What can we learn from SCFTs with a = c? Craig Lawrie (DESY)

Based on: 2106.12579 w/ M.J. Kang and J. Song 2111.12092 w/ M.J. Kang, K-H. Lee, and J.Song 2206.xxxxx w/ M.J. Kang, K-H. Lee, M. Sacchi, and J. Song 220x.xxxx w/ M.J. Kang, K-H. Lee, and J. Song

16-06-2022

Quantum field theory is a widely applicable framework for answering diverse questions in physics

Quantum field theory is a widely applicable framework for answering diverse questions in physics generally hard to study outside of the "perturbative regime"

Quantum field theory is a widely applicable framework for answering diverse questions in physics add new symmetries to make questions tractable

Supersymmetry \implies certain quantities are protected from quantum corrections

Quantum field theory is a widely applicable framework for answering diverse questions in physics add new symmetries to make questions tractable

Conformal symmetry \implies exists at the fixed points of renormalization group flows between QFTs

Supersymmetry \implies certain quantities are protected from quantum corrections

Quantum field theory is a widely applicable framework for answering diverse questions in physics add new symmetries to make questions tractable

Conformal symmetry \implies exists at the fixed points of renormalization group flows between QFTs

Supersymmetry \implies certain quantities are protected from quantum corrections

We study this subspace of the space of all QFTs

Central Charges

Conformal symmetry becomes anomalous when the CFT is placed in an arbitrary background

The a-theorem

UV Theory (a_{UV}, c_{UV}) RG flow IR Theory $(a_{\mathrm{IR}}, c_{\mathrm{IR}})$

in this sense, a measures the "degrees of freedom" of the theory

[Komargodski, Schwimmer]

```
a monotonically decreases
        along any
renormalization group flow
```

there is no equivalent statement for c

Bounds on a/c

Unitarity fixes the ratio:

[Hofman, Maldace

>	n	a	

Bounds on a/c

Unitarity fixes the ratio:

[Hofman, Maldace

>	n	a	

Bounds on a/c

[Hofman, Maldace

)	n	a]

[Gaiotto], [Gaiotto, Moore, Nietzke]

$S_{g}(C_{g,n})\{\dots\}$

$S_{g}(C_{g,n})\{\ldots\}$ the 6d (2,0) SCFT String theory: Type IIB on an orbifold \mathbb{C}^2/Γ_q of type g

g of type ADE: simple, simply-laced Lie algebra [Gaiotto], [Gaiotto, Moore, Nietzke]

$S_{g}(C_{g,n})\{\cdots\}$ the 6d (2,0) SCFT of type g

twisted compactification on an n-punctured genus g Riemann surface [Gaiotto], [Gaiotto, Moore, Nietzke]

the 6d (2,0) SCFT of type g

twisted compactification on an n-punctured genus g Riemann surface [Gaiotto], [Gaiotto, Moore, Nietzke]

data describing punctures = codimension two defects in the 6d SCFT $S_{q}(C_{g,n})\{\ldots\}$ = 4d $\mathcal{N} = 2$ SCFT the 6d (2,0) SCFT of type g

twisted compactification on an n-punctured genus g Riemann surface [Gaiotto], [Gaiotto, Moore, Nietzke]

Complicated physical features (e.g. S-dualities) captured by this construction

Tinkertoys and Class \mathcal{S}

Each punctured Riemann surface has a "pair-of-pants" decomposition

Class \mathcal{S} theories can be constructed from simple building blocks

[Gaiotto], [Gaiotto, Moore, Nietzke]

gluing three-punctured spheres along punctures

"tinkertoy" theories [Chacaltana, Distler, Trimm, Zhu]

The 4d $\mathcal{N} = 2$ Landscape

this overlap region is studied in [Baume, Kang, CL]

Today: focus on the a = c region

Holography: if 4d SCFT has $AdS_5 \times X_5$ dual then $a = c \sim O(N^2)$ to leading order in a large N limit

The subleading terms are

$c - a = \rho N + \sigma$

open string contributions i.e. branes if a = c at finite N then ρ and σ must conspire to cancel!

closed string contributions $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$

Why a = c?

- c-a controls many interestin
- Cardy limit of superconform

Entropy-viscosity ratio bout

- Mixed current-gravitational anomaly
- Single trace higher spin gap for large N

ig quantities in a CFT
nal index:
$$I \rightarrow \exp\left(\frac{16\pi^2}{3\beta}(c-a)\right)$$
 [di Pietro, Komargodski]

Ind:
$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 - \frac{c-a}{c} + \cdots \right)$$
 [Kovtun, Son, [Katz, Peression]
[Buchel, Myres]

[Anselmi, Freedman, Grisaru, Johansen]

[Edelstein, Maldacena, Zhiboedov]

Notice: nothing I just said was specific to $\mathcal{N} = 2$ - equally interesting to consider the subset of the $\mathcal{N} = 1$ landscape with a = c

Building Blocks for SCFTs

Some known 4d $\mathcal{N} = 2$ SCFTs:

1) $\mathcal{D}_p(G) - \text{non-Lagrangian} \begin{bmatrix} Xie \end{bmatrix}, [del Zotto, Cecotti] \\ [del Zotto, Cecotti, Giaomcelli], [Xie, Wang] \end{bmatrix}$

Class S:

fractional Coulomb branch scaling dimensions \rightarrow "Argyres-Douglas type"

regular maximal puncture with flavor symmetry G

	SU(N)	SO(2N)	E_6	E_7	E_8
symmetry	(p, N) = 1	$p \notin 2\mathbb{Z}_{>0}$	$p \notin 3\mathbb{Z}_{>0}$	$p \notin 2\mathbb{Z}_{>0}$	$p \notin 30$

Building Blocks for SCFTs

Class S:

regular maximal punctures each with flavor symmetry G

subregular puncture

[del Zotto, Heckman, Tomasiello, Vafa]

a strongly-coupled generalization of an $SU(\ell) \times SU(\ell)$ bifundamental hypermultiplet

Building Blocks for SCFTs

Some known 4d $\mathcal{N} = 2$ SCFTs: 1) $\mathcal{D}_{p}(G) - \text{non-Lagrangian} \begin{bmatrix} Xie \end{bmatrix}, [del Zotto, Cecotti] \\ [del Zotto, Cecotti, Giaomcelli], [Xie, Wang] \end{bmatrix}$ 2) (G, G) conformal matter [del Zotto, Heckman, Tomasiello, Vafa]

> can we construct new 4d SCFTs using these strongly-coupled theories as building blocks?

consider $\mathcal{N} = 2$ or $\mathcal{N} = 1$ gauging of all G flavor symmetries

An N = 2 Classification Problem

how can we gauge together all G flavor symmetries of a collection of $\mathcal{D}_p(G)$ and (G,G) conformal matter theories such that the result is an $\mathcal{N} = 2$ SCFT?

how can we gauge together all G flavor symmetries of a collection of $\mathcal{D}_p(G)$ and (G,G) conformal matter theories such that the result is an $\mathcal{N} = 2$ SCFT?

it's very restrictive!

 $\mathcal{D}_{p}(G)$ has flavor G with flavor cen (G,G) conformal matter has flavor $G \times G$ and flavor central charges $k_G = 2h_G^{\vee}$ Conformal gauging \longrightarrow one-loop β -functions must vanish

[Kang, CL, Song]

tral charge:
$$k_G = \frac{2(p-1)}{p} h_G^{\vee}$$

Without Conformal Matter

First assume there are no copies of conformal matter

There are only four solutions with $p_i \ge 2$: (2,2,2,2), (3,3,3), (2,4,4), (2,3,6)

[Kang, CL, Song]

Note: $\mathcal{D}_1(G)$ is the trivial theory

before including conformal matter, we take a brief digression

[Kachru, Silverstein]

Worldvolume theory on ℓ D3-branes probing a \mathbb{C}^2/Γ orbifold affine quiver gauge theory ADE-type of Γ

What is the generalization beyond SU gauge nodes?

[Kachru, Silverstein]

before including conformal matter, we take a brief digression

ADE-shape of quiver

Worldvolume theory on ℓ D3-branes probing a \mathbb{C}^2/Γ orbifold

What is the generalization beyond SU gauge nodes?

There are two obvious questions: 1) generalization of (ℓ)

2) generalization of $m\ell$.

before including conformal matter, we take a brief digression

affine quiver gauge theory

$$(m+1)\ell$$

Worldvolume theory on ℓ D3-branes probing a \mathbb{C}^2/Γ orbifold

There are two obvious questions: 1) generalization of

2) generalization of $(m\ell)$

before including conformal matter, we take a brief digression

affine quiver gauge theory

What is the generalization beyond SU gauge nodes?

[Kang, CL, Song]

Worldvolume theory on ℓ D3-branes probing a \mathbb{C}^2/Γ orbifold

What is the generalization beyond SU gauge nodes?

These are exactly the configurations of conformal matter and $\mathscr{D}_p(G)$ solving the classification problem!

before including conformal matter, we take a brief digression

affine quiver gauge theory

These are exactly the configurations of conformal matter and $\mathscr{D}_p(G)$ solving the classification problem!

ADE Lie group describing the structure of the quiver

[Kang, CL, Song]

Features of $\widehat{\Gamma}(G)$

Theories with a = c

and if $gcd(h_G^{\vee}, \alpha_{\Gamma}) = 1$ dual Coxeter largest comark number of Gi.e., these SCFTs lie of Γ in the region of the landscape we want to explore! $a = c = \frac{\alpha_{\Gamma} - 1}{\dim(G)}$ has

When there is no conformal matter $\longrightarrow \Gamma = D_4, E_6, E_7, E_8$ then $\Gamma(G)$

can any of these a = c theories be realized in class S?

Theories with a = c and class s

can any of these a = c theories be realized in class S?

not obviously!

the multi-valent vertex implies this is not a pair-of-pants decomposition of a punctured Riemann surface

Theories with a = c and class δ'

can any of these a = c theories be realized in class S?

this three-punctured sphere corresponds to a product SCFT: two copies of $\mathcal{D}_2(SU(2n+1))$

[Beem, Peelaers] [Berrato, Giacomelli, Mekareeya, Sacchi] \bigcirc Î

how is this class S description related to the quad-valent gauging of 2-punctured spheres?

The Schur Index of $\Gamma(G)$

- The Schur index of a 4d $\mathcal{N} = 2$ SCFT is defined as $I_{\rm S}(q) = {\rm Tr}(-1)^F q^{\Delta - R}$
- For $\mathcal{D}_p(G)$ without enhanced flavor the index is $I_{\mathcal{D}_p(G)}(q,\vec{z}) = \mathsf{PE} \begin{bmatrix} q - q^p \\ (1 - q)(1 - q^p) \chi^G_{adj}(\vec{z}) \end{bmatrix}$ [Song, Xie, Yan] [Kac, Wakimoto]
- E.g., for $\widehat{D}_4(G)$ the Schur index is $I_{\widehat{D}_4(G)}(q) = \int [d\vec{z}] \ I^G_{\mathsf{Vec}}(q,\vec{z}) I_{\mathscr{D}_2(G)}$

$$_{G}(q,\vec{z})^{4} = \int [d\vec{z}] \operatorname{PE} \left[\frac{2q - 2q^{2}}{1 - q^{2}} \chi_{adj}^{G}(\vec{z}) \right]$$

The Schur Index of $\Gamma(G)$

- The Schur index of a 4d $\mathcal{N} = 2$ SCFT is defined as $I_{\rm s}(q) = {\rm Tr}(-1)^F q^{\Delta-R}$
- For $\mathcal{D}_p(G)$ without enhanced flavor the index is $I_{\mathcal{D}_p(G)}(q,\vec{z}) = \mathsf{PE} \begin{bmatrix} q - q^p \\ (1 - q)(1 - q^p) \chi^G_{\mathsf{adj}}(\vec{z}) \end{bmatrix}$ [Song, Xie, Yan] [Kac, Wakimoto]
- E.g., for $\widehat{D}_4(G)$ the Schur index is

 $I_{\widehat{D}_{4}(G)}(q) = \int [d\vec{z}] \ I_{\mathsf{Vec}}^{G}(q,\vec{z}) I_{\mathcal{D}_{2}(G)}(q,\vec{z})^{4} = \int [d\vec{z}] \ \mathsf{PE} \left| \frac{2q - 2q^{2}}{1 - q^{2}} \chi_{\mathsf{adj}}^{G}(\vec{z}) \right|$ does this look familiar?

A Connection to the Schur Index of $\mathcal{N} = 4$ SYM

The Schur index for $\widehat{\Gamma}(G)$ with a = c can be written as $I_{\widehat{\Gamma}(G)}(q) = \int [d\vec{z}] \operatorname{PE} \left[\left(\frac{q + q^{\alpha_{\Gamma} - 1} - 2q^{\alpha_{\Gamma}}}{1 - q^{\alpha_{\Gamma}}} \right) \chi_{\operatorname{adj}}^{G}(\vec{z}) \right] = I_{G}^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}, q^{\alpha_{\Gamma}/2 - 1})$ this is the Schur index of

 $\mathcal{N} = 4$ super-Yang-Mills?!

A Connection to the Schur Index of $\mathcal{N} = 4$ SYM [Kang, CL, Song]

The Schur index for $\widehat{\Gamma}(G)$ with a = c can be written as $I_{\widehat{\Gamma}(G)}(q) = \int [d\vec{z}] \operatorname{PE} \left[\left(\frac{q + q^{\alpha_{\Gamma} - 1}}{1 - q} \right) \right] \left(\frac{q + q^{\alpha_{\Gamma} - 1}}{1 - q} \right)$

The index of $\mathcal{N} = 4$ SYM is

$$I_{G}^{\mathcal{N}=4}(q,x) = \int [d\vec{z}] \operatorname{PE} \left[\left(-\frac{2q}{1-q} + \frac{q^{\frac{1}{2}}}{1-q}(x+x^{-1}) \right) \chi_{\operatorname{adj}}^{G}(\vec{z}) \right]$$
fugacity of the su(2) flavor
is this a special structure implied by $a = c$?

$$\frac{1-2q^{\alpha_{\Gamma}}}{q^{\alpha_{\Gamma}}} \right) \chi_{adj}^{G}(\vec{z}) = I_{G}^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}, q^{\alpha_{\Gamma}/2-1})$$
this is the Schur index of

f $\mathcal{N} = 4$ super-Yang-Mills?!

A Connection to the Schur Index of N = 4 SYM [Kang, CL, Song]

The Schur index for $\widehat{\Gamma}(G)$ with a = c can be written as $I_{\widehat{\Gamma}(G)}(q) = \int [d\vec{z}] \operatorname{PE} \left[\left(\frac{q + q^{\alpha_{\Gamma} - 1}}{1 - q} \right) \right] \left(\frac{q + q^{\alpha_{\Gamma} - 1}}{1 - q} \right)$ The index of $\mathcal{N} = 4$ SYM is $I_G^{\mathcal{N}=4}(q,x) = \int [d\vec{z}] \operatorname{PE} \left[\begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} \right]$ fugacity of the SU(2) flavor

For $\widehat{E}_6(SU(2))$ this relation follows from a graded vector space isomorphism [Buican, Nishinaka] between the associated vertex operator algebras

$$\frac{1-2q^{\alpha_{\Gamma}}}{q^{\alpha_{\Gamma}}} \bigg) \chi^{G}_{adj}(\vec{z}) \Bigg] = I_{G}^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}, q^{\alpha_{\Gamma}/2-1})$$
this is the Schur index of

 $\mathcal{N} = 4$ super-Yang-Mills?!

$$d\vec{z}] \mathsf{PE}\left[\left(-\frac{2q}{1-q} + \frac{q^{\frac{1}{2}}}{1-q}(x+x^{-1})\right)\chi^{G}_{\mathsf{adj}}(\vec{z})\right]$$

is this a special structure implied by $a = c$?

A Quasi-modular Form

For small G we can evaluate the Schur index explicitly e.g., $I_{\widehat{D}_{4}(SU(7))} = 1 + 3q^{2} + 9q^{4} + 22q^{6} + 42q^{8} + 81q^{10} + 140q^{12} + 231q^{14} + O(q^{16})$

[Kang, CL, Song]

do these coefficients look familiar?

A Quasi-modular Form

- e.g.,
- In fact, we find

 $I_{\widehat{D}_{A}(SU(2k+1))}($

[Kang, CL, Song]

For small G we can evaluate the Schur index explicitly

 $I_{\widehat{D}_{4}(SU(7))} = 1 + 3q^{2} + 9q^{4} + 22q^{6} + 42q^{8} + 81q^{10} + 140q^{12} + 231q^{14} + O(q^{16})$

do these coefficients look familiar?

$$(q) = q^{-k(k+1)}A_k(q^2)$$

$$q^{m_1 + \cdots + m_k} \over (1 - q^{m_1})^2 \cdots (1 - q^{m_k})^2$$

MacMahon's generalized sum-of-divisor function [MacMahon 1921]

'this function is quasi-modular [Andrews, Rose] as expected for a character of a VOA

how can we gauge together all G flavor symmetries of a collection of $\mathcal{D}_p(G)$ and (G,G) conformal matter theories such that the result flows in the infrared to an $\mathcal{N} = 1$ SCFT?

how can we gauge together all G flavor symmetries of a collection of $\mathcal{D}_p(G)$ and (G,G) conformal matter theories such that the result flows in the infrared to an $\mathcal{N} = 1$ SCFT?

> it's much less restrictive than $\mathcal{N} = 2!$

First focus on cases likely to have $a = c \longrightarrow$ no conformal matter

this is now an $\mathcal{N} = 1$ gauge node

G $\mathcal{D}_{p_1}(G)$

 $\mathcal{D}_{p_n}(G)$

p_1	p_2	p_3	p_4	p_5
1	1	1	1	p_5
1	1	1	p_4	p_5
1	1	p_3	p_4	p_5
1	2	2	p_4	p_5
1	2	3	≤ 6	p_5
1	2	3	7	≤ 41
1	2	3	8	≤ 23
1	2	3	9	≤ 17

[Kang, CL, Lee, Song]

For an asymptotically-free gauge coupling

Not all such gaugings flow to i infrared SCFTs with a = c

1) Use a-maximization to determine the superconformal R-symmetry 2) Check no operator crosses unitarity bound along the flow

[Kang, CL, Lee, Song]

											_			
	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5		p_1	p_2	p_{z}
	1	1	1	1	p_5	1	2	3	10	≤ 14		1	3	3
.nteracting	1	1	1	p_4	p_5	1	2	3	11	≤ 13		1	3	3
	1	1	p_3	p_4	p_5	1	2	4	4	p_5		1	3	3
	1	2	2	p_4	p_5	1	2	4	5	≤ 19		1	3	4
	1	2	3	≤ 6	p_5	1	2	4	6	≤ 11		2	2	2
	1	2	3	7	≤ 41	1	2	4	7	≤ 9		2	2	2
	1	2	3	8	≤ 23	1	2	5	5	≤ 9		2	2	2
	1	2	3	9	≤ 17	1	2	5	6	≤ 7		2	2	2
											-			

Not all such gaugings flow to i infrared SCFTs with a = c

1) Use a-maximization to determine the superconformal R-symmetry 2) Check no operator crosses unitarity bound along the flow

[Kang, CL, Lee, Song]

	n_{\star}	na	n_{c}	n.	m_{-}	n.	n_{a}	n_{c}	n.	m-		<i>т</i> .	n_{c}	n
	p_1	P_2	p_3	P_4	P_5	P_1	p_2	p_3	p_4	P_5	-	p_1	P_2	?
	1	1	1	1	p_5	1	2	3	10	≤ 14		1	3	3
.nteracting	1	1	1	p_4	$p_5 > 2$	1	2	3	11	≤ 13		1	3	3
	1	1	p_3	p_4	p_5	1	2	4	4	p_5		1	3	3
	1	2	2	p_4	p_5	1	2	4	5	≤ 19		1	3	4
	1	2	3	≤ 6	p_5	1	2	4	6	≤ 11		2	2	2
	1	2	3	7	≤ 41	1	2	4	7	≤ 9		2	2	2
	1	2	3	8	≤ 23	1	2	5	5	≤ 9		2	2	2
	1	2	3	9	≤ 17	1	2	5	6	≤ 7		2	2	2

[Kang, CL, Lee, Song]

To see the ADE classification for $\mathcal{N} = 2$ we needed conformal matter

$\mathcal{N} = 1$: Adding Matter

With $\mathcal{N} = 1$ gauging we can also add one or two adjoint chiral multiplets while preserving a = c

[Kang, CL, Lee, Song]

$\mathcal{N} = 1$: Adding Matter

SCFTs living on the conformal manifold of $\widehat{\Gamma}(G)$ theories

[Kang, CL, Lee, Song]

Higgs, Coulomb, and Hall—Littlewood

[Kang, CL, Lee, Sacchi, Song to appear]

The Hall—Littlewood Index

We can compute the Hall-Littlewood index for $\widehat{\Gamma}(G)$

	Higgs Branch Sector	Hall–Littlewood Sector
Condition	$\Delta = 2R, j_1 = j_2 = r = 0$	$\Delta = 2R + j_2, j_1 = 0, j_2 = r$
Multiplet contents	$\widehat{\mathcal{B}}_R$	$\widehat{\mathcal{B}}_R,\mathcal{D}_{R(0,j_2)}$

Consider
$$\widehat{D}_4(SU(3))$$
:
HL $(\tau) = \frac{1 + \tau^4 - \tau^6}{1 - \tau^4} =$

[Kang, CL, Lee, Sacchi, Song to appear]

use the TQFT approach [Gadde, Rastelli, Razamat, Yan] [Lemos, Peelaers, Rastelli] [Mekareeya, Song, Tachikawa]

$$1+2 au^4- au^6+2 au^8- au^{10}+\mathcal{O}(au^{12})$$
 there are negative coefficients!

recall $\widehat{D}_4(SU(3))$ can be realized as a genus-zero class \mathcal{S} theory

A Conjecture

Any class \mathcal{S} theory of genus-zero has Hall-Littlewood index = Higgs branch Hilbert series [Gadde, Rastelli, Razamat, Yan]

Higgs Branch Sector Hall–Littlewood Sector $\Delta = 2R, j_1 = j_2 = r = 0$ $\Delta = 2R + j_2, j_1 = 0, j_2 = r$ Condition $\widehat{\mathcal{B}}_R$ $\widehat{\mathcal{B}}_R,\,\mathcal{D}_{R(0,j_2)}$ Multiplet contents

A Conjecture

Any class \mathcal{S} theory of genus-zero has Hall-Littlewood index = Higgs branch Hilbert series [Gadde, Rastelli, Razamat, Yan]

Higgs Branch Sector Hall–Littlewood Sector $\Delta = 2R, j_1 = j_2 = r = 0$ $\Delta = 2R + j_2, j_1 = 0, j_2 = r$ Condition $\widehat{\mathcal{B}}_R,\,\mathcal{D}_{R(0,j_2)}$ $\widehat{\mathcal{B}}_R$ Multiplet contents

however, a Hilbert series cannot have negative coefficients

The Higgs Branch Hilbert Series

$$HS(\tau) = \frac{1 - \tau^2 + \tau^4}{(1 - \tau^2)(1 - \tau^4)} =$$

this seems generic when you have more than four twisted punctures

[Kang, CL, Lee, Sacchi, Song to appear]

In fact, we can compute the Higgs branch Hilbert series for $\widehat{D}_4(SU(3))$

 $= 1 + 2\tau^4 + \tau^6 + 3\tau^8 + 2\tau^{10} + \mathcal{O}(\tau^{12})$

class S of type A_2 with 4 twisted null punctures is a counterexample to the conjecture

A Conjecture

Conjecture 1.1. Any class S theory associated to a genus-zero Riemann surface with at least four \mathbb{Z}_2 -twisted punctures has a Hall-Littlewood index which is different from the Hilbert series of the Higgs branch.

[Kang, CL, Lee, Sacchi, Song to appear]

Conclusions

We have constructed a broad collection of truly $\mathcal{N} = 1$ and $\mathcal{N} = 2$ SCFTs with exactly a = c[Kang, CL, Song] [Kang, CL, Lee, Song]

Conclusions

We have constructed a broad collection of truly $\mathcal{N} = 1$ and $\mathcal{N} = 2$ SCFTs with exactly a = c[Kang, CL, Song] [Kang, CL, Lee, Song]

They form a generalization of affine quivers and have intriguing connections to $\mathcal{N} = 4$ super-Yang-Mills

What are the supergravity duals?

Why do higher derivative corrections vanish? Fractional D3-branes?

a = c theories have many relevant operators do they trigger flows to new interacting SCFTs? [Kang, CL, Lee, Song] do they preserve a = c?

a = c theories have many relevant operators

do they trigger flows to new interacting SCFTs? [Kang, CL, Lee, Song to appear] do they preserve a = c?

landscape of superpotential deformations of

$$\mathcal{D}_p(G) \longrightarrow G$$

cf. adjoint SQCD [Intriligator, Wecht]

6d SCFTs provide a powerful approach to "high dimension" SCFTs are there direct 6d origins of these a = c theories?

