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Motivations

e Complex SYK is an interesting quantum mechanical model displaying features similar to

black holes
2 2 IAT3
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e |t develops an emergent conformal symmetry at low temperatures. Can be studied at

non-zero background charge (electric field in bulk)

e Displays maximal chaos, its compressible, and has a large zero temperature entropy

 Phase transitions to low-entropy gapped phases were found at non-zero charge, even

though the conformal solution has no pathology.

Azeyanagi, Ferrari, Schaposnik-Massolo 18



Motivations

* A deceptively simple modification of complex SYK is to take the random couplings to be
Fu Gaiotto Maldacena Sachdev 16

Jijkl ~ Z Calekla <C§ > ~ ]/N2

e This has drastic consequences in the behavior of the model, developing /4 = 2

supersymmetry with @ ~ Cl-jkl//iwjl//j

e This model develops a Superconformal symmetry in the IR SU(1,1|1) D SL(2,R) X U(1)

e Study high- to low-entropy (or conformal to gapped) transition in this model



Motivations

* As a separate motivation, the Fu et al model has fractional R-charge fermions. All these

models have vanishing index, but large ground state degeneracy

* We will construct models with multiple fermions allowing us to realize theories integer R-

charge

* The new models are described in the IR by the same Super-Schwarzian modes appearing

in the description of near-BPS black holes in AdS;
See M. Heydeman talk



N =2 SYK Model

e System of N complex fermions v, with i = 1,..., N, satisfying {v, i/} = 67 while other

combinations vanish {w',y/} = 0

e When /' = 2 supersymmetry is preserved, the Hamiltonian can be written as

H = {@, @}. We choose the supercharge to be, for g = 3,5,...

ks - - Rand liNQ:

iy-- 1, <Ci1i2...iqéi1i2miq> ~ J/Nq—l
e The theory has a U(1), symmetry, generated by
.. N 1
Q=Zl/ffl/ff > Yr=—0
For N odd charge is half-integer J 1



The Index of the model

e The fermion number of the theory is (— 1) = ¢'"<r

e The Index of # = 2 SYK vanishes Tr (—1)Ye™"" = (. This can be easily computed in

the free fermion limit. Is supersymmetry broken?

* No, there is a large number of BPS ground states. To see this, compute the refined index
J(r) ="Tr [(— )f e2m7Cr e‘ﬁH] for r € Z,. This is protected since (7™ Q] = 0

- ar\V Total number of ground states
J(r) = (2 sm—)
q

v

Maximized for r = (g = 1)/2 and gives: max f = eNlOg(z €05 2_q)



/=72 SYK at Strong Coupling

* Focus on g = 3. To derive the mean field theory to solve at strong coupling, it is

necessary to introduce an auxiliary boson b, ~ {@, Wi} ~ l/_/2

e Introduce superspace coordinates Z = (t, 6, ) and covariant derivative D = d, + 60..

Package the fundamental fields in a chiral super field:

DV ' =0 = Y= Wi(T + 06) + Hbi(f)
‘ T

 The action is (implicit summation) Fundamental Eermion Auxiliary Boson

& = Jd29 Pipi 4 inH Ci PP  +h.c.

= y'oy' —b'b' + Cyb'ywy“ +h.c.



/=72 SYK at Strong Coupling

1 . .
. Introduce bi-local 2pt function €(Z,, Z,) = N(‘P’(Zl)‘l”(Zz)). And similarly self-energy

2(Z,Z,). In components: i -
?(Zl, Zz) — Gl/fw(Tl — 9181, (%) + 9292) + (91(92be(1'1, Tz)

+é1Gbl//(T1’ (%) + 92@2) — QZGI//b(Tl — Hlél’ Tz)

 Procedure: Introduce &(Z,, Z,) using 2(Z,, Z,) as a Lagrange multiplier. Integrate out

disorder, integrate out W(Z). Ends up with mean field action

Schwinger-Dyson

Equations
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 Procedure: Introduce &(Z,, Z,) using 2(Z,, Z,) as a Lagrange multiplier. Integrate out

disorder, integrate out W(Z). Ends up with mean field action

— —1
Schwinger-Dyson IR Approx 2(22’ Z3) — J?(Z% Z3)q

Equations




Schwinger-Dyson Equations

e Consider a solution with Gl/, = be = (), and with time translation. We need to solve

2, (7) = J(q — I)GWW(T)Q_szb(T), >,,(7) = JGWW(T)q—l

G, (@) = G, (@) =

—io+pu+2,,(-0) —1 -2 (—w)

e \We will solve these equations in the IR |Jz| > 1 with a conformal ansatz

—e™0__+e"0_ e"0__+ e "0

Gij(T) — gl/jl/j | . ‘ZA y be(T) — gbb ‘ - ‘2Ab

Turning on & corresponds to turning on background U(1) charge



Conformal Solution

1 (1-2A)sin27A —e™0O__+e 0.

“y 8y Cosh 27& + cos 27A 7 |20=4)
e We begin with G2 ~ 1 which gives
1 (1=2A)sin27A, —e™@®__ — e ™60
b = g, cosh2z&, — cos 2rA 2(1-4)
bb b b | 7]

&,=—(@—-1&
* |nserting this in the other equations gives:

(G—DA+A, =1

* The scaling dimension is NOT determined by dimensional analysis (usual case with

Yukawa interactions). In /' = 2 SYK this is determined by looking at prefactors



Scaling Dimensions

* Matching the prefactors in the Schwinger-Dyson equations gives the redundant equations

(1 —2A)sin2zA B 1 (1 =2A,)sin2zA,
cosh 27& + cos 2xA

cosh2n&;, — cos 2nA,

* This gives a self-consistency equation for the scaling dimension as a function of spectral

asymmetry

(1-2A)sin2zA o1 (1 —2(g — 1)A)sin27(g — DA .

cosh272& + cos 2zA cosh2n(qg — 1)& — cos2n(g — 1)A

o The conformal solution is NOT fully determined, only gl%lgbb ,but not e.g. g,,,,/ s



Superconformal Solution

e Supersymmetric solutions are found when:

& - €/, = A L A L]
= —, 14 . p— . p— :
SUSY q zq b zq 2
» Using that G, = — 0,G,,,, we can find the full solution using g, = 2Ag,,,,. We focus on

r =10

e This solution has an emergent SU(1,1|1) D SL(2,R) X U(1), symmetry

T>17T=f1)+...

G(Z),Zy) — (Dy 0" (D 05)" G(Z},Z})

0 — 0 = e"“O\F(1)0+ n(t) + ...




Conformal Solution at non-Zero Charge
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ing d

3 behavior of scal

o (2’ —

o
\
$.3 8.3 \
BECECRGRG .
I I
O 7 1 |
__ 1 |
W
Ol
L O
™~
o} \ I
R I J
/
/
\\\
IIIIHIHIHIllIrIlMJnx L
— — |
BEEEEEEE S SN
I/
S.5 8.8
BESCACRGEG \ |
o Lo \
_ _ _ \
__ i I |
|
- —I
W _
|
|
|
| |
|
|
ST I
) __
|
\\
||H|H|H|HH.H+.|M.\NH\.“\.
— — |
e e e ey
IIIIIIIIII.H.v/I
o/ II/
S03 8.3
BECEACRGRG
[ | \
[ | \
-] 7 [ | \
|
It -
W I
|
~ L 14
LO) |
|
| _
= —I
J 1
I
Q. I
\. \\
Illlu.‘\\ ==
- - T T =
— — | N

e
|——__I___—-I-——_ .

%critical = 0.28055

8 / gcritical

1.2

2qA

1.0F

085—
06;-
045-
02;-
0.0

0.0



Conformal Solution at non-Zero Charge

e \We checked the UV boundary conditions fix the undetermined coefficients:

Gb/ G

0.3 F

0.2}

0.1F

o o1 02¢€

Figure 3: Plot of gy/ gy computed from the numerical solution for ¢ = 3 at different values of £.

Note the infrared Schwinger-Dyson equations can only determine the combination gfﬁl gup, but the
individual values are determined by the full solution. At & = 0, it agrees with the supersymmetric

aNlSWer gpp — 2Ag¢¢ — %g¢¢.

* This scaling symmetry does not generate a genuine IR mode
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Luttinger-Ward Relation

* The Luttinger-Ward relation gives the charge expectation value (a UV quantity) in terms of

the conformal spectral asymmetry (an IR quantity).

* We derived and verified numerically;

Georges Parcollet Sachdev 00

Fermion Contribution (same as cSYK)

1

(£ — A)sinh 278 il

Q/N _ 2 cCosSntA —i&
cosh2z& + cos 2xA 2T

1 log

sin E(Ab + l%b>

(5 — Ay)sinh22&,  ilog

cosh2zn&, — cos 2nA, | 2r

I —

Aux Boson Contribution

Sin ﬂ'Ab — l%b

+(g— 1)

Important: &

critica

charge QO = 0.414N = Phase Transition

critical —

| corresponds to less than maximal



/= 2 Schwarzian Theory

e At low temperatures the Schwarzian dominates. The Bosonic sector has reparametrization

and U(1) modes with action

asN
Lys o = ST [a’r ({ 1,7} 2q2(67a)2) fermions

S(T)/N

—— S(T)/N = 0.54905 + 0.332T'/.J

0.559} * The free energy is given by

e Numerical Dyson-Schwinger

C 4n*agN N
2p J J

0.007F

e SUSY ties the Schwarzian coupling to compressibility
0.555T

T/J

0.013 0.022 0.026 0.030 <§> _ <0Q ) O <@> ~ 0.303N/J
0T /1=0 g2\ ou / 1=0 ou / 1=0




/= 2 Schwarzian Theory

* The quantum BPS spectrum of the 20
. 2eV%0 cos(—)
Schwarzian is Z(B. 1) = Z e q

QeZ,|0|<q/2 q

| non—BPS

e For g = 3 we have s, = log \/5 . Then the Schwarzian exactly matches the SYK answer

computed in [Fu et al *16]

|
D(N,0)=23"2"1  D(N, :§) — 3N/t for N even
|
D(N, +2) = 3N=b/2 for N = 3mod4
| 3
D(N, ::6) — 3(N_1)/2 , D(N, ::6) =1or 3 ] for N =1mod4

e Can be a good setup to understand better microstates from gravity [Lin Maldacena
Rosenberg Shan, WIP]



DO —
| | | | | |

Solution for Q > 0

critical

* \We checked numerically the fate of the instability we found. The answer is

Solution develops a Gap

Gy with p=1.2J

——BJ=5
——BJ =101

BJ =15 -
——BJ =20 |

0 I 27

—10F

1—15

—25

- _20-

log Gy with p =1.2J

0

2

Figure 6: Left: Numerical solutions of Gy, in the region where & > Eqitical. We observe

exponential decay solutions.

Since the solution ceases to be conformal, the infrared parameter

€ is no longer meaningful. The solutions depend on both 3J and p/J. Right: log plot of Gy, at
various values of 8.J, where dashed lines are linear fits. We observe that the exponent is linear in

Lb.

High- to Low-Entropy Transition

0.6F So(x)

0.5F

0.4F

0.3F

0.2F

0.1F

0-

p/J

_01 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 7: The entropy computed numerically as a function of the chemical potential 4. For
each value of 1, we compute the free energy and entropy on a numerical grid of size 2%° at small
temperatures and extrapolate the zero temperature entropy. Note at u = 0, we obtain Sy(0) =
0.5484 which is close to the value predicted by the index log(2cos &) ~ 0.5493. The transition
happens at around p = . = 0.5J.



Some features of bilinear spectrum

Spectrum for £ = 0 Spectrum for £ = 0.15

A VY ERE |
e 6 =0:Wefindtwosetsof h = (1) +2 X (3/2) + (2). One is the /' = 2 Super-

Schwarzian, the other is spurious

e & # 0 : Fermionic modes develop a mass, suggests one ends up with Schwarizan + U(1)

e &> &

unstable even for fundamental fermion

ritical - GOMplex solutions appear and a continuum of real ones. We already saw it is



Holographic Interpretation

e Picture 1: /' = 2 Jackiw-Teitelboim gravity coupled to fermion

1
multiplets. At large enough electric field the fermion becomes A = 5 — \/M2 — &*

unstable.

e Picture 2: Gravity is emergent from N = 2 “spooky” fermions + “spooky” bosons. Gives

concrete formula for grand potential 5(0)
cSYK: Gu Kitaev Sachdev Tarnopolsky 19 0.55¢

G(F) J“Z dxn(1 — 2x)sin 27x

A Cosh2n& + cos2nx

0.40F

0.35F

N r—(q—m dxm(2x — 1)sin 27x
19 cosh2z(q — 1)& — cos 2nx

0.30F

A(&) extremizes G(A, &) 3



New class of // = 2 SYK Models

o System of 2N complex fermions 1//i and )(i. The Hamiltonian is given in terms of the

supercharge by

Q = iz Cijk vy "
ik

e Two U(1) symmetries

.. N .. N
0, =2 W -—. Q=7r-=
J J
* A special role is played by a flavor symmetry that commutes with the supercharge

QFzQy/_ZQ’ [@,QF]=O

e Emergent SU(1,1]1) in the IR with Superconformal R-symmetry Or=0,+a O



The Index of the model

e The “fermion’ number of the theory is F(y) = Tr |[(= 1) e?rePH]

(=D = €. The index is: - y Cg—1 N
= (2cos| = )2sin y
2 2

e In a fixed (J; sector the index is non-vanishing

27 d |
Tr,. [(—1)F] = [ Z_]yze_lyQFj(Y)
0

— eNSO(QF)

o Take for simplicity O = 0, then

tan(%) = (g — l)cot(

(q—l)yc), N d Y Cot((q—l)yc)

0 dg’ 2 0



/=72 SYK at Strong Coupling

* |ntroduce two chiral super fields made of fermions and auxiliary bosons

P! = y'(t + 00) + (%lf,(f), X' = y'(t + 00) + (919)?(’[)

e The action includes the interaction term now

<D in@ Ci W'V X*+h.c.

» Derive Schwinger-Dyson equations in terms of two superfields &, (Z,, Z,) and & (Z,, Z,)



Schwinger-Dyson Equations

o Consider a solution with Gw = be = (), and with time translation. We need to solve

% = J(q - 1)(G$;2Gbxb% + (g — 2)bebwGMGgl/‘,3), %5 =1 - l)GngM

_ -2 _ —1
2, =Jq=1DG,, Gy Zyp =Gy,

e \We will solve these equations in the IR |J7z| > 1 with a conformal ansatz (A = W, ¥)

—e™Q__+ e "0 e™n@__+ e "0,

G, .(1) = G =
AA( ) gAA ‘ . ‘ZAA ’ bAbA(T) gbAbA ‘ - ‘ZAbA




Conformal Solution

%b — —(q—z)%w— %)(

W

e Boson spectral asymmetries:

X

e Scaling Dimensions constrain:

A, +(q—2)A,

W

A =1

bN

bN

Wq

« The four equations determine only two prefactors g, , gl%l and &%28;0(319 , and
v woy

consistency determines

A&, 8). ASE,.E)

2 _

Wiy

—1



Superconformal Solutions

o Supersymmetry imposes G, , = — 0,Gy4, for A =y, x. This gives two further constrains:

1

&,+(@—-1¢&,=0

tan(ﬂAw) = (g — 1)cot(n(g — I)AW)

« For simplicity take &,, = 0, then

'4

d
d_qSO = JZ'AW cot(m(g — I)AW)

The equation for A, is the same as for y, — 274, in the extremization of the index!



Superconformal Solutions

e Under Superconformal transformations the G272, — (Dglei)Aw(Dgzég)Aw G2y, 25)

fermions transform as chiral primaries - _— .
?x(zpzz) — (D916’1) )‘(Déz‘gz) £ ?%(Z 9Z2)

e This gives an assignment Qx| = 2Aw, Orly] = 2A)(, and completely determines the

R-charge in the IR
Or=0,+24,0p

e Since the R-charge of the supercharge is one, we get the simplest Schwarzian with only

Qr = 0 ground states



Index Maximization

e Why does the fermion dimension match with the saddle point for y? V.=

 Index-maximization in 1D nSCFT: Define R = R, + aF, then the coefficient is picked by

maximizing the absolute value of

[Bah, Heydeman, GJT, Zhao, WIP] .
. L . IR
Stated in [Benini Hristov Zaffaroni 15] TI’ e

e Moreover, In the large N limit the maximal value of the index matches the ground state

entropy



/= 2 Schwarzian Theory

e At low temperatures the Schwarzian dominates. The Bosonic sector has a reparametrization

and U(1) modes with action

a.N
[yon g = ST [dT ({F,7} +2(3,a)*) + fermions

e The quantum Schwarzian spectrum of this model is

Z(,B, //t) = "% T Znon—BPS

e This is the Schwarizan theory appearing in the near BPS limit of black holes in AdS

[Boruch Heydeman lliesiu GJT 22]



Stability of Superconformal solution

o At arbitrary charges there are instabilities of the conformal solution, just like before

e |t is surprising that potential instabilities also appear for Superconformal solution

A The Luttinger-Ward relation resolves this issue
| since at the potential transition point the charge

IS maximal

O, (8 critical) /N = 112




Summary

e We studied the phase structure of 4/ = 2 supersymmetric SYK at non zero

charge

* There are phase transitions to gapped low-entropy phases. Similar to complex

SYK but simpler to interpret

* We constructed models with several charges, realizing new types of Schwarizan

theories at strong coupling

* Role of index maximization in nearly Superconformal quantum mechanics



Thank you for your attention!



