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Introduction

 Scattering amplitudes are the basic observables measured at
colliders like the LHC.

* They also have a rich mathematical structure which is interesting in
its own right.



Twistor String Theory

. derived tree-level N=4 SYM amplitudes
from twistor string theory



Scattering Equations

Extended to general theory of massless particles
G-E.l'

* First discovered in tensionless limit of string theory
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* Universal structure:
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Applications

* New representations of loops amplitudes
(Geyer,Mason,Monteiro,Tourkine,Baadsgaard,Bjerrum-
Bohr,Bourjaily,Caron-Huot,Daamgaard,Feng)

* Makes double copy manifest: GR = YM”2, special Galileon = NLSM”2,
and many other relations (Cachazo,He,Yuan)



Questions:

* Can this progress be extended to cosmological observables?

* What does this teach us about amplitudes? Are SE and double copy
fundamental or just an artefact of flat space?

e Other tools have recently developed for cosmological observables
inspired by amplitudes: Mellin-Barnes ( ), factorisation
( ), unitarity
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Cosmological Observables

* Inflation: early Universe approximately described by dS4. CMB comes
from correlations on future boundary
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Wavefunction of the Universe

* In-in correlators ( ):
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« U, can be treated like CFT correlator in the future boundary and
computed from Witten diagrams
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dS momentum space

* We Fourier transform boundary correlators to momentum space,
which is standard for cosmology and useful for studying soft limits
and factorisation. Momentum conserved along boundary, but energy
not conserved in bulk.

* boundary conformal generators (annihilate V,, ):

P' =k, K; = k;070; — 2k70,0; — 2(d — A)d;,
D =k'0; +(d—A), M= (kd;— k;0;).

 mass of bulk scalar: m* = A(d — A)



Witten Diagrams
* Bulk-to-boundary prop:

K, (k,n) = Nk"n"?H,(=kn), v = A —d/2, k = |k

* Contact diagram:

" odr
C_;,& E/ ??djl H:‘Cy(f";m?;)

* Bulk-to-bulk prop:

(?}263-?; + (1 — d)no,, + n°k?* + -n'l-g) G, (k,n,n) =n"é(n—n)
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Scattering Equations in dS

* How do we lift the SE to dS momentum space?
fz'-'n. ' ﬁ'rh —7 D{;. " Dh

D, - Dy = §(PiKi + KaiPy — MaijM,’) + DoDy

gt (Z kif) — 0" (Z ’?) Cn

a=1 a=1

* Inspired by scattering equations in AdS embedding coordinates
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Flat Space Limit

e Differential ops act in a simple way on bulk-to-boundary propagators:
(Pn ' I),!;)K::jfci — ??E[BTF}Cﬂa'*}}CE- + (En ' rh)mij"cﬁ]

* Flat space limit can be read off from 17 — —oc<¢ |imit:

lim K, (k,n) oc k2 /2p(d=1)/2ikn

n— —o00 :

lim D, Dy, (KLK,) = n’(ka - k)KL,

vy
nN——00

* Hence, we obtain flat space SE



Worldsheet formula

* Tree-level wavefunction for massive ¢* in dS (toy model for inflation):
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* Mass deformation ta.+1 = —m* found by in flat space

* We have checked this up to 8 points. No ambiguities!



Example: 4 points

* Fix legs 1,2,4 and removing rows/columns 1,4 from A-matrix:

3 (1 | 012034 1
Uy = §° (Ar’r) / dos - g-g:jcf*
J Y3 023 S 3 4

where contour encircles pole at 2

S3 = 01302304353 = (13023043 + (vo3013043 + (1430130923

* Wrap contour around pole at 023 and evaluate residue:

Cl:g:_%,Cf = Cf‘

o23=0

U, = & (E’T) Ulgjm




Higher Points

* At 6-points, we have the following perfect matchings:

(D5 + Dy +Ds5)° +m?] 7 N NV

. _ " B " dn  dn . .
e Key identity: [(Di+...+Dp)* +m?~'Cp :/ Pt -ﬁti—HUI’+1-.'H(??)Gw(kl...pv?71'7})U1,;U(7;’)




Loops

e 1-loop n-point correlator from deformed tree-level (n+2)-point:

B w?dw ~ 7 7 %
\1131 oep — / dd / 5 lim \I]n-{ 2 ((1/%-7 ]\+) ) (1/1,]{-]) 3 eeey (’/na kn) 3 (V—a
WEFVE R g

where vy = +iw, vy = ... = v, = v =A—d/2

* Integral over w pastes together auxiliary legs:

— — —
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 Similar structure found in position space ( )




Next Steps:

* More general scalar theories

* Break boost symmetry to connect with observations
* Spinning correlators

e Systematic formulation of double copy in dS

e Solve the CSE



Double Copy in Flat Space

e 3-point gluon amplitudes square into 3-point graviton amplitudes

 Color/kinematics duality can be used to extend double copy beyond
three points. Take a 4-point gluon amplitude:

Ay t—+— &tauta=0
S ’ U

It is possible to choose ns +ni +n, =0
e Squaring these numerators gives 4-point graviton amplitude:

?13 nf ni
My = + +
S t U
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Double Copy in (A)dS

* 3-point correlators inherit double copy from flat space limit, but there are
additional simplifications and extensions beyond the flat space limit in d=3.

* 4-point gluon correlators also have color/kinematics duality!

e Also holds for NLSM (

* Naively squaring numerators only works for supersymmetric theories in
AdS5 ( ) but | am optimistic that it can be generalised!



Effective Field Theories

1 :
* NLSM: Lnrsm = ﬁ’ﬁ-(aﬂmaw), U = (I+ \®)(I — \®)~?

*DBl:  Lpgi = % (\/1 — A (99)* — 1)

1 9 A N .
¢ SGal: f’sGal — _5 (60)2 - g (8#-0:3@)2 (0@)2



CHY Formulae

Theory Integrand
NLSM PT(Pf’'A)
DBI PfX (Pt'A)°
sGal (Pf'A)*

9 ; ( 1)('+d J
PT = (012093...001) Pf'A = PtA
Ocd -
[ 2k - k. (
L= r#s, : , T#s5
Ors Xr‘s — { Ops
k 0, =g, 0, r=s

 Double copy: PT — PfX(Pf'A),
PT — (Pf'A)°,

DBl = NLSM x YM
sGal= NLSMA2



Curvature Corrections

* When lifting to curved background, new terms can arise. Restricting
to 4-point vertices: ( )

Sy oM = — / d*z/=g{5V® - VP + m*®* + N’V - VP + 1 CD}
S = — / d*r/—g{iVe-Vo+ im?p? + LAV, V,0)°Vé-Vé+ L B(Vo- V) + £Coh)

For sGal, A#0 and B,C curvature corrections.
for DBI, A=0 and C is curvature correction.



4-point Correlators

e Using Witten diagrams, we obtain

WYESM = —4% (Fr) (20%+ C) €

—

p®) = 43 (A:T) A+ + 03 + (dA — B)(8* + 2 + a2 — C|c8
where §=D,-Dy, {t=D;-Dy, 4=0D; -Ds

* Using CSE, this can be obtained from simple building blocks



Building Blocks

* Integrand constructed from:

PT (Pf'A)*  PfX (Pf'A)°  PTPfX|,, P4  (Pf'A)® PiX

conmn

| 1 1 anen (—1 P |
(PfA): == {_)(Pngi)f-‘ ( )(Pngg)— (PfA3}) + cyclic(2, 3, 4)}
3 T34 g23 024
1 1 1 1
Where PfX = = =+ ; PfX|cc:-nn -
012034 013024 023014 013024

* Choose Pfaffians to obtain permutation-invariant result



Generalised Double Copy

e 4-point correlators obtained from the following integrands:

TNESM — \2pT (Pf'A)” + ¢PT PfX|_, Pf'A

I9 = a(PFAP(PF'A+m? PEX| ) +b(Pf'A)? (P APfX +m?PT) +c¢(PT PfX| __ Pf'A)

conn conn

where A = %G--; B = 2a ('THQ -+ %d) — 20, C = —%a.m.ﬁ + bm? — ¢

e Second integrand can be obtained from first via

NPT — aPf'A (Pf'A +m?* PfX]|_ ) + b (Pf’APfX + m?PT)



Soft Limits

* Inflationary 3-point can be obtained from soft limit of dS 4-point

( )

* Soft limits also can be written in terms of boundary conformal generators acting
on contact diagrams!

* Example: conformally coupled scalar

lim szz — Cé_}”:-g 1im aCy=? = D3 C& 2 lim (8% + £ + @*)CP=* = 2(D3 + D3 + D} )C;;;
k1—0 : k1 —0 k1 —0

lim (3% 4+ £ + 4%)CP™* = (6(Dj3 + D3 + D3) — 22(D3 + D3 + D3) +20) C 2
k‘-l—}O

where -2 = /@ (?3 H’Cw) -



Hidden Symmetries?

* Can choose coefficients to obtain simple soft limits:

A, B,C} ={1,-8,—20} lim 0¥ = 6(D3 + D3 + D)4

JE-Il —()

* |In flat space, soft limits encode hidden symmetries

(
)

e Lagrangians for DBl and sGal with hidden symmetries in dS4 recently
proposed by

* Do their correlators have simple soft limits? Does this provide a principle for
fixing coefficients of generalised double copy?



Thanks!



