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Motivations

" Complex SYK is an interesting quantum mechanical model displaying features similar to 

black holes 

H = ∑
ijkl

Jijkl ψ̄ iψ̄ jψkψ l,

" It develops an emergent conformal symmetry at low temperatures. Can be studied at 

non-zero background charge (electric field in bulk)

" Phase transitions to low-entropy gapped phases were found at non-zero charge, even 

though the conformal solution has no pathology.

⟨J2
ijkl⟩ ∼ J2/N3

Sachdev Ye, Kitaev

Azeyanagi, Ferrari, Schaposnik-Massolo 18

" Displays maximal chaos, its compressible, and has a large zero temperature entropy

Gu Kitaev Sachdev Tarnopolsky 19 i = 1,…, N



" A deceptively simple modification of complex SYK is to take the random couplings to be

" This has drastic consequences in the behavior of the model, developing  

supersymmetry with 

! = 2

% ∼ Cijkψ
iψ jψ j

" This model develops a Superconformal symmetry in the IR SU(1,1 |1) ⊃ SL(2,ℝ) × U(1)

Jijkl ∼ ∑
a

C̄aijCkla

Motivations

Fu Gaiotto Maldacena Sachdev 16

" Study high- to low-entropy (or conformal to gapped) transition in this model

⟨C2
ijk⟩ ∼ J/N2



" As a separate motivation, the Fu et al model has fractional R-charge fermions. All these 

models have vanishing index, but large ground state degeneracy

Motivations

See M. Heydeman talk

" We will construct models with multiple fermions allowing us to realize theories integer R-

charge

" The new models are described in the IR by the same Super-Schwarzian modes appearing 

in the description of near-BPS black holes in AdS5



 SYK Model! = 2

" System of  complex fermions , with , satisfying  while other 

combinations vanish  

N ψ i i = 1,…, N {ψ i, ψ̄ j} = δij

{ψ i, ψ j} = 0

" When  supersymmetry is preserved, the Hamiltonian can be written as 

. We choose the supercharge to be, for 

! = 2

H = {%, %̄} q = 3,5,…

Random coupling:

ariables 〈Ci1i2...iqC̄
i1i2...iq〉 ∼ J/N q−1,

" The theory has a  symmetry, generated by U(1)R

% = i
q − 1

2 ∑
i1…iq

Ci1…iq
ψ i1… ψ iq

Q = ∑
j

ψ̄ jψ j −
N

2
, QR =

1

q
Q

For N odd charge is half-integer



The Index of the model

" The fermion number of the theory is (−1)F = eiπQR

" The Index of  SYK vanishes  . This can be easily computed in 

the free fermion limit. Is supersymmetry broken?

! = 2 Tr (−1)Fe−βH = 0

" No, there is a large number of BPS ground states. To see this, compute the refined index 

 for . This is protected since ℐ(r) = Tr [(−1)F e2πirQR e−βH] r ∈ ℤq [e2πirQR, %] = 0

ℐ(r) = (2 sin
πr

q )
N

Maximized for  and gives:r = (q ± 1)/2 max ℐ = e
N log(2 cos π

2q )

Total number of ground states



 SYK at Strong Coupling! = 2

" Focus on . To derive the mean field theory to solve at strong coupling, it is 

necessary to introduce an auxiliary boson 

q = 3

bi ∼ {%̄, ψi} ∼ ψ̄2

" Introduce superspace coordinates  and covariant derivative . 

Package the fundamental fields in a chiral super field:

Z = (τ, θ, θ̄) D = ∂θ + θ̄∂τ

DΨi = 0, ⇒ Ψi = ψ i(τ + θθ̄) + θbi(τ)

Fundamental Fermion Auxiliary Boson
" The action is (implicit summation)

ℒ = ∫ d2θ ΨiΨi + i∫ dθ CijkΨ
iΨjΨk + h . c .

= ψ̄ i∂τψ
i − b̄ibi + Cijkb

iψ jψk + h . c .



 SYK at Strong Coupling! = 2

"
Introduce bi-local 2pt function . And similarly self-energy 

. In components:

1(Z1, Z2) =
1

N
⟨Ψ̄i(Z1)Ψ

i(Z2)⟩

Σ(Z1, Z2)
1(Z1, Z2) = Gψψ(τ1 − θ1θ̄1, τ2 + θ2θ̄2) + θ̄1θ2Gbb(τ1, τ2)

+θ̄1Gbψ(τ1, τ2 + θ2θ̄2) − θ2Gψb(τ1 − θ1θ̄1, τ2)

" Procedure: Introduce  using  as a Lagrange multiplier. Integrate out 

disorder, integrate out . Ends up with mean field action

1(Z1, Z2) Σ(Z1, Z2)

Ψ(Z)

Σ(Z2, Z3) = J1(Z2, Z3)
q−1

D31(Z1, Z3) + ∫ dZ21(Z1, Z2)Σ(Z3, Z2) = δ(Z1 − Z3)

Schwinger-Dyson 

Equations
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Equations

IR Approx



Schwinger-Dyson Equations

" Consider a solution with , and with time translation. We need to solve Gψb = Gbψ = 0

Σψψ(τ) = J(q − 1)Gψψ(τ)q−2Gbb(τ), Σbb(τ) = JGψψ(τ)q−1

Gψψ(ω) =
1

−iω + μ + Σψψ(−ω)
, Gbb(ω) =

1

−1 − Σbb(−ω)

" We will solve these equations in the IR  with a conformal ansatz|Jτ | ≫ 1

Gψψ(τ) = gψψ

−eπℰΘ−τ + e−πℰΘτ

|τ |
2Δ

, Gbb(τ) = gbb

eπℰbΘ−τ + e−πℰbΘτ

|τ |
2Δb

Turning on  corresponds to turning on background  chargeℰ U(1)



Conformal Solution

" We begin with  which gives GΣ ∼ 1

Σψψ =
1

gψψ

(1 − 2Δ)sin 2πΔ

cosh 2πℰ + cos 2πΔ

−eπℰΘ−τ + e−πℰΘτ

|τ |
2(1−Δ)

" Inserting this in the other equations gives:

Σbb =
1

gbb

(1 − 2Δb)sin 2πΔb

cosh 2πℰb − cos 2πΔb

−eπℰbΘ−τ − e−πℰbΘτ

|τ |
2(1−Δb)

ℰb = − (q − 1)ℰ

(q − 1)Δ + Δb = 1

" The scaling dimension is NOT determined by dimensional analysis (usual case with 

Yukawa interactions). In  SYK this is determined by looking at prefactors ! = 2



Scaling Dimensions

" Matching the prefactors in the Schwinger-Dyson equations gives the redundant equations

(1 − 2Δb)sin 2πΔb

cosh 2πℰb − cos 2πΔb

= Jgq−1
ψψ gbb

(1 − 2Δ)sin 2πΔ

cosh 2πℰ + cos 2πΔ
= (q − 1)Jgq−1

ψψ gbb

" This gives a self-consistency equation for the scaling dimension as a function of spectral 

asymmetry

(1 − 2Δ)sin 2πΔ

cosh 2πℰ + cos 2πΔ
= (q − 1)

(1 − 2(q − 1)Δ)sin 2π(q − 1)Δ

cosh 2π(q − 1)ℰ − cos 2π(q − 1)Δ
⇒ Δ(ℰ)

" The conformal solution is NOT fully determined, only  , but not e.g. gq−1
ψψ gbb gψψ /gbb



Superconformal Solution

" Supersymmetric solutions are found when:

ℰsusy =
ir

q
, r ∈ ℤq, ⇒ Δ =

1

2q
, Δb =

1

2q
+

1

2

" Using that  we can find the full solution using . We focus on 

 

Gbb = − ∂τGψψ gbb = 2Δgψψ

r = 0

" This solution has an emergent  symmetrySU(1,1 |1) ⊃ SL(2,ℝ) × U(1)R

τ → τ′ = f(τ) + …

θ → θ′ = eia(τ) f′ (τ)θ + η(τ) + …
1(Z1, Z2) → (Dθ1

θ′ 1)
1/q (Dθ̄2

θ̄′ 2)
1/q 1(Z′ 1, Z′ 2)



Conformal Solution at non-Zero Charge

"  behavior of scaling dimension:q = 3

!"! !"# !"$ !"% !"& '"! '"# '"$

!"!

!"#
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!"&

'"!

'"#2q∆

E/Ecritical

ℰcritical = 0.28055





Luttinger-Ward Relation

" The Luttinger-Ward relation gives the charge expectation value (a UV quantity) in terms of 

the conformal spectral asymmetry (an IR quantity).

" We derived and verified numerically:

!"!! !"!# !"$! !"$# !"%! !"%#

!"!

!"$

!"%

!"&

!"'

Q

N

shift E

Important:  corresponds to less than maximal 

charge    Phase Transition

ℰcritical

Qcritical = 0.414N ⇒

Q/N =
(

1

2
− Δ)sinh 2πℰ

cosh 2πℰ + cos 2πΔ
+

i log
cos π(Δ + iℰ)

cos πΔ − iℰ

2π

+(q − 1)
(

1

2
− Δb)sinh 2πℰb

cosh 2πℰb − cos 2πΔb

+
i log

sin π(Δb + iℰb)

sin πΔb − iℰb

2π

Fermion Contribution (same as cSYK)

Aux Boson Contribution

Georges Parcollet Sachdev 00



 Schwarzian Theory! = 2

−βF = S0 +
c

2β
+ …, c =

4π2αSN

J
≈ 0.332

N

J

(
∂S

∂T )
T=0

=
π2

q2 (
∂Q

∂μ )
T=0

I!=2 Sch =
αSN

J ∫ dτ ({f, τ} + 2q2(∂τa)2) + fermions

" At low temperatures the Schwarzian dominates. The Bosonic sector has reparametrization 

and U(1) modes with action

" The free energy is given by 

" SUSY ties the Schwarzian coupling to compressibility

⇒ K = (
∂Q

∂μ )
T=0

≈ 0.303N/J



 Schwarzian Theory! = 2

" The quantum BPS spectrum of the 

Schwarzian is Z(β, μ) = ∑
Q∈ℤ,|Q|<q/2

eβμQ
2eNs0 cos(

πQ

q
)

q
+ Znon−BPS

" For  we have  . Then the Schwarzian exactly matches the SYK answer 

computed in [Fu et al ’16]

q = 3 s0 = log 3

D(N, 0) = 2 3N/2−1 , D(N,±
1

3
) = 3N/2−1 , for N even

D(N,±
1

6
) = 3(N−1)/2 , for N = 3mod 4

D(N,±
1

6
) = 3(N−1)/2 , D(N,±

3

6
) = 1 or 3 , for N = 1mod 4

" Can be a good setup to understand better microstates from gravity [Lin Maldacena 

Rosenberg Shan, WIP]



Solution for Q > Qcritical

" We checked numerically the fate of the instability we found. The answer is 

Figure 6: Left: Numerical solutions of Gψψ in the region where E > Ecritical. We observe
exponential decay solutions. Since the solution ceases to be conformal, the infrared parameter
E is no longer meaningful. The solutions depend on both βJ and µ/J. Right: log plot of Gψψ at
various values of βJ, where dashed lines are linear fits. We observe that the exponent is linear in
µ.

Figure 7: The entropy computed numerically as a function of the chemical potential µ
J . For

each value of µ, we compute the free energy and entropy on a numerical grid of size 225 at small
temperatures and extrapolate the zero temperature entropy. Note at µ = 0, we obtain S0(0) ≈

0.5484 which is close to the value predicted by the index log(2 cos π
6 ) ≈ 0.5493. The transition

happens at around µ = µc = 0.5J.

Solution develops a Gap High- to Low-Entropy Transition



Some features of bilinear spectrum

"  We find two sets of . One is the  Super-

Schwarzian, the other is spurious

ℰ = 0 : h = (1) + 2 × (3/2) + (2) ! = 2

"  Fermionic modes develop a mass, suggests one ends up with Schwarizan + U(1)ℰ ≠ 0 :

"  Complex solutions appear and a continuum of real ones. We already saw it is 

unstable even for fundamental fermion

ℰ > ℰcritical :



Holographic Interpretation

" Picture 1:  Jackiw-Teitelboim gravity coupled to fermion 

multiplets. At large enough electric field the fermion becomes 

unstable.

! = 2

Δ =
1

2
− M2 − ℰ2

" Picture 2: Gravity is emergent from  “spooky” fermions + “spooky” bosons. Gives 

concrete formula for grand potential

N = 2

 extremizes Δ(ℰ) G(Δ, ℰ)

G(ℰ) = ∫
1/2

Δ

dxπ(1 − 2x)sin 2πx

cosh 2πℰ + cos 2πx

+∫
1−(q−1)Δ

1/2

dxπ(2x − 1)sin 2πx

cosh 2π(q − 1)ℰ − cos 2πx

!"! !"# !"$ !"% !"&

!"$'

!"%!

!"%'

!"&!

!"&'

!"'!

!"''

Q

N

S0(Q)

N
cSYK: Gu Kitaev Sachdev Tarnopolsky 19



New class of  SYK Models! = 2

" System of  complex fermions  and . The Hamiltonian is given in terms of the 

supercharge by

2N ψ i χi

% = i∑
ijk

Cijk ψ iψ j χk

" Two  symmetriesU(1)
Qψ = ∑

j

ψ̄ jψ j −
N

2
, Qχ = ∑

j

χ̄j χ j −
N

2

" A special role is played by a flavor symmetry that commutes with the supercharge

QR = Qχ + α QF" Emergent  in the IR with Superconformal R-symmetrySU(1,1 |1)

QF = Qψ − 2Qχ, [%, QF] = 0



The Index of the model

" The ‘fermion’ number of the theory is 

. The index is:(−1)F = eiπQχ

ℐ(y) = Tr [(−1)FeiyQFe−βH]

= (2 cos(
y

2 )2 sin(
q − 1

2
y))

N

" In a fixed  sector the index is non-vanishingQF

TrQF [(−1)F] = ∫
2π

0

dy

2π
e−iyQFℐ(y)

= eNs0(QF)

" Take for simplicity , thenQF = 0

tan(
yc

2 ) = (q − 1)cot(
(q − 1)yc

2 ), ⇒
d

dq
s0 =

yc

2
cot(

(q − 1)yc

2 )



 SYK at Strong Coupling! = 2

" Introduce two chiral super fields made of fermions and auxiliary bosons

Ψi = ψ i(τ + θθ̄) + θbi
ψ(τ), Xi = χi(τ + θθ̄) + θbi

χ(τ)

" The action includes the interaction term now

ℒ ⊃ i∫ dθ CijkΨ
iΨjXk + h . c .

" Derive Schwinger-Dyson equations in terms of two superfields  and 1ψ(Z1, Z2) 1χ(Z1, Z2)



Schwinger-Dyson Equations

" Consider a solution with , and with time translation. We need to solve Gψb = Gbψ = 0

Σψψ = J(q − 1)(Gq−2
ψψ Gbχbχ

+ (q − 2)Gbψbψ
GχχG

q−3
ψψ ), Σbψbψ

= J(q − 1)Gq−2
ψψ Gχχ

" We will solve these equations in the IR  with a conformal ansatz ( )|Jτ | ≫ 1 A = ψ, χ

GAA(τ) = gAA

−eπℰAΘ−τ + e−πℰAΘτ

|τ |
2ΔA

, GbAbA
(τ) = gbAbA

eπℰbAΘ−τ + e−πℰbAΘτ

|τ |
2ΔbA

Σχχ = J(q − 1)Gbψbψ
Gq−2

ψψ , Σbχbχ
= JGq−1

ψψ



Conformal Solution

" Boson spectral asymmetries:

Δbχ
+ (q − 1)Δψ = 1

" The four equations determine only two prefactors  and  and 

consistency determines

gbχbχ
gq−1

ψψ gq−2
ψψ gχχgbψbψ

ℰbψ
= − (q − 2)ℰψ − ℰχ

ℰbχ
= − (q − 1)ℰψ

" Scaling Dimensions constrain:

Δbψ
+ (q − 2)Δψ + Δχ = 1

bψ ∼ ψ̄q−2 χ̄

bχ ∼ ψ̄q−1

Δψ(ℰψ, ℰχ), Δχ(ℰψ, ℰχ)



Superconformal Solutions

" Supersymmetry imposes for . This gives two further constrains:GbAbA
= − ∂τGAA, A = ψ, χ

Δχ + (q − 1)Δψ =
1

2

" For simplicity take , then ℰψ = 0

ℰχ + (q − 1)ℰψ = 0

tan(πΔψ) = (q − 1)cot(π(q − 1)Δψ)

The equation for  is the same as for  in the extremization of the index!Δψ yc → 2πΔψ

d

dq
s0 = πΔψ cot(π(q − 1)Δψ)



Superconformal Solutions

" Under Superconformal transformations the 

fermions transform as chiral primaries

1ψ(Z1, Z2) → (Dθ1
θ′ 1)

Δψ(Dθ̄2
θ̄′ 2)

Δψ 1ψ(Z′ 1, Z′ 2)

1χ(Z1, Z2) → (Dθ1
θ′ 1)

Δχ(Dθ̄2
θ̄′ 2)

Δχ 1χ(Z′ 1, Z′ 2)

" This gives an assignment , and completely determines the 

R-charge in the IR

QR[ψ] = 2Δψ, QR[χ] = 2Δχ

QR = Qχ + 2ΔψQF

" Since the R-charge of the supercharge is one, we get the simplest Schwarzian with only 

 ground states QR = 0



Index Maximization

" Why does the fermion dimension match with the saddle point for y?

" Index-maximization in 1D nSCFT: Define , then the coe#cient is picked by 

maximizing the absolute value of 

R = R0 + αF

Tr eiπR
[Bah, Heydeman, GJT, Zhao, WIP] 

Stated in [Benini Hristov Za$aroni 15]

" Moreover, in the large N limit the maximal value of the index matches the ground state 

entropy

yc = πα



 Schwarzian Theory! = 2

I!=2 Sch =
αSN

J ∫ dτ ({F, τ} + 2(∂τa)2) + fermions

" At low temperatures the Schwarzian dominates. The Bosonic sector has a reparametrization 

and U(1) modes with action

Z(β, μ) = eNs0 + Znon−BPS

" The quantum Schwarzian spectrum of this model is

" This is the Schwarizan theory appearing in the near BPS limit of black holes in AdS5

[Boruch Heydeman Iliesiu GJT 22]



Stability of Superconformal solution

" At arbitrary charges there are instabilities of the conformal solution, just like before

" It is surprising that potential instabilities also appear for Superconformal solution

2q∆

e Eψ

Gψ(

Dχ(

!"!# !"$! !"$# !"%! !"%# !"&!

!"$

!"%

!"&

!"'

!"#

The Luttinger-Ward relation resolves this issue 

since at the potential transition point the charge 

is maximal

Qχ(ℰcritical)/N = 1/2



Summary

" We studied the phase structure of  supersymmetric SYK at non zero 

charge

! = 2

" There are phase transitions to gapped low-entropy phases. Similar to complex 

SYK but simpler to interpret

" We constructed models with several charges, realizing new types of Schwarizan 

theories at strong coupling

" Role of index maximization in nearly Superconformal quantum mechanics



Thank you for your attention!


