ_{x}) in terms of horizon data

- impose horizon regularity
- speed v_s not fixed

$$\sigma_{xx}(x) = \langle \hat{\sigma}_{xx}^{-1} \rangle^{-1} + \frac{v_s}{\delta E_x} \Big[\underbrace{d(x) - \langle d(x) \rangle}_{\sim CDW} + \underbrace{SDW}_{\gg CDW} + tiny \Big]$$

• "Local" conductivity

$$\langle \hat{\sigma}_{xx}^{-1} \rangle^{-1} \leftrightarrow \overset{\bullet}{R_1} \overset{\bullet}{R_2} \overset{\bullet}{R_n} \\ \delta a_x = -(\delta E_x - p'(x))t + \delta a_x(x, u), \\ \delta a_t = p(x) + \delta a_t(x, u) - v_s t \partial_x a_t(x, u) \\ 34/3$$

DC conductivity: σ_{yx}

Turn on $\delta E_x, \delta J_y \Rightarrow$ Hall conductivity

Sliding stripes with background current Jy

$$J_y(x-v_st)\approx J_y(x)-v_stJ'_y(x)$$

$$\sigma_{yx} = i v_s J'_y(x) \times \infty + \text{finite}$$

Spatial average vanishes

 $\langle \sigma_{yx} \rangle = 0$

DC conductivity: σ_{yy} and σ_{xy}

Turn on δE_y

- Stripes don't move
- Parity $\Rightarrow \sigma_{xy}(x) = 0$
- No conserved bulk current for δa_y(x)

But, spatially averaged current conserved

$$\langle \sigma_{yy} \rangle = \langle \hat{\sigma} (1 + \text{small}) \rangle + \underbrace{\langle \sigma_{yy}^{SDW} \rangle}_{\text{dominant}}$$

$$\langle \hat{\sigma}(x) \rangle \quad \leftrightarrow \quad R_1 R_2$$

Pinning

Pinning

DC conductivities (from slides 34 & 36):

$$\begin{aligned} \langle \sigma_{xx} \rangle &= \langle \hat{\sigma}_{xx}^{-1} \rangle^{-1} + \frac{\delta_{\alpha_b, \alpha_\mu, 0}}{\delta E_x} \frac{v_s}{\delta E_x} \Big[SDW + tiny \Big] \\ \langle \sigma_{yy} \rangle &= \langle \hat{\sigma} (1 + small) \rangle + \langle \sigma_{yy}^{SDW} \rangle \\ \langle \sigma_{xy} \rangle &= 0 = \langle \sigma_{yx} \rangle \end{aligned}$$

▶ Parametrically large wrt δE_x : stripes pinned w/ any α 's

Optical conductivities

Turn on electric field

 $\delta E_{x} e^{-i\omega t}$ OR $\delta E_{y} e^{-i\omega t}$

- Solve fluctuation EOM numerically w/ pseudospectral method
- Extract AC conductivities $\sigma_{ij}(\omega, x)$, i, i = x, y
- DC conductivities as $\omega \rightarrow 0$ limits of AC

DC limits

- $\langle \sigma_{xx} \rangle$ decreases with α ; stripes are more strong
- $\langle \sigma_{yy} \rangle$ increases with α ; more charge carriers around

Magnetic lattice: σ_{xx}

Captured by fitting to Drude-Lorentz model

Three parameter K_{xx}, τ_{xx}, ω_{xx} fit; (σ^{DC}_{xx}) from analytics
 Small α_b, ω_{xx} ~ α^{1/2}_b as in driven damped harmonic oscillator model

Magnetic lattice: σ_{yx}

• Three parameter $K_{yx}(x) \sim \cos(2\pi x/L), \tau_{yx}, \omega_{yx}$ fit

Find
$$\omega_{yx} \approx \omega_{xx}$$
 and $\tau_{yx} \approx \tau_{xx}$

• Notice that as $\omega_{yx} \rightarrow 0$:

$$\sigma_{yx}\Big|_{\alpha_b=0} = \frac{\tau_{yx} \mathcal{K}_{yx}(x)}{1 - i\tau_{yx}\omega} - \mathcal{K}_{yx}(x) \left(\frac{i}{\omega} + \delta(\omega)\right) , \ \mathcal{K}_{yx}(x) = v_s J'_y(x)$$

- Electric field in the y-direction: no pinning effects
- Captured by simple Drude

$$\langle \sigma_{yy} \rangle = \frac{\langle \sigma_{yy}^{DC} \rangle}{1 - i \tau_{yy} \omega}$$

• Parity:
$$\sigma_{xy} = 0$$
.

Ionic lattice: AC conductivities

- Small α_µ analogous to magnetic lattice; pinning much weaker
- Captured again by σ_{xx}: Drude-Lorentz , σ_{yx}: modified Lorentz, σ_{yy}: Drude
- Find Goldstone mode parameters $\omega_{xx} = \omega_{yx}$, $\tau_{xx} = \tau_{yx}$

Ionic lattice: instability

$$\langle \sigma_{xx} \rangle = \frac{\langle \sigma_{xx}^{DC} \rangle}{1 - i\tau_{xx}\omega} + \frac{iK_{xx}\omega}{\omega^2 - \omega_{xx}^2 + i\omega/\tau_{xx}}$$
Poles from the second term
$$\omega = -\frac{i}{2\tau_{xx}} \pm i\sqrt{\frac{1}{4\tau_{xx}^2} - \omega_{xx}^2}} \int_{\frac{1}{2}}^{\frac{1}{4\tau_{xx}}} \frac{1}{10 \times \text{Re}(\omega_{xx})} \int_{\frac{1}{2}}^{\frac{1}{4\tau_{xx}}} \frac{1}{4\tau_{xx}} \int_{\frac{1}{2}}^{\frac{1}{4\tau_{xx}}} \frac{1}{4\tau_{xx}}} \frac{1}{4\tau_{xx}}} \int_{\frac{1}{2}}^{\frac{1}{4\tau_{xx}}} \frac{1}{4\tau_{xx}}} \frac{1}{4\tau_{xx}}} \frac{1}{4\tau_{xx}}} \int_{\frac{1}{2}}^{\frac{1}{4\tau_{xx}}} \frac{1}{4\tau_{xx}}} \frac{$$

What's up with hydro?

Both homogeneous and unpinned striped phases fit well w/

$$\sigma_{L} = \sigma_{Q} \left[\frac{(\omega + i/\tau)(\omega + i\gamma + i\omega_{c}^{2}/\gamma + i/\tau)}{(\omega + i\gamma + i/\tau)^{2} - \omega_{c}^{2}} \right]$$

$$\sigma_{H} = -\frac{\rho}{B} \left[\frac{\omega_{c}^{2} + \gamma^{2} - 2i\gamma(\omega + i/\tau)}{(\omega + i\gamma + i/\tau)^{2} - \omega_{c}^{2}} \right]$$

Instead of 5 parameters, fit 8 parameters instead:

$$\sigma_{L} = c_{L} + \frac{\mathcal{R}_{L} + i\mathcal{I}_{L}}{\omega - \omega_{c} + i\Gamma} - \frac{\mathcal{R}_{L} - i\mathcal{I}_{L}}{\omega + \omega_{c} + i\Gamma}$$
$$\sigma_{H} = c_{H} + \frac{\mathcal{R}_{H} + i\mathcal{I}_{H}}{\omega - \omega_{c} + i\Gamma} - \frac{\mathcal{R}_{H} - i\mathcal{I}_{H}}{\omega + \omega_{c} + i\Gamma}$$

testing if $c_H \approx 0, \omega_c c_L \approx \mathcal{R}_L, \mathcal{R}_L \mathcal{R}_H \approx -\mathcal{I}_L \mathcal{I}_H$ gives above¹ • Works for homogeneous but not for (unpinned) stripes

¹Relations $c_L = \sigma_Q, \Gamma = \gamma + 1/\tau, \mathcal{R}_L = \sigma_Q \omega_c, \mathcal{I}_L = (\sigma_Q \omega_c^2 - \gamma^2 \sigma_Q)/(2\gamma), \mathcal{R}_H = (\gamma^2 \rho - \rho \omega_c^2)/(2\omega_c), \mathcal{I}_H = -\gamma \rho$