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MOTIVATION

➤ Given a lattice model with local interactions, there typically 
exists an effective Quantum Field Theoretic description at 
low energy or long distances.


➤ However, recently, a large class of lattice spin models have 
surfaced that do not seem to admit a standard continuum 
field theoretic description [1].


➤ The most striking feature of these models are quasi-particle 
excitations with restricted mobility, e.g. fractons that are 
pinned to a point, lineons that are confined to a line, 
planons that are confined to a plane, etc.


➤ Physicists are still trying to understand how to adapt the 
field theoretic techniques to describe the continuum limit of 
fractonic systems [2].

2
[1] Haah [1101.1962]; Vijay, Haah, Fu [1505.02576, 1603.04442]; Pretko [1604.05329]

[2] Seiberg, Shao [2003.10466, 2004.00015]



X-CUBE MODEL

3[1] Vijay, Haah, Fu (2016) [1603.04442].
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X-CUBE MODEL

➤ Large number of ground states. 
On a 3-torus with periodic boundary conditions, the ground 
state degeneracy scales as 
 

➤ Subsystem Symmetry. 
The Hamiltonian is invariant under  
spin-flips acting independently on planes. 

➤ Restricted Mobility. 
The model admits quasiparticle excitations that are unable 
to move freely in space.
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# ground states = 22Lx+2Ly+2Lz−3



FRACTONS AND LINEONS IN X-CUBE MODEL
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➤ Dipolar bound states of fractons and lineons can move in a plane.

FRACTONS AND LINEONS IN X-CUBE MODEL
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Planons




DIPOLE SYMMETRY

➤ From the point of view of continuum description, these 
exotic features can be understood as the consequence of 
dipole and multipole symmetries.


➤ If dipole moment is conserved in a field theory, charged 
excitations can only be created in quadrupoles. Once 
created, a charged excitation cannot move on its own 
without violating dipole moment conservation.


➤ In continuum, fractonic lattice models are described by a 
phase where the dipole symmetry is spontaneously broken.
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➤ Consider a field theory with a conserved U(1) charge 
 
 
 
 

d
dt ∫ d3x Jtxi = ∮ d2x (Ji⊥ − J⊥xi)

such that the flux is  with .  
It follows

Ji = ∂jJij Jij = Jji

DIPOLE SYMMETRY
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∂tJt + ∂iJi = 0 ⟹
d
dt ∫ d3x Jt = −∮ d2x J⊥

d
dt ∫ d3x Ji = ∮ d2x ∂tJi⊥

d
dt ∫ d3x (J × x)i = ∮ d2x ϵijk∂tJj⊥xk



DIPOLE SYMMETRY

➤ We will focus on field theories with conserved dipole moment.


➤ The dipole symmetry algebra is given as 
 
 
 
 

➤ The associated Ward identities are
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[Ji, Jj] = iϵijkJk

[Ji, Pj] = iϵijkPk

[Pi, Pj] = 0

[Pi, Dj] = iδijQ

[Ji, Dj] = iϵijkDk

[Di, Dj] = 0

[H, …] = 0

H : ∂tϵt + ∂iϵi = 0

Pi : ∂tπi + ∂jτij = 0

Q : ∂tJt + ∂iJi = 0

[Q, …] = 0

Ji : ϵijkτjk = 0 ⟹ ∂t (ϵijkπjxk) = − ∂l (ϵijkτjlxk)
Di : Ji = ∂jJij ⟹ ∂t (Jtxi) = ∂j (Jij − Jjxi)



SCALAR CHARGE THEORY

➤ Consider the scalar field theory [1] 
 
 
 
 
 
It is invariant under global monopole and dipole transformations 
 

➤ The monopole and dipole conserved currents are given as

10[1] Pretko [1807.11479]

S = ∫ dt d3x (iΦ*∂tΦ + λ Dij(Φ*, Φ*)Dij(Φ, Φ) − V(Φ*Φ))
Dij(Φ, Φ) = Φ∂i∂jΦ − ∂iΦ∂jΦ

Φ → exp(iqΛ) Φ Φ → exp(iqψixi) Φ

Jt = Φ*Φ

Ji = ∂j(iλ Dij(Φ*, Φ*)Φ2 + c.c.)
Jij = iλ Dij(Φ*, Φ*)Φ2 + c.c.

∂tJt + ∂iJi = 0

∂jJij = Ji

Φ = Φ̄ eiφ

Dij(Φ, Φ)

= e2iφDij(Φ̄, Φ̄)

+iΦ̄2e2iφ∂i∂jφ



SCALAR CHARGE THEORY

➤ We can gauge the monopole and dipole symmetries using a set of gauge fields 
 
 
 
Note: we can gauge fix the dipole symmetry by setting  leading to .


➤ The modified scalar field theory is 
 
 
 
 
 
 
 

 can be obtained by varying the action with respect to .

Ai = 0 ψi = − ∂iΛ

Jt, Ji, Jij At, Ai, aij
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At → At + ∂tΛ, Ai → Ai + ∂iΛ + ψi, aij → aij + ∂iψj + ∂jψi

S = ∫ dt d3x (iΦ*DtΦ + λ Dij(Φ*, Φ*)Dij(Φ, Φ) − V(Φ*Φ)) + Sgauge

DtΦ = ∂tΦ − iqAtΦ, DiΦ = ∂iΦ − iqAiΦ

Dij(Φ, Φ) = ΦDiDjΦ − DiΦDjΦ −
iq
2

aijΦ2



SYMMETRIC TENSOR GAUGE THEORY

➤ The monopole field strength  is not dipole-invariant 
 
 
 
 
 

Fμν = ∂μAν − ∂νAμ
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Ei = Fit → Ei − ∂tψi, Bi =
1
2

ϵijkFjk → Bi + ϵijk∂jψk

Sgauge = ∫ dt d3x ( ϵ0

2
EiEi −

1
2μ0

BiBi) not allowed

➤ Define dipole gauge field and field strength 
 
 
 
 
 
Dipole field strength is invariant under both monopole and dipole transformations.

Ak
t = Ftj δ jk, Ak

i =
1
2 (Fij + aij) δ jk ⟹ Ak

μ → Ak
μ + ∂μψk

Fk
μν = ∂μAk

ν − ∂νAk
μ

⃗E



SYMMETRIC TENSOR GAUGE THEORY

➤ We can use the dipole field strength  to obtain a dipole-invariant gauge theory 
 
 
 
 
 
 

➤ The gauge field equations of motion lead to 
 
 

➤ We will see that there is an obstruction is coupling this theory to curved space.

Fk
μν

13[1] Pretko [1604.05329]

Eij = 2Fk
it δkj = − ∂taij − ∂iEj − ∂jEi

Bkl = ϵkijFl
ij = ϵkij∂iaj

l − ∂lBk

Sgauge = ∫ dt d3x ( ϵ0

4
EijEij −

1
2μ0

BijBij)

∂i∂jEij =
1
ϵ0

Jt, ϵkli∂kBl
j + ϵklj∂kBl

i = μ0 (Jij + ϵ0∂tEij)



COUPLING TO CURVED BACKGROUND

➤ We wish to couple quantum field theories with conserved 
dipole moment to curved spacetime background.


➤ These theories have no boost symmetry — Galilean or 
Lorentzian. Therefore the “observer” or “reference frame” 
makes an integral part of the spacetime geometry. 
Must couple to Aristotelian spacetimes [1].


➤ We can use variations with respect to the spacetime sources 
to obtain the spacetime conserved currents: energy density/
flux, momentum density, and stress tensor.

14[1] de Boer, Hartong, Have, Obers, Sybesma [1710.04708]



ARISTOTELIAN SPACETIMES
➤ Aristotelian background sources: 

 
 
 
 
 
 
Non-covariant notation:  
Flat limit:  

➤ Connection:

nt, ni, hij, vi, At, Ai

nt = 1, hij = δij, ni = vi = 0, At = 0, Ai = 0

15[1] de Boer, Hartong, Have, Obers, Sybesma [1710.04708, 2004.10759]; [2] Novak, Sonner, Withers [1911.02578]; [3] Armas, AJ [2010.15782]

Clock-form:  ,   Frame-vector:  


Spatial (co-)metric:  


Gauge field:  

nμ vμ

hμν, hμν

Aμ

nμhμν = vμhμν = 0

vμnμ = 1, hμλhλν + nμvρ = δν
μ

hμν = hνμ, hμν = hνμ

Γλ
μν = vλ∂μnν +

1
2

hλρ (∂μhνρ + ∂νhμρ − ∂ρhμν)
∇μnν = 0, ∇μhνρ = 0, ∇μvν ≠ 0, ∇μhνρ ≠ 0



ARISTOTELIAN SPACETIMES

➤ We demand invariance under background diffeomorphisms and gauge transformations 
 
 
 

➤ Leads to Ward identities

16[1] de Boer, Hartong, Have, Obers, Sybesma [1710.04708, 2004.10759]; [2] Novak, Sonner, Withers [1911.02578]; [3] Armas, AJ [2010.15782]

δln 𝒵 = ∫ dt d3x γ [JμδAμ − ϵμδnμ − πμδvμ +
1
2

τμνδhμν]

nμ → nμ + Lχnμ, hμν → hμν + Lχhμν

vμ → vμ + Lχvμ, hμν → hμν + Lχhμν

Aμ → Aμ + LχAμ + ∂μΛ

:  Lie derivative along Lχ χμ

∇′￼μϵμ = − vμfμ − τμνhλν ∇μvλ

∇′￼μ(vμπν + τμν) = hνμfμ − πμhνλ ∇λvμ

∇′￼μJμ = 0

πμvμ = 0, πμ ≡ hμνπν

τμν = τνμ, τμνnν = 0

∇′￼μ = ∇μ − Lvnμ

:  generalised  
     Lorentz force
fμ

∂tϵt + ∂iϵi = 0

∂tπi + ∂jτij = 0

∂tJt + ∂iJi = 0

flat

γ = det(hμν + nμnν)



➤ For Galilean-invariant systems, we can demand invariance under infinitesimal Milne boosts 
 
 
 
 
This implies , or in the flat limit .πμ = m hμνJν πi = m Ji

ASIDE: BOOST SYMMETRIES
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nμ → nμ, hμν → hμν − nμαν − nναμ

vμ → vμ + αμ, hμν → hμν

Aμ → Aμ + m αμ ψμvμ = 0
ψμ = hμνψν

➤ For relativistic systems, we can demand invariance under infinitesimal Lorentz boosts 
 
 
 
 
 
This implies , or in the flat limit . 
We can define the relativistic metric: .

πμ = hμνϵν/c2 πi = ϵi/c2

gμν = − c2nμnν + hμν

nμ → nμ −
1
c2

αμ, hμν → hμν − nμαν − nναμ

vμ → vμ + αμ, hμν → hμν +
1
c2 (vμαν + αμvν)

Aμ → Aμ



CONSERVED DIPOLES IN ARISTOTELIAN SPACETIMES

➤ Introduce dipole source  and dipole shift parameter  
 
 
 

➤ The Ward identities are now

aμν ψμ
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aμν → aμν + Lχaμν + hρ
μhσ

ν (∇ρψσ + ∇σψρ)
Aμ → Aμ + LχAμ + ∂μΛ + ψμ

δln 𝒵 = ∫ dt d3x γ [… +
1
2

Jμνδaμν]
∇′￼μϵμ = − vμfμ − (τμν + τμν

d ) hλν ∇μvλ

∇′￼μ(vμπν + τμν + τμν
d ) = hνμfμ − πμhνλ ∇λvμ

∇′￼μJμ = 0
∇′￼μJμν = hν

μJμ

aμν = aνμ, vμaμν = 0

ψμvμ = 0

hμ
ν = hμλhλν

  :  generalised  
       Lorentz force


: asymmetric  
       dipole stress

fμ

τμν
d

∇′￼μ = ∇μ − Lvnμ



CONSERVED DIPOLES ON ARISTOTELIAN SPACETIMES

➤ All the conserved densities and fluxes are invariant under U(1) monopole transformations and 
transform appropriately under diffeomorphisms.


➤ Under dipole shifts, their transformation properties are given as 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ϵμ → ϵμ + (2Jμ(ρψσ) − Jρσψμ) 1
2

Lvhρσ

πμ → πμ − (Jνnν)ψμ + JρμFn
ρσψσ

τμν → τμν − 2Jλh(μ
λ ψν) + ∇′￼λ(ψλJμν)

flat
ϵt → ϵt, ϵi → ϵi

πi → πi − Jtψ i

τij → τij − 2J(iψ j) + ∂k(ψkJij)

➤ Note that momentum density  and stress-tensor  are non-invariant under dipole shift 
symmetry, even on flat spacetime.

πi τij



SCALAR CHARGE THEORY ON CURVED SPACE

➤ We can write the covariant version of the scalar charge theory 
 
 
 
 
 
 
 

➤ We can vary with respect to background sources to read out the conserved currents.

20

S = ∫ dt d3x γ (iΦ*vμDμΦ + λ hμρhνσ Dμν(Φ*, Φ*)Dρσ(Φ, Φ) − V(Φ*Φ)) + Sgauge

DμΦ = ∂μΦ − iqAμΦ

Dμν(Φ, Φ) =
1
2

hρ
μhσ

ν (ΦDμDνΦ + ΦDνDμΦ − 2DνΦDμΦ) −
iq
2

aμνΦ2



SYMMETRIC TENSOR GAUGE THEORY ON CURVED SPACE?

➤ The covariantised definition of the dipole connection is  
 
 
 
 
 
We note that the dipole connection does not transform “nicely” anymore.

21[1] Gromov [1712.06600]; Slagle, Prem, Pretko [1807.00827]; AJ, Jensen [2111.03973]

Aλ
μ = nμvρFρσhσλ +

1
2 (hρ

μFρσhσλ + aμσhσλ)
Aλ

μ → Aλ
μ + ∇μψλ + nμψν ∇νvλ

Ak
t = Ftj δ jk, Ak

i =
1
2 (Fij + aij) δ jk

Ak
μ → Ak

μ + ∂μψk

Fλ
μν = ∇μAλ

ν − ∇ν Aλ
μ + Fn

μνvρAλ
ρ + 2n[μAρ

ν] ∇ρvλ

Fλ
μν → Fλ

μν + (Rλ
ρμν + Fn

μν ∇ρvλ − 2n[μ ∇ν] ∇ρvλ) ψρ

Sgauge = ∫ dt d3x γ hλτ hνσ Fλ
μν Fτ

ρσ (ϵ0vμvρ −
1
μ0

hμρ) not allowed

Fk
μν = ∂μAk

ν − ∂νAk
μ

Fk
μν → Fk

μν

∫ dt d3x ( ϵ0

4
EijEij −

1
2μ0

BijBij)

➤ Consequently, covariant dipole field strength is not invariant under dipole transformations



SYMMETRIC TENSOR GAUGE THEORY ON CURVED SPACE?

➤ We can write down dipole-invariant terms coupled to the charged scalar 
 
 
 
 
 
 

➤ In the Higgs phase for the charged scalar, this gives rise to the flat space limit

22

Sgauge = ∫ dt d3x γ hλτ hνσ ℱλ
μν ℱτ

ρσ (ϵ′￼0vμvρ −
1
μ′￼0

hμρ)
ℱλ

μν = Φ*Φ Fλ
μν −

i
2q

hρσ (Φ*DρΦ − ΦDρΦ*) (Rλ
σμν + Fn

μν ∇σvλ − 2n[μ ∇ν] ∇σvλ)

Sgauge = ∫ dt d3x ( ϵ0

4
EijEij −

1
2μ0

BijBij) + interactions
ϵ0 = |Φ0 |2 ϵ′￼0

μ0 =
1

|Φ0 |2 μ′￼0



OUTLOOK

➤ Continuum description of fractonic lattice models feature 
exotic dipole and multipole symmetries.


➤ We have learnt how to couple field theories with conserved 
dipole (and multipole) moment to curved spacetime.


➤ Fracton field theories have no boost invariance, therefore 
they can only be coupled to Aristotelian spacetimes.


➤ Free symmetric tensor gauge theory cannot be coupled to a 
generic curved spacetime.

23



OUTLOOK

➤ Is there a mixed dipole-gravitational anomaly in free 
symmetric tensor gauge theory? [1]


➤ Curved spacetime Ward identities and transformation 
properties of conserved Noether currents will prove pivotal 
for constructing dissipative hydrodynamic description for 
fractonic systems. [2]


➤ Construct field theories for quasiparticle excitations with 
“internal dipole moment”.

24
[1] Burnell, Devakul, Gorantla, Lam, Shao [2110.09529]; Yamaguchi [2110.12861]

[2] Gromov, Lucas, Nandkishore [2003.09429]; etc.



FRACTON FLUIDS

➤ The thermal state can be described by the Grand-Canonical Partition Function 
 
 

➤ Dipole-transformation properties of  imply that  is not dipole invariant 
 
 

➤ Given the grand-canonical free-energy density , it immediately follows that 
 
 
 
A local fluid particle can move if and only if the local charge density is zero.

πi μ

F = − p(T, μ, ⃗u 2)

25

exp(−βW) = tr exp(−βℋ) ℋ = ∫ d3x (ϵt − uiπi − μ Jt)

πi → πi − Jtψ i ⟹ μ → μ + uiψi

ui ≠ 0, Jt =
∂p
∂μ

= 0 or ui = 0, Jt =
∂p
∂μ

≠ 0.



FRACTON FLUIDS
➤ Constitutive relations for a boost-agnostic ideal fluid are given as [1] 

 
 
 
 
 

➤ For , we must have that either of  is zero. 
If , the fluid is just neutral. 
If , all fluxes are zero.

Ji = ∂jJij Jt, ui

Jt = 0, ui ≠ 0
Jt ≠ 0, ui = 0

26[1] de Boer, Hartong, Have, Obers, Sybesma [1710.04708, 2004.10759]; [2] Novak, Sonner, Withers [1911.02578]; [3] Armas, AJ [2010.15782]

ϵi = (ϵt + p) ui

πi = ρ ui

τij = ρ uiuj + p δij

Ji = Jt ui



FRACTON FLUIDS

➤ These properties of fracton fluids are intimately tied with the free tensor gauge theory not 
being able to couple to curved spacetime.


➤ We expect that the equilibrium configurations of a fluid should be obtained from an local 
equilibrium partition function [1] 
 
 
 
However, symmetries forbid us to write any such partition function, at least at the leading 
order in derivatives.


➤ It might be possible to write a non-local partition function in the presence of some additional 
low-energy degrees of freedom, such as Goldstones, 

27[1] Banerjee, JBhattacharya, Bhattacharyya, Jain, Minwalla, Sharma [1203.3544]; Jensen, Kaminski, Kovtun, Meyer, Ritz, Yarom [1203.3556]

W[nt, ni, hij, vi, At, Ai, aij] = ∫ d3x γ ℱ(nt, ni, hij, vi, At, Ai, aij)

W[nt, ni, hij, vi, At, Ai, aij] = − T ln∫ 𝒟φ exp ( 1
T ∫ d3x γ ℱ(φ; nt, ni, hij, vi, At, Ai, aij))



THANK YOU 
AND STAY HEALTHY
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