Cosmological Scattering Equations

Arthur Lipstein Durham University

Based on 2106.11903, 2112.12695, 2204.08931 (with C. Armstrong, H. Gomez, R. Lipinski Jusinskas, J. Mei)

Introduction

 Scattering amplitudes are the basic observables measured at colliders like the LHC.

• They also have a rich mathematical structure which is interesting in its own right.

Twistor String Theory

• Parke-Taylor:

 Nair, Berkovitz, Witten: derived tree-level N=4 SYM amplitudes from twistor string theory

Scattering Equations

• Cachazo, He, Yuan: Extended to general theory of massless particles

$$S_a = \sum_{a \neq b} \frac{2 k_a \cdot k_b}{\sigma_{ab}} = 0$$

 $\overline{}$

- First discovered in tensionless limit of string theory (Fairlie, Roberts, Gross, Mende)
- Universal structure:

$$\mathcal{A}_n = \int_{\gamma} \prod_{\substack{a=1\\a\neq b,c,d}}^n \mathrm{d}\sigma_a \, (S_a)^{-1} \, (\sigma_{bc}\sigma_{cd}\sigma_{db})^2 \, \mathcal{I}_n$$

Applications

 New representations of loops amplitudes (Geyer, Mason, Monteiro, Tourkine, Baadsgaard, Bjerrum-Bohr, Bourjaily, Caron-Huot, Daamgaard, Feng)

• Makes double copy manifest: GR = YM^2, special Galileon = NLSM^2, and many other relations (Cachazo, He, Yuan)

Questions:

- Can this progress be extended to cosmological observables?
- What does this teach us about amplitudes? Are SE and double copy fundamental or just an artefact of flat space?
- Other tools have recently developed for cosmological observables inspired by amplitudes: Mellin-Barnes (Sleight,Torrona), factorisation (Arkani-Hamed,Baumann,Chen,Pueyo,Joyce,Lee,Pimentel), unitarity (Hillman,Pajer,Goodhew,Jazayeri,Meltzer)

Cosmological Observables

• Inflation: early Universe approximately described by dS4. CMB comes from correlations on future boundary

Wavefunction of the Universe

• In-in correlators (Maldacena):

$$\left\langle \phi(\vec{k}_1)...\phi(\vec{k}_n) \right\rangle = \frac{\int \mathcal{D}\phi \,\phi(\vec{k}_1)...\phi(\vec{k}_n) \,|\Psi\left[\phi\right]|^2}{\int \mathcal{D}\phi \,|\Psi\left[\phi\right]|^2}$$

• Wavefunction:

$$\ln \Psi [\phi] = -\sum_{n=2}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \frac{\mathrm{d}^{d} k_{i}}{(2\pi)^{d}} \Psi_{n} \left(\vec{k}_{1}, \dots \vec{k}_{n}\right) \phi(\vec{k}_{1}) \dots \phi(\vec{k}_{n})$$

• Ψ_n can be treated like CFT correlator in the future boundary and computed from Witten diagrams (Maldacena, Pimentel, McFadden, Skenderis)

dS momentum space

- We Fourier transform boundary correlators to momentum space, which is standard for cosmology and useful for studying soft limits and factorisation. Momentum conserved along boundary, but energy not conserved in bulk.
- boundary conformal generators (annihilate Ψ_n):

$$P^{i} = k^{i}, \qquad K_{i} = k_{i}\partial^{j}\partial_{j} - 2k^{j}\partial_{j}\partial_{i} - 2(d - \Delta)\partial_{i},$$
$$D = k^{i}\partial_{i} + (d - \Delta), \qquad M_{ij} = (k_{i}\partial_{j} - k_{j}\partial_{i}).$$

• mass of bulk scalar: $m^2 = \Delta(d - \Delta)$

Witten Diagrams

• Bulk-to-boundary prop:

$$\mathcal{K}_{\nu}(k,\eta) = \mathcal{N}k^{\nu}\eta^{d/2}H_{\nu}(-k\eta), \ \nu = \Delta - d/2, \ k = |\vec{k}|$$

• Contact diagram:

$$C_n^{\Delta} \equiv \int \frac{d\eta}{\eta^{d+1}} \prod_{a=1}^n \mathcal{K}_{\nu}(k_a, \eta)$$

• Bulk-to-bulk prop:

$$\left(\eta^2 \partial_\eta^2 + (1-d)\eta \partial_\eta + \eta^2 k^2 + m^2\right) G_\nu(k,\eta,\bar{\eta}) = \eta^{d+1} \delta(\eta - \bar{\eta})$$

(Maldacena, Pimentel, Raju)

Scattering Equations in dS

• How do we lift the SE to dS momentum space?

$$k_a \cdot k_b \to \mathcal{D}_a \cdot \mathcal{D}_b$$
$$\mathcal{D}_a \cdot \mathcal{D}_b = \frac{1}{2} (P_a^i K_{bi} + K_{ai} P_b^i - M_{a,ij} M_b^{ij}) + D_a D_b$$
$$\delta^{d+1} \left(\sum_{a=1}^n k_a^\mu \right) \to \delta^d \left(\sum_{a=1}^n \vec{k}_a \right) \mathcal{C}_n^\Delta$$

 Inspired by scattering equations in AdS embedding coordinates (Eberhardt,Komatsu,Mizera,Roehrig,Skinner)

Flat Space Limit

• Differential ops act in a simple way on bulk-to-boundary propagators:

$$(\mathcal{D}_a \cdot \mathcal{D}_b)\mathcal{K}^a_{\nu}\mathcal{K}^b_{\nu} = \eta^2 [\partial_\eta \mathcal{K}^a_{\nu} \partial_\eta \mathcal{K}^b_{\nu} + (\vec{k}_a \cdot \vec{k}_b)\mathcal{K}^a_{\nu}\mathcal{K}^b_{\nu}]$$

• Flat space limit can be read off from $\eta \rightarrow -\infty$ limit:

$$\lim_{\eta \to -\infty} \mathcal{K}_{\nu}(k,\eta) \propto k_i^{\nu-1/2} \eta^{(d-1)/2} e^{ik\eta}$$

$$\lim_{\eta \to -\infty} \mathcal{D}_a \cdot \mathcal{D}_b \left(\mathcal{K}^a_{\nu} \mathcal{K}^b_{\nu} \right) = \eta^2 (k_a \cdot k_b) \mathcal{K}^a_{\nu} \mathcal{K}^b_{\nu}$$

• Hence, we obtain flat space SE

Worldsheet formula

• Tree-level wavefunction for massive ϕ^4 in dS (toy model for inflation):

$$\Psi_n = \frac{\delta^d(\vec{k}_T)}{(3!)^{p-1}} \sum_{\rho \in \mathcal{S}_{n-1}} \operatorname{sgn}_{\rho} \mathcal{A}(\rho(1, 2, \dots, n-1), n) \mathcal{C}_n^{\Delta}$$

$$\mathcal{A}(\mathbb{1}_n) = \int_{\gamma} \prod_{a \neq b, c, d}^n \mathrm{d}\sigma_a \, S_a^{-1} (\sigma_{bc} \sigma_{cd} \sigma_{db})^2 \, \mathcal{I}(\mathbb{1}_n), \ S_a = \sum_{b=1 \atop b \neq a}^n \frac{2 \left(\mathcal{D}_a \cdot \mathcal{D}_b\right) + \mu_{ab}}{\sigma_{ab}} \equiv \sum_{b=1 \atop b \neq a}^n \frac{\alpha_{ab}}{\sigma_{ab}}$$

$$\mathcal{I}(\mathbb{1}_n) = \left(\sigma_{12}\sigma_{23}...\sigma_{n1}\right)^{-1} \operatorname{Pf}' A \times \sum_{\{a,b\} \in cp(\mathbb{1}_n)} \frac{\operatorname{sgn}(\{a,b\})}{\sigma_{a_1b_1}\cdots\sigma_{a_pb_p}}, \ A_{rs} = \begin{cases} \frac{\alpha_{rs}}{\sigma_{rs}}, & r \neq s \\ 0, & r = s \end{cases}$$

- Mass deformation $\mu_{a\,a\pm 1} = -m^2$ found by Dolan, Goddard in flat space
- We have checked this up to 8 points. No ambiguities!

Example: 4 points

• Fix legs 1,2,4 and removing rows/columns 1,4 from A-matrix:

$$\Psi_4 = \delta^3 \left(\vec{k}_T\right) \int_{\hat{\gamma}_3} d\sigma_3 \frac{\sigma_{12}\sigma_{34}}{\sigma_{23}} \frac{1}{\hat{S}_3} \alpha_{23} \mathcal{C}_4^{\Delta}$$

where contour encircles pole at

$$\hat{S}_3 = \sigma_{13}\sigma_{23}\sigma_{43}S_3 = \alpha_{13}\sigma_{23}\sigma_{43} + \alpha_{23}\sigma_{13}\sigma_{43} + \alpha_{43}\sigma_{13}\sigma_{23}$$

2

• Wrap contour around pole at σ_{23} and evaluate residue:

$$\Psi_4 = \delta^3 \left(\vec{k}_T \right) \left. \frac{\sigma_{12} \sigma_{34}}{\hat{S}_3} \right|_{\sigma_{23} = 0} \alpha_{23} \mathcal{C}_4^\Delta = \mathcal{C}_4^\Delta$$

Higher Points

• At 6-points, we have the following perfect matchings:

• Using global residue theorem, first one vanishes and second one is

$$[(\mathcal{D}_3 + \mathcal{D}_4 + \mathcal{D}_5)^2 + m^2]^{-1} \mathcal{C}_6^{\Delta} \longrightarrow \eta^{=0} \xrightarrow{\qquad 6 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5}$$

• Key identity:
$$[(\mathcal{D}_1 + \ldots + \mathcal{D}_p)^2 + m^2]^{-1} \mathcal{C}_n^{\Delta} = \int \frac{d\eta}{\eta^{d+1}} \frac{d\tilde{\eta}}{\tilde{\eta}^{d+1}} U_{p+1,n}(\eta) G_{\nu}(k_{1\dots p}, \eta, \tilde{\eta}) U_{1,p}(\tilde{\eta}) d\eta$$

Loops

• 1-loop n-point correlator from deformed tree-level (n+2)-point:

$$\begin{split} \Psi_n^{1-\text{loop}} &= -\frac{1}{\pi} \int \mathrm{d}^d \ell \int_{-\infty}^{\infty} \frac{\omega^2 \mathrm{d}\omega}{\omega^2 + \nu^2} \lim_{\vec{k}_{\pm} \to \pm \vec{\ell}} \tilde{\Psi}_{n+2} \left(\left(\nu_+, \vec{k}_+ \right), \left(\nu_1, \vec{k}_1 \right), ..., \left(\nu_n, \vec{k}_n \right), \left(\nu_-, \vec{k}_- \right) \right) \\ \text{where } \nu_{\pm} &= \pm i \omega, \, \nu_1 = ... = \nu_n = \nu = \Delta - d/2 \end{split}$$

• Integral over ω pastes together auxiliary legs:

• Similar structure found in position space (Herderschee)

Next Steps:

- More general scalar theories
- Break boost symmetry to connect with observations
- Spinning correlators
- Systematic formulation of double copy in dS
- Solve the CSE

Double Copy in Flat Space

- 3-point gluon amplitudes square into 3-point graviton amplitudes
- Color/kinematics duality can be used to extend double copy beyond three points. Take a 4-point gluon amplitude:

$$\mathcal{A}_{4} = \frac{n_{s}c_{s}}{s} + \frac{n_{t}c_{t}}{t} + \frac{n_{u}c_{u}}{u}, \quad c_{s} + c_{u} + c_{t} = 0$$

It is possible to choose $n_s + n_t + n_u = 0$

• Squaring these numerators gives 4-point graviton amplitude:

$$\mathcal{M}_4 = \frac{n_s^2}{s} + \frac{n_t^2}{t} + \frac{n_u^2}{u}$$

(Bern, Carrasco, Johansson)

Double Copy in (A)dS

- 3-point correlators inherit double copy from flat space limit, but there are additional simplifications and extensions beyond the flat space limit in d=3. Farrow,Lipstein,McFadden
- 4-point gluon correlators also have color/kinematics duality! Armstrong,Mei,Lipstein,Albayrak,Kharel,Meltzer,Alday,Behan,Ferrero,Zhou, Diwakar,Herderschee,Roiban,Teng,Drummond,Glew,Santagata
- Also holds for NLSM (Diwakar, Herderschee, Roibana, Teng, Cheung, Parra-Martinez, Sivaramakrishnan)
- Naively squaring numerators only works for supersymmetric theories in AdS5 (Zhou) but I am optimistic that it can be generalised!

Effective Field Theories

• NLSM:
$$\mathcal{L}_{\text{NLSM}} = \frac{1}{8\lambda^2} \text{Tr}(\partial_{\mu} U^{\dagger} \partial^{\mu} U), \quad U = (\mathbb{I} + \lambda \Phi)(\mathbb{I} - \lambda \Phi)^{-1}$$

• DBI:
$$\mathcal{L}_{\text{DBI}} = \frac{1}{\lambda} \left(\sqrt{1 - \lambda \left(\partial \phi \right)^2} - 1 \right)$$

• sGal:
$$\mathcal{L}_{sGal} = -\frac{1}{2} (\partial \phi)^2 - \frac{\lambda}{8} (\partial_\mu \partial_\nu \phi)^2 (\partial \phi)^2$$

CHY Formulae

Theory	Integrand
NLSM	$PT(Pf'A)^2$
DBI	$\mathrm{Pf}X(\mathrm{Pf}'A)^3$
sGal	$(\mathrm{Pf}'A)^4$

$$PT = (\sigma_{12}\sigma_{23}...\sigma_{n1})^{-1} Pf'A = \frac{(-1)^{c+d}}{\sigma_{cd}}PfA_{cd}^{cd}$$
$$A_{rs} = \begin{cases} \frac{2k_r \cdot k_s}{\sigma_{rs}}, & r \neq s, \\ 0, & r = s, \end{cases} X_{rs} = \begin{cases} \frac{1}{\sigma_{rs}}, & r \neq s, \\ 0, & r = s, \end{cases}$$

• Double copy: $PT \rightarrow PfX(Pf'A)$, DBI = NLSM x YM $PT \rightarrow (Pf'A)^2$, sGal= NLSM^2

Curvature Corrections

• When lifting to curved background, new terms can arise. Restricting to 4-point vertices: (Heemskerk,Penedones,Polchinski,Sully)

$$S_4^{NLSM} = -\int d^4x \sqrt{-g} \{ \frac{1}{2} \nabla \Phi \cdot \nabla \Phi + \frac{1}{2} m^2 \Phi^2 + \lambda^2 \Phi^2 \nabla \Phi \cdot \nabla \Phi + \frac{1}{4} C \Phi^4 \}$$

$$S_4^{(6)} = -\int d^4x \sqrt{-g} \{ \frac{1}{2} \nabla \phi \cdot \nabla \phi + \frac{1}{2} m^2 \phi^2 + \frac{1}{8} A (\nabla_\mu \nabla_\nu \phi)^2 \nabla \phi \cdot \nabla \phi + \frac{1}{8} B (\nabla \phi \cdot \nabla \phi)^2 + \frac{1}{4!} C \phi^4 \}$$

For sGal, A≠0 and B,C curvature corrections. for DBI, A=0 and C is curvature correction.

4-point Correlators

• Using Witten diagrams, we obtain

$$\Psi_4^{NLSM} = -\delta^3 \left(\vec{k}_T\right) \left(2\lambda^2 \hat{u} + C\right) \mathcal{C}_4^{\Delta}$$

$$\Psi_4^{(6)} = \delta^3 \left(\vec{k}_T \right) \left[A(\hat{s}^3 + \hat{t}^3 + \hat{u}^3) + (dA - B)(\hat{s}^2 + \hat{t}^2 + \hat{u}^2) - C \right] \mathcal{C}_4^{\Delta}$$

where
$$\hat{s} = \mathcal{D}_1 \cdot \mathcal{D}_2$$
, $\hat{t} = \mathcal{D}_1 \cdot \mathcal{D}_4$, $\hat{u} = \mathcal{D}_1 \cdot \mathcal{D}_3$

• Using CSE, this can be obtained from simple building blocks

Building Blocks

• Integrand constructed from:

 $PT (Pf'A)^{2} PfX (Pf'A)^{3} PT PfX|_{conn} Pf'A (Pf'A)^{3} PfX|_{conn}$ $(Pf'A)^{4} = \frac{1}{3} \left\{ \frac{1}{\sigma_{34}^{2}} (PfA_{34}^{34})^{2} \frac{(-1)}{\sigma_{23}} (PfA_{23}^{23}) \frac{1}{\sigma_{24}} (PfA_{24}^{24}) + cyclic(2,3,4) \right\}$ where $PfX = \frac{1}{\sigma_{12}\sigma_{34}} - \frac{1}{\sigma_{13}\sigma_{24}} + \frac{1}{\sigma_{23}\sigma_{14}}, PfX|_{conn} = -\frac{1}{\sigma_{13}\sigma_{24}} \int_{\sigma_{24}}^{\sigma_{24}} \int_{\sigma_{24}}^{\sigma_{24}}$

• Choose Pfaffians to obtain permutation-invariant result

Generalised Double Copy

• 4-point correlators obtained from the following integrands:

 $\mathcal{I}_4^{NLSM} = \lambda^2 \mathrm{PT} \left(\mathrm{Pf}' A \right)^2 + c \mathrm{PT} \left. \mathrm{Pf} X \right|_{\mathrm{conn}} \mathrm{Pf}' A$

 $\mathcal{I}_4^{(6)} = a(\mathrm{Pf}'A)^3(\mathrm{Pf}'A + m^2 \mathrm{Pf}X|_{\mathrm{conn}}) + b(\mathrm{Pf}'A)^2(\mathrm{Pf}'A\mathrm{Pf}X + m^2\mathrm{PT}) + c(\mathrm{PT} \mathrm{Pf}X|_{\mathrm{conn}} \mathrm{Pf}'A)$

where $A = \frac{8}{3}a$, $B = 2a\left(m^2 + \frac{4}{3}d\right) - 2b$, $C = -\frac{1}{3}am^6 + bm^4 - c$

• Second integrand can be obtained from first via

 $\lambda^2 \mathrm{PT} \to a \mathrm{Pf}' A \left(\mathrm{Pf}' A + m^2 \mathrm{Pf} X |_{\mathrm{conn}} \right) + b \left(\mathrm{Pf}' A \mathrm{Pf} X + m^2 \mathrm{PT} \right)$

Soft Limits

- Inflationary 3-point can be obtained from soft limit of dS 4-point (Creminelli,Kundu,Shukla,Trivedi,Assassi,Baumann,Greene)
- Soft limits also can be written in terms of boundary conformal generators acting on contact diagrams!
- Example: conformally coupled scalar

$$\lim_{\vec{k}_1 \to 0} C_4^{\Delta=2} = \mathcal{C}_{3,\eta}^{\Delta=2} \quad \lim_{\vec{k}_1 \to 0} \hat{u} \mathcal{C}_4^{\Delta=2} = D_3 \, \mathcal{C}_{3,\eta}^{\Delta=2} \quad \lim_{\vec{k}_1 \to 0} (\hat{s}^2 + \hat{t}^2 + \hat{u}^2) \mathcal{C}_4^{\Delta=2} = 2(D_2^2 + D_3^2 + D_4^2) \mathcal{C}_{3,\eta}^{\Delta=2}$$

$$\lim_{\vec{k}_1 \to 0} (\hat{s}^3 + \hat{t}^3 + \hat{u}^3) \mathcal{C}_4^{\Delta = 2} = \left(6(D_2^3 + D_3^3 + D_4^3) - 22(D_2^2 + D_3^2 + D_4^2) + 20 \right) \mathcal{C}_{3,\eta}^{\Delta = 2}$$

where $\mathcal{C}_{3,\eta}^{\Delta = 2} = \int \frac{d\eta}{\eta^4} \left(\eta \prod_{i=2}^4 \mathcal{K}_{1/2}^i \right) = \frac{1}{E}$

Hidden Symmetries?

• Can choose coefficients to obtain simple soft limits:

$$\{A, B, C\} = \{1, -8, -20\} \longrightarrow \lim_{\vec{k}_1 \to 0} \Psi_4^{(6)} = 6(D_2^3 + D_3^3 + D_4^3)\mathcal{C}_{3,\eta}^{\Delta=2}$$

- In flat space, soft limits encode hidden symmetries (Adler,Low,Cheung,Kampf,Novotny,Trnka,Hinterbichler,Joyce,Padilla, Stefanzyn,Wilson)
- Lagrangians for DBI and sGal with hidden symmetries in dS4 recently proposed by Bonifacio, Hinterbichler, Joyce, Roest
- Do their correlators have simple soft limits? Does this provide a principle for fixing coefficients of generalised double copy?

Thanks!