On the Stability of String Theory Vacua

Alessandro Tomasiello

Università di Milano-Bicocca
based on [2112.10795] with Suvendu Giri \& Luca Martucci

Rencontres Théoriciennes, Paris, 2/6/22

Introduction

Given a vacuum in any theory, important question: is it stable?

Introduction

Given a vacuum in any theory, important question: is it stable?

- Most immediate challenge: 'tachyons'
- instability: once excited, they grow exponentially.

- but in AdS_{d}, fields with $m^{2}>-\frac{(d-1)^{2}}{4 L_{\text {AdS }}}$
[Breitenlohner, Freedman '82]
form a standing wave by reflecting off the boundary and thus are stable
[dual to relevant operators in the boundary CFT]

Introduction

Given a vacuum in any theory, important question: is it stable?

- Most immediate challenge: 'tachyons'
- instability: once excited, they grow exponentially.

- but in AdS_{d}, fields with $m^{2}>-\frac{(d-1)^{2}}{4 L_{\text {dd }}}$
[Breitenlohner, Freedman '82]
form a standing wave by reflecting off the boundary and thus are stable
[dual to relevant operators in the boundary CFT]
- in vacua with extra dimensions, instabilities detected via KK analysis very complicated, but doable in principle.
[Kim, Romans, Van Nieuwenhuizen '85;
Fabbri, Fré, Gualtieri, Termonia '99; .. Malek, Samtleben, 'ı9;
Malek, Nicolai, Samtleben, '2o]
- More subtle issue: tunnel effects
- More subtle issue: tunnel effects
false vacuum
- spacetime can't all tunnel at once in true vacuum, but bubbles can nucleate

- More subtle issue: tunnel effects

- spacetime can't all tunnel at once in true vacuum, but bubbles can nucleate
and then expand to destroy all the false vacuum

[^0]

- More subtle issue: tunnel effects

- spacetime can't all tunnel at once in true vacuum, but bubbles can nucleate
and then expand to destroy all the false vacuum
examples abound
[Maldacena, Michelson, Strominger '98; Gaiotto, AT '09;
Apruzzi, De Luca, Gnecchi, Lo Monaco, AT'19; Bena, Pilch, Warner '20...]
- This doesn't always happen. Suppose for example bubble is a D-brane. Does it expand?

$$
S=\int \underset{\text { makes it shrink }}{-T \sqrt{-g}}+q \quad \underset{\text { makes it expand }}{q C_{d-1}}
$$

for supersymmetric vacua, they compensate and bubble doesn't expand.
[In fact it doesn't even nucleate]

- Weak Gravity conjecture: there is always a particle for which gravity is weakest force
analogue for branes: there is always a brane for which gravity is weakest force

```
 expansion wins }=>\mathrm{ instability
```

so maybe all non-susy AdS vacua are unstable?

- Weak Gravity conjecture: there is always a particle for which gravity is weakest force
analogue for branes: there is always a brane for which gravity is weakest force
so maybe all non-susy AdS vacua are unstable?
[Ooguri, Vafa 'ı6; Freivogel, Kleban 'ı6]
- difficult to check in theories with many vacua, such as string theory alternative protection against bubbles?
- AdS8 with O8-planes
[Cordova, De Luca, AT' t 8]
- S-fold AdS
[Giambrone, Guarino, Malek,

Inspiration: earlier questions about stability of Minkowski in GR

- Rough idea:
- energy $\sim\langle\{Q, Q\}\rangle \geq 0$
- then show energy $=0 \Rightarrow$ Minkowski

Inspiration: earlier questions about stability of Minkowski in GR

- Rough idea:
- energy $\sim\langle\{Q, Q\}\rangle \geq 0$
- then show energy $=0 \Rightarrow$ Minkowski
- can be used in pure GR using auxiliary spinor, but even more natural in sugra
\Rightarrow stability for susy vacua in pure gauged $\mathcal{N}=8, \mathcal{N}=4$ sugra
[Gibbons, Hull, Warner '83]
Widely expected to extend to all susy vacua.

Inspiration: earlier questions about stability of Minkowski in GR

- Rough idea:
- energy $\sim\langle\{Q, Q\}\rangle \geq 0$
- then show energy $=0 \Rightarrow$ Minkowski
- can be used in pure GR using auxiliary spinor, but even more natural in sugra
\Rightarrow stability for susy vacua in pure gauged $\mathcal{N}=8, \mathcal{N}=4$ sugra
[Gibbons, Hull, Warner '83]
Widely expected to extend to all susy vacua.
- in 4 d models, proof can be extended to some non-susy vacua!
idea: 'fake' supersymmetry that still implies EoM

This talk:

- Show how stability argument works for susy vacua directly in $d=10,11$
extra dimensions expected to introduce subtleties: recall infamous 'bubble of nothing' for $\mathrm{Mink}_{4} \times S^{1}$

- Try to adapt argument to find some stable non-susy AdS vacua

Plan

- Review of stability in 4 d theories
- Stability of supersymmetric compactifications
- Supersymmetry breaking

Stability in 4d

- Toy model: minimal sugra

$$
\begin{aligned}
& \mathcal{L}=R+\mathrm{i} \bar{\psi}_{\mu} \gamma^{\mu \nu \rho} D_{\nu} \psi_{\rho}[+ \text { matter }] \\
& \delta_{\epsilon} \psi_{\mu}=D_{\mu} \epsilon
\end{aligned}
$$

Stability in 4d

- Toy model: minimal sugra

$$
\begin{aligned}
& \mathcal{L}=R+\mathbf{i} \bar{\psi}_{\mu} \gamma^{\mu \nu \rho} D_{\nu} \psi_{\rho}[+ \text { matter }] \\
& \delta_{\epsilon} \psi_{\mu}=D_{\mu} \epsilon
\end{aligned}
$$

Noether \Rightarrow supercharge $Q=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} \psi^{\rho} * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}$

Stability in 4d

- Toy model: minimal sugra

$$
\mathcal{L}=R+\mathbf{i} \bar{\psi}_{\mu} \gamma^{\mu \nu \rho} D_{\nu} \psi_{\rho}[+ \text { matter }]
$$

$$
\delta_{\epsilon} \psi_{\mu}=D_{\mu} \epsilon
$$

Noether \Rightarrow supercharge $Q=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} \psi^{\rho} * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}$

$$
\text { energy } E \sim\{Q, Q\}=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}
$$

same as ADM mass
 if $\epsilon \rightarrow \epsilon_{0}+O(1 / r)$

Stability in 4d

- Toy model: minimal sugra

$$
\mathcal{L}=R+\mathbf{i} \bar{\psi}_{\mu} \gamma^{\mu \nu \rho} D_{\nu} \psi_{\rho}[+ \text { matter }]
$$

$$
\delta_{\epsilon} \psi_{\mu}=D_{\mu} \epsilon
$$

Noether \Rightarrow supercharge $Q=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} \psi^{\rho} * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}$
energy $E \sim\{Q, Q\}=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}$
same as ADM mass if $\epsilon \rightarrow \epsilon_{0}+O(1 / r)$

$$
\int_{\Sigma} \nabla^{\nu}\left(\bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon\right) * \mathrm{~d} x^{\mu}
$$

Stability in 4d

- Toy model: minimal sugra

$$
\mathcal{L}=R+\mathrm{i} \bar{\psi}_{\mu} \gamma^{\mu \nu \rho} D_{\nu} \psi_{\rho}[+ \text { matter }]
$$

$$
\delta_{\epsilon} \psi_{\mu}=D_{\mu} \epsilon
$$

Noether \Rightarrow supercharge $Q=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} \psi^{\rho} * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}$

$$
\text { energy } E \sim\{Q, Q\}=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}
$$

same as ADM mass if $\epsilon \rightarrow \epsilon_{0}+O(1 / r)$

$$
\begin{aligned}
& \int_{\Sigma} \nabla^{\nu}\left(\bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon\right) * \mathrm{~d} x^{\mu} \\
& { }_{\|}{ }_{\Sigma}\left(D^{\nu} \bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon+T_{\mu \nu} \bar{\epsilon} \gamma^{\nu} \epsilon\right) n^{\mu} \operatorname{vol}_{\Sigma}
\end{aligned}
$$

- a fun identity:

$$
\begin{array}{r}
\gamma^{\mu \nu \rho}\left[D_{\nu}, D_{\rho}\right]=\frac{1}{4} R^{\alpha \beta}{ }_{\nu \rho} \gamma^{\mu \nu \rho} \gamma_{\alpha \beta} \\
=\left(R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}\right) \gamma_{\nu}
\end{array}
$$

Stability in 4d

- Toy model: minimal sugra

$$
\mathcal{L}=R+\mathrm{i} \bar{\psi}_{\mu} \gamma^{\mu \nu \rho} D_{\nu} \psi_{\rho}[+ \text { matter }]
$$

$$
\delta_{\epsilon} \psi_{\mu}=D_{\mu} \epsilon
$$

Noether \Rightarrow supercharge $Q=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} \psi^{\rho} * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}$

$$
\text { energy } E \sim\{Q, Q\}=\int_{\partial \Sigma} \bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon * \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}
$$

same as ADM mass if $\epsilon \rightarrow \epsilon_{0}+O(1 / r)$

$$
\int_{\Sigma} \nabla^{\nu}\left(\bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon\right) * \mathrm{~d} x^{\mu}
$$

$$
\begin{aligned}
& \int_{\Sigma}\left(D^{\nu} \bar{\epsilon} \gamma_{\mu \nu \rho} D^{\rho} \epsilon+\underset{\substack{\| \\
T_{\mu \nu} \bar{\epsilon} \gamma^{\nu} \epsilon}}{V^{\text {null }}} n^{\mu} \operatorname{vol}_{\Sigma}{ }^{\text {if Dominant }} \begin{array}{c}
\text { Energy } \\
\text { Condition holds }
\end{array}\right. \\
& \text { Condition holds }
\end{aligned}
$$

- a fun identity:

$$
\begin{gathered}
\gamma^{\mu \nu \rho}\left[D_{\nu}, D_{\rho}\right]=\frac{1}{4} R^{\alpha \beta}{ }_{\nu \rho} \gamma^{\mu \nu \rho} \gamma_{\alpha \beta} \\
=\left(R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}\right) \gamma_{\nu}
\end{gathered}
$$

- pick frame such that $n=e_{\underline{0}}$
flat index

$$
D_{\nearrow}^{a} \bar{\epsilon} \gamma_{a \underline{0} b} D^{b} \epsilon=\left(D^{a} \epsilon\right)^{\dagger} D_{a} \epsilon-\left|\gamma^{a} D_{a} \epsilon\right|^{2}
$$

flat along Σ

- pick frame such that $n=e_{0}$
flat index

$$
D_{\nearrow}^{a} \bar{\epsilon} \gamma_{a \underline{0} b} D^{b} \epsilon=\left(D^{a} \epsilon\right)^{\dagger} D_{a} \epsilon-\left|\gamma^{a} D_{a} \epsilon\right|^{2}
$$

flat along Σ

- as. constant ϵ can always be chosen to satisfy $\gamma^{a} D_{a} \epsilon=0$ 'Witten condition'
[\sim existence of Green's function for $\gamma^{a} D_{a}$]
[Witten '82; more formal proof in
Parker, Taubes ' 82]
- all in all $E=\int_{\Sigma}\left(D^{a} \epsilon\right)^{\dagger} D_{a} \epsilon+T_{\mu \underline{0}} \bar{\epsilon} \gamma^{\mu} \epsilon \geqslant 0$
- pick frame such that $n=e_{\underline{0}}$
flat index

$$
D_{\nearrow}^{a} \bar{\epsilon} \gamma_{a \underline{0} b} D^{b} \epsilon=\left(D^{a} \epsilon\right)^{\dagger} D_{a} \epsilon-\left|\gamma^{a} D_{a} \epsilon\right|^{2}
$$

flat along Σ

- as. constant ϵ can always be chosen to satisfy $\gamma^{a} D_{a} \epsilon=0$
'Witten condition'
[\sim existence of Green's function for $\gamma^{a} D_{a}$]
[Witten '82; more formal proof in Parker, Taubes '82]
- all in all $E=\int_{\Sigma}\left(D^{a} \epsilon\right)^{\dagger} D_{a} \epsilon+T_{\mu \underline{0}} \bar{\epsilon} \gamma^{\mu} \epsilon \geqslant 0$
- moreover $E=0 \Rightarrow D_{a} \epsilon=0 \forall \Sigma$

Minkowski is the only spacetime with zero energy; it can't decay to anything

Minkowski vacuum is stable

- Similar arguments for AdS
- minimal case: $D_{\mu} \rightarrow D_{\mu}+W_{0} \gamma_{\mu}$
- as. AdS boundary conditions Δ
our energy coincides with covariant phase space formalism

[Hollands, Ishibashi, Marolf '05〕
doesn't depend on choice of $\partial \Sigma$
- Similar arguments for AdS
- minimal case: $D_{\mu} \rightarrow D_{\mu}+W_{0} \gamma_{\mu}$
- as. AdS boundary conditions \Rightarrow
our energy coincides with covariant phase space formalism

[Hollands, Ishibashi, Marolf '05〕
doesn't depend on choice of $\partial \Sigma$
- More realistic theories: same strategy
\bullet minimal gauged $\mathcal{N}=4$ sugra: \quad dilatino transf.

$$
\nabla^{\mu}\left(\bar{\epsilon}_{i} \gamma_{\mu \nu \rho} D^{\rho} \epsilon^{i}\right)=D^{\mu} \bar{\epsilon}_{i} \gamma_{\mu \nu \rho} D^{\rho} \epsilon^{i}+\overline{\delta \lambda_{i}} \gamma_{\nu} \overline{\delta \lambda^{i}}+T_{\mu \nu}^{\operatorname{mat}} \bar{\epsilon}_{i} \gamma^{\mu} \epsilon^{i}
$$

- other models: slightly different details
- Susy-breaking:
for ex. $\mathcal{L}=R-\partial_{\mu} \phi \partial^{\mu} \phi-2 V(\phi) \quad$ no susy
- introduce auxiliary spinors ϵ such that $\mathcal{D}_{\mu} \epsilon=0$

$$
\mathcal{D}_{\mu} \equiv D_{\mu}+W(\phi) \gamma_{\mu}
$$ earlier argument works if we assume usual $V=2\left(\partial_{\phi} W\right)^{2}-3 W^{2}$

- however, subtleties in boundary conditions for ϕ
$\Rightarrow \quad$ 'energy' doesn't always coincide with other definitions, not guaranteed to be conserved

M-theory \& Type II

Four-dimensional approach shows the way. But:

- some model dependence; should be worked out
- higher KK modes are not considered; could be important, recall BoN!

So we will work directly in $d=10,11$

Warm-up: a simple argument in type II in the probe approximation

$$
S=\int \underset{\text { makes it shrink }}{\int-T \sqrt{-g}}+\frac{q C_{d-1}}{\text { makes it expand }}
$$

Warm-up: a simple argument in type II in the probe approximation

$$
S=\int_{\text {makes it shrink }}^{-T \sqrt{-g}}+\frac{q C_{d-1}}{\text { makes it expand }}
$$

evaluate on an S^{2} in global coordinates:

$$
\Rightarrow V_{\mathrm{eff}}=\left(T \operatorname{ch} \rho-\frac{1}{3} q \operatorname{sh} \rho\right) \operatorname{sh}^{2} \rho
$$

bubble expands iff $q>3 T \quad$ [actually it never even nucleates!]

Warm-up: a simple argument in type II in the probe approximation

$$
S=\int \underset{\text { makes it shrink }}{\int-T \sqrt{-g}}+\underset{\text { makes it expand }}{q C_{d-1}}
$$

$$
F=f+\operatorname{vol}_{4} \wedge \mathrm{e}^{4 A} * \frac{\mathrm{a} \operatorname{sign}}{\lambda f}
$$

evaluate on an S^{2} in global coordinates:

$$
\Rightarrow V_{\mathrm{eff}}=\left(T \operatorname{ch} \rho-\frac{1}{3} q \operatorname{sh} \rho\right) \operatorname{sh}^{2} \rho
$$

bubble expands iff $q>3 T \quad$ [actually it never even nucleates!]

$$
q=L \int_{B_{p-2}} \mathrm{e}^{4 A} * \lambda f
$$

Warm-up: a simple argument in type II in the probe approximation

$$
S=\underset{\text { makes it shrink }}{\int-T \sqrt{-g}}+\underset{\text { makes it expand }}{q C_{d-1}}
$$ evaluate on an S^{2} in global coordinates:

$$
\Rightarrow V_{\mathrm{eff}}=\left(T \operatorname{ch} \rho-\frac{1}{3} q \operatorname{sh} \rho\right) \operatorname{sh}^{2} \rho
$$

bubble expands iff $q>3 T \quad$ [actually it never even nucleates!]

$$
F=f+\operatorname{vol}_{4} \wedge \mathrm{e}^{4 A} * \stackrel{\mathrm{a} \text { sign }}{\lambda f} \quad \quad \quad q=L \int_{B_{p-2}} \mathrm{e}^{4 A} * \lambda f
$$

external RR flux

$$
\|
$$

$$
3 \int_{B_{p-2}} \mathrm{e}^{3 A-\phi} \operatorname{Im} \Phi_{ \pm}
$$

one of the 'pure spinor equations' for bulk susy

Warm-up: a simple argument in type II in the probe approximation

$$
S=\int \underline{\text { makes it shrink }} \quad \xlongequal[\text { makes it expand }]{-T \sqrt{-g}}+\underline{q C_{d-1}}
$$ evaluate on an S^{2} in global coordinates:

$$
\Rightarrow V_{\mathrm{eff}}=\left(T \operatorname{ch} \rho-\frac{1}{3} q \operatorname{sh} \rho\right) \operatorname{sh}^{2} \rho
$$

bubble expands iff $q>3 T \quad$ [actually it never even nucleates!]

$$
F=f+\operatorname{vol}_{4} \wedge \mathrm{e}^{4 A} * \frac{\mathrm{a} \text { sign }}{\lambda} \quad \quad \quad \quad q=L \int_{B_{p-2}} \mathrm{e}^{4 A} * \lambda f
$$

external RR flux

$$
\begin{gathered}
\| \int_{B_{p-2}} \mathrm{e}^{3 A-\phi} \operatorname{Im} \Phi_{ \pm} \\
/ \wedge \begin{array}{c}
\text { calibration } \\
\text { [Martucci, Smyth ’os; } \\
\text { Koerber, Martucci ‘o6] }
\end{array} \\
3 \int_{B_{p-2}} \mathrm{e}^{3 A-\phi} \text { vol }=T
\end{gathered}
$$

$\mathrm{d}_{H}\left(\mathrm{e}^{4 A-\phi} \operatorname{Im} \Phi_{\mp}\right)=\frac{3}{L} \mathrm{e}^{3 A-\phi} \operatorname{Im} \Phi_{ \pm}-\mathrm{e}^{4 A} * \lambda f$
one of the 'pure spinor equations' for bulk susy
[Graña, Minasian, Petrini, AT'o6]
no bubble \checkmark

Beyond the probe approximation: back to positive energy

M-theory:

- again energy $=\int_{S^{2} \times M_{7}} * E_{2}$

$$
E_{M N}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{P} \epsilon
$$

$$
\begin{gathered}
\delta \psi_{M}=\mathcal{D}_{M} \epsilon \\
-\| \\
D_{P}+\frac{1}{24}\left(-\Gamma_{P} G+G \Gamma_{P}\right)
\end{gathered}
$$

Beyond the probe approximation: back to positive energy

M-theory:

- again energy $=\int_{S^{2} \times M_{7}} * E_{2}$

$$
E_{M N}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{P} \epsilon
$$

$$
\begin{gathered}
\delta \psi_{M}=\mathcal{D}_{M} \epsilon \\
-\| \\
D_{P}+\frac{1}{24}\left(-\Gamma_{P} G+G \Gamma_{P}\right)
\end{gathered}
$$

- also again need $\nabla_{M} E^{M N}=$ lengthy computation, but everything collapses to

Beyond the probe approximation: back to positive energy

M-theory:

- again energy $=\int_{S^{2} \times M_{7}} * E_{2}$

$$
E_{M N}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{P} \epsilon
$$

$$
\begin{gathered}
\delta \psi_{M}=\mathcal{D}_{M} \epsilon \\
= \\
D_{P}+\frac{1}{24}\left(-\Gamma_{P} G+G \Gamma_{P}\right)
\end{gathered}
$$

- also again need $\nabla_{M} E^{M N}=$ lengthy computation, but everything collapses to

$$
\overline{\mathcal{D}_{M}} \epsilon \Gamma^{M P N} \mathcal{D}_{P} \epsilon+\frac{1}{2} \mathcal{E}^{N P} \bar{\epsilon} \Gamma_{P} \epsilon+\frac{1}{4} \bar{\epsilon}\left[\mathrm{~d} x^{N} \wedge\left(\mathrm{~d} G+\mathrm{d} * G+\frac{1}{2} G \wedge G\right)\right] / \epsilon
$$

Beyond the probe approximation: back to positive energy

M-theory:

- again energy $=\int_{S^{2} \times M_{7}} * E_{2}$

$$
E_{M N}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{P} \epsilon
$$

$$
\begin{gathered}
\delta \psi_{M}=\mathcal{D}_{M} \epsilon \\
-\| \\
D_{P}+\frac{1}{24}\left(-\Gamma_{P} G+G \Gamma_{P}\right)
\end{gathered}
$$

- also again need $\nabla_{M} E^{M N}=$ lengthy computation, but everything collapses to

Beyond the probe approximation: back to positive energy

M-theory:

- again energy $=\int_{S^{2} \times M_{7}} * E_{2}$

$$
E_{M N}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{P} \epsilon
$$

$$
\begin{gathered}
\delta \psi_{M}=\mathcal{D}_{M} \epsilon \\
-\| \\
D_{P}+\frac{1}{24}\left(-\Gamma_{P} G+G \Gamma_{P}\right)
\end{gathered}
$$

- also again need $\nabla_{M} E^{M N}=$ lengthy computation, but everything collapses to

Using calibrations we can prove energy positivity even in presence of sources.
[Martucci' Ir$]$

- math lemma about Witten condition
rest of the stability argument similar to 4 d . Need:
- in AdS case, comparison with conserved energy from covariant phase space formalism

type II:

- again energy $=\int_{S^{2} \times M_{6}} * E_{2}$

$$
\delta_{\epsilon} \psi_{M}=\mathcal{D}_{M} \epsilon
$$

but now $E_{M N}=-\mathrm{e}^{-2 \phi} \bar{\epsilon}\left(\Gamma_{M N}{ }^{P} \mathcal{D}_{P}-\Gamma_{M N} \mathcal{O}\right) \epsilon$

type II:

- again energy $=\int_{S^{2} \times M_{6}} * E_{2}$

$$
\delta_{\epsilon} \psi_{M}=\mathcal{D}_{M} \epsilon
$$

but now $E_{M N}=-\mathrm{e}^{-2 \phi} \bar{\epsilon}\left(\Gamma_{M N}{ }^{P} \mathcal{D}_{P}-\Gamma_{M N} \mathcal{O}\right) \epsilon$

$$
\delta_{\epsilon} \lambda=\mathcal{O} \epsilon
$$

- now $\nabla_{M} E^{M N}=\quad$ much lengthier computation still, but same structure:

$$
\begin{aligned}
& \mathrm{e}^{-2 \phi} \overline{\left(\mathcal{D}_{M}-\frac{1}{8} \Gamma_{M} \mathcal{O}\right) \epsilon} \Gamma^{M P N}\left(\mathcal{D}_{P}-\frac{1}{8} \Gamma_{P} \mathcal{O}\right) \epsilon-\frac{1}{8} \mathrm{e}^{-2 \phi} \overline{\mathcal{O} \epsilon} \Gamma^{N} \mathcal{O} \epsilon \\
& +\mathcal{E}^{N P} K_{P}+\frac{1}{2} \mathcal{H}^{N P} \Omega_{P}^{(\mathrm{F} 1)}-\frac{1}{2}\left(\mathrm{~d} H \wedge \mathrm{~d} x^{N}\right) \cdot \Omega^{(\mathrm{NS} 5)}+\frac{1}{2}\left(\mathrm{~d}_{H} F \wedge \mathrm{~d} x^{N}\right) \cdot \Omega^{(\mathrm{D})}
\end{aligned}
$$

type II:

- again energy $=\int_{S^{2} \times M_{6}} * E_{2}$

$$
\delta_{\epsilon} \psi_{M}=\mathcal{D}_{M} \epsilon
$$

but now $E_{M N}=-\mathrm{e}^{-2 \phi} \bar{\epsilon}\left(\Gamma_{M N}{ }^{P} \mathcal{D}_{P}-\Gamma_{M N} \mathcal{O}\right) \epsilon$

$$
\delta_{\epsilon} \lambda=\mathcal{O} \epsilon
$$

- now $\nabla_{M} E^{M N}=\quad$ much lengthier computation still, but same structure:

$$
\begin{aligned}
& {\left[\mathrm{e}^{-2 \phi} \overline{\left(\mathcal{D}_{M}-\frac{1}{8} \Gamma_{M} \mathcal{O}\right) \epsilon} \Gamma^{M P N}\left(\mathcal{D}_{P}-\frac{1}{8} \Gamma_{P} \mathcal{O}\right) \epsilon-\frac{1}{8} \mathrm{e}^{-2 \phi} \overline{\mathcal{O} \epsilon} \Gamma^{N} \mathcal{O} \epsilon\right] \begin{array}{l}
\text { positive with appropriate } \\
\text { 'Witten condition' }
\end{array}} \\
& \quad+\mathcal{E}^{N P} K_{P}+\frac{1}{2} \mathcal{H}^{N P} \Omega_{P}^{(\mathrm{F} 1)}-\frac{1}{2}\left(\mathrm{~d} H \wedge \mathrm{~d} x^{N}\right) \cdot \Omega^{(\mathrm{NS} 5)}+\frac{1}{2}\left(\mathrm{~d}_{H} F \wedge \mathrm{~d} x^{N}\right) \cdot \Omega^{(\mathrm{D})}
\end{aligned}
$$

type II:

- again energy $=\int_{S^{2} \times M_{6}} * E_{2}$

$$
\delta_{\epsilon} \psi_{M}=\mathcal{D}_{M} \epsilon
$$

but now $E_{M N}=-\mathrm{e}^{-2 \phi} \bar{\epsilon}\left(\Gamma_{M N}{ }^{P} \mathcal{D}_{P}-\Gamma_{M N} \mathcal{O}\right) \epsilon$

$$
\delta_{\epsilon} \lambda=\mathcal{O} \epsilon
$$

- now $\nabla_{M} E^{M N}=\quad$ much lengthier computation still, but same structure:

$$
\begin{aligned}
& {\left[\mathrm{e}^{-2 \phi} \overline{\left(\mathcal{D}_{M}-\frac{1}{8} \Gamma_{M} \mathcal{O}\right) \epsilon} \Gamma^{M P N}\left(\mathcal{D}_{P}-\frac{1}{8} \Gamma_{P} \mathcal{O}\right) \epsilon-\frac{1}{8} \mathrm{e}^{-2 \phi} \overline{\mathcal{O} \epsilon} \Gamma^{N} \mathcal{O} \epsilon\right] \begin{array}{c}
\text { positive with appropriate } \\
\text { 'Witten condition' }
\end{array}} \\
& +\mathcal{E}^{N P} K_{P}+\frac{1}{2} \mathcal{H}^{N P} \Omega_{P}^{(\mathrm{F} 1)}-\frac{1}{2}\left(\mathrm{~d} H \wedge \mathrm{~d} x^{N}\right) \cdot \Omega^{(\mathrm{NS} 5)}+\frac{1}{2}\left(\mathrm{~d}_{H} F \wedge \mathrm{~d} x^{N}\right) \cdot \Omega^{(\mathrm{D})} \\
& \begin{array}{l}
\text { Einstein } \\
\text { equation } \\
\text { EoM for } B
\end{array} \quad \begin{array}{l}
\text { NS5 }
\end{array} \\
& \text { sources }
\end{aligned}
$$

So again we can prove energy positivity

type II:

- again energy $=\int_{S^{2} \times M_{6}} * E_{2}$

$$
\delta_{\epsilon} \psi_{M}=\mathcal{D}_{M} \epsilon
$$

but now $E_{M N}=-\mathrm{e}^{-2 \phi} \bar{\epsilon}\left(\Gamma_{M N}{ }^{P} \mathcal{D}_{P}-\Gamma_{M N} \mathcal{O}\right) \epsilon$

$$
\delta_{\epsilon} \lambda=\mathcal{O} \epsilon
$$

- now $\nabla_{M} E^{M N}=\quad$ much lengthier computation still, but same structure:

$$
\begin{aligned}
& {\left[\mathrm{e}^{-2 \phi} \overline{\left(\mathcal{D}_{M}-\frac{1}{8} \Gamma_{M} \mathcal{O}\right)} \epsilon \Gamma^{M P N}\left(\mathcal{D}_{P}-\frac{1}{8} \Gamma_{P} \mathcal{O}\right) \epsilon-\frac{1}{8} \mathrm{e}^{-2 \phi} \overline{\mathcal{O} \epsilon} \Gamma^{N} \mathcal{O} \epsilon\right] \quad \begin{array}{c}
\text { positive with appropriate } \\
\text { 'Witten condition' }
\end{array}} \\
& \left.+\mathcal{E}^{N P^{2}}+\frac{1}{2} \mathcal{H}^{N P} \Omega_{P}^{(\mathrm{Fi})}-\frac{1}{2}\left(\mathrm{~d} H \wedge \mathrm{~d} x^{N}\right) \Omega^{(\mathrm{NS} 5}\right)+\frac{1}{2}\left(\mathrm{~d}_{H} F \wedge \mathrm{~d} x^{N}\right) \Omega^{(\mathrm{D})} \\
& \text { Einstein } \\
& \text { equation } \\
& \text { EoM for } B \\
& \text { NS5 } \\
& \text { sources } \\
& \xrightarrow[\text { D-brane }]{-11} \\
& \text { [Martucci 'ri] }
\end{aligned}
$$

So again we can prove energy positivity

Supersymmetry breaking?

Why all this work? We all expected susy vacua to be stable.

Supersymmetry breaking?

Why all this work? We all expected susy vacua to be stable.
Well, now we can try to apply the same argument to some non-susy vacua.

Supersymmetry breaking?

Why all this work? We all expected susy vacua to be stable.
Well, now we can try to apply the same argument to some non-susy vacua.

Idea:
[II] find 'fake susy' \mathcal{D}_{M}^{\prime} operator such that $\mathcal{D}_{M}^{\prime} \epsilon=0$ admits a solution ϵ on a non-susy vacuum

Supersymmetry breaking?

Why all this work? We all expected susy vacua to be stable.
Well, now we can try to apply the same argument to some non-susy vacua.

Idea:
[II] find 'fake susy' \mathcal{D}_{M}^{\prime} operator such that $\mathcal{D}_{M}^{\prime} \epsilon=0$ admits a solution ϵ on a non-susy vacuum

$$
\text { [III] define new energy } \int_{\partial \Sigma \times M_{7}} * E_{2}^{\prime} \quad E_{M N}^{\prime}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{P}^{\prime} \epsilon
$$

and check if stability argument still works

Supersymmetry breaking?

Why all this work? We all expected susy vacua to be stable.
Well, now we can try to apply the same argument to some non-susy vacua.

Idea:
[in M-theory, for simplicity]
[II] find 'fake susy' \mathcal{D}_{M}^{\prime} operator such that $\mathcal{D}_{M}^{\prime} \epsilon=0$ admits a solution ϵ on a non-susy vacuum

$$
\text { [III] define new energy } \int_{\partial \Sigma \times M_{7}} * E_{2}^{\prime} \quad E_{M N}^{\prime}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{P}^{\prime} \epsilon
$$

and check if stability argument still works

This is roughly the same 'fake susy' idea that works in 4 d .
[I] find 'fake susy' \mathcal{D}_{M}^{\prime} operator such that $\mathcal{D}_{M}^{\prime} \epsilon=0$ admits a solution ϵ on a non-susy vacuum
first-order in derivatives, at most linear in flux

$$
\Rightarrow \quad \mathcal{D}_{M}^{\prime}=D_{M}+\frac{1}{24}\left(a_{1} \Gamma_{M} G+a_{2} G \Gamma_{M}\right)+a_{3} \Gamma_{M}
$$

$$
\text { [susy: } a_{1}=-1, a_{2}=3, a_{3}=0 \text {] }
$$

[I] find 'fake susy' \mathcal{D}_{M}^{\prime} operator such that $\mathcal{D}_{M}^{\prime} \epsilon=0$ admits a solution ϵ on a non-susy vacuum
first-order in derivatives, at most linear in flux

$$
\begin{array}{r}
\mathcal{D}_{M}^{\prime}=D_{M}+\frac{1}{24}\left(a_{1} \Gamma_{M} G+a_{2} G \Gamma_{M}\right)+a_{3} \Gamma_{M} \\
{\left[\text { ssusy: } a_{1}=-1, a_{2}=3, a_{3}=0\right]}
\end{array}
$$

Not hard to find solutions to $\mathcal{D}_{M}^{\prime} \epsilon=0$:

- 'Skew-whiffing': flipping $G \rightarrow-G$ in a Freund-Rubin $\operatorname{AdS}_{4} \times M_{7}$
\exists solution with $a_{1}=1, a_{2}=-3, a_{3}=0$
[I] find 'fake susy' \mathcal{D}_{M}^{\prime} operator such that $\mathcal{D}_{M}^{\prime} \epsilon=0$ admits a solution ϵ on a non-susy vacuum
first-order in derivatives, at most linear in flux

$$
\begin{array}{r}
\Rightarrow \quad \mathcal{D}_{M}^{\prime}=D_{M}+\frac{1}{24}\left(a_{1} \Gamma_{M} G+a_{2} G \Gamma_{M}\right)+a_{3} \Gamma_{M} \\
{\left[\text { susy: } a_{1}=-1, a_{2}=3, a_{3}=0\right]}
\end{array}
$$

Not hard to find solutions to $\mathcal{D}_{M}^{\prime} \epsilon=0$:

- 'Skew-whiffing': flipping $G \rightarrow-G$ in a Freund-Rubin $\operatorname{AdS}_{4} \times M_{7}$
\exists solution with $a_{1}=1, a_{2}=-3, a_{3}=0$
- Englert vacua: $\mathrm{AdS}_{4} \times\left(\right.$ weak $\left.-G_{2}\right)$
\exists single Killing spinor, $\nabla_{m} \eta=\frac{1}{2} \gamma_{m} \eta$
or: G_{2}-structure $\mid \mathrm{d} \phi=-4 * \phi$

$$
* \phi \cdot \eta=7 \eta \quad \Longleftrightarrow \quad \begin{gathered}
\text { purely algebraic } \\
\text { equations }
\end{gathered}
$$

with also internal flux:

$$
G=g_{0} \operatorname{vol}_{\mathrm{AdS}_{4}}+g_{1} * \phi
$$

\exists solution with
$a_{2}=\frac{3 \pm \sqrt{114}}{10}, a_{1}=3-a_{2}, a_{3}= \pm \frac{21-2 a_{2}}{3}$
[III] define new energy $\int_{\partial \Sigma \times M_{7}} * E_{2}^{\prime} \quad E_{M N}^{\prime}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{P}^{\prime} \epsilon$
and check if stability argument still works

- First issue: $\nabla_{M}\left(E^{\prime}\right)^{M N} \supset\left(3 a_{1}+a_{2}\right) \bar{\epsilon}\left[\Gamma^{N P}, G\right] D_{P} \epsilon$ sign?
also, not clear how to send it away
by 'completing the square'
[III] define new energy $\int_{\partial \Sigma \times M_{7}} * E_{2}^{\prime} \quad E_{M N}^{\prime}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{p}^{\prime} \epsilon$
and check if stability argument still works
- First issue: $\nabla_{M}\left(E^{\prime}\right)^{M N} \supset\left(3 a_{1}+a_{2}\right) \bar{\epsilon}\left[\Gamma^{N P}, G\right] \frac{D_{P} \epsilon}{\text { sign? }}$
also, not clear how to send it away by 'completing the square'
- Take now $a_{2}=-3 a_{1}$.

This already excludes Englert!

$$
\begin{aligned}
& \text { Now } \nabla_{M}\left(E^{\prime}\right)^{M N}=\text { the various terms now combine imperfectly } \\
& \overline{\mathcal{D}_{M}^{\prime} \epsilon} \Gamma^{M P N} \mathcal{D}_{P}^{\prime} \epsilon+\frac{1}{4}\left(-2 G^{N P}+a_{1}^{2} T_{(G)}^{N P}\right) K_{P} \\
& +\frac{1}{4} \epsilon\left[\mathrm{~d} x^{N} \wedge\left(-a_{1} \mathrm{~d} G-a_{1} \mathrm{~d} * G+\frac{1}{2} a_{1}^{2} G \wedge G+12 a_{1} a_{3} G+360 a_{3}^{2}\right)\right] \epsilon
\end{aligned}
$$

[III] define new energy $\int_{\partial \Sigma \times M_{7}} * E_{2}^{\prime} \quad E_{M N}^{\prime}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{p}^{\prime} \epsilon$
and check if stability argument still works

- First issue: $\nabla_{M}\left(E^{\prime}\right)^{M N} \supset\left(3 a_{1}+a_{2}\right) \bar{\epsilon}\left[\Gamma^{N P}, G\right] \frac{D_{P} \epsilon}{\text { sign? }}$
also, not clear how to send it away by 'completing the square'
- Take now $a_{2}=-3 a_{1}$.

This already excludes Englert!

$$
\begin{aligned}
& \text { Now } \nabla_{M}\left(E^{\prime}\right)^{M N}=\text { the various terms now combine imperfectly } \\
& \overline{\mathcal{D}_{M}^{\prime} \epsilon} \Gamma^{M P N} \mathcal{D}_{P}^{\prime} \epsilon+\frac{1}{4} \underline{\left(-2 G^{N P}+a_{1}^{2} T_{(C)}^{N P}\right)} K_{P}{ }_{\text {positive for }\left|a_{1}\right| \leq 1} \\
& +\frac{1}{4} \epsilon\left[\mathrm{~d} x^{N} \wedge\left(-a_{1} \mathrm{~d} G-a_{1} \mathrm{~d} * G+\frac{1}{2} a_{1}^{2} G \wedge G+12 a_{1} a_{3} G+360 a_{3}^{2}\right)\right] \epsilon
\end{aligned}
$$

[III] define new energy $\int_{\partial \Sigma \times M_{7}} * E_{2}^{\prime} \quad E_{M N}^{\prime}=\bar{\epsilon} \gamma_{M N}{ }^{P} \mathcal{D}_{p}^{\prime} \epsilon$
and check if stability argument still works

- First issue: $\nabla_{M}\left(E^{\prime}\right)^{M N} \supset\left(3 a_{1}+a_{2}\right) \bar{\epsilon}\left[\Gamma^{N P}, G\right] \frac{D_{P} \epsilon}{\text { sign? }}$
also, not clear how to send it away by 'completing the square'
- Take now $a_{2}=-3 a_{1}$.

This already excludes Englert!

$$
\begin{aligned}
& \text { Now } \nabla_{M}\left(E^{\prime}\right)^{M N}=\text { the various terms now combine imperfectly } \\
& \overline{\mathcal{D}_{M}^{\prime}} \epsilon \Gamma^{M P N} \mathcal{D}_{P}^{\prime} \epsilon+\frac{1}{4}\left(-2 G^{N P}+a_{1}^{2} T_{(G)}^{N P}\right) K_{P} \\
& \text { positive for }\left|a_{1}\right| \leq 1 \\
& +\frac{1}{4} \bar{\epsilon}\left[\mathrm{~d} x^{N} \wedge\left(-a_{1} \mathrm{~d} G-a_{1} \mathrm{~d} * G+\frac{1}{2} a_{1}^{2} \underset{\text { sign? }}{G \wedge G}+12 a_{1} a_{3}^{\left.a_{3} G+360 a_{3}^{2}\right)}\right] \epsilon\right.
\end{aligned}
$$

- So we don't find any positivity

We could restart the same strategy in type II.

first-order in derivatives, at most linear in flux
lots of possibilities!
systematic analysis initiated in
[Lüst, Marchesano, Martucci, Tsimpis '08]

$$
\begin{aligned}
\delta_{\epsilon} \psi_{M} & =\mathcal{D}_{M} \epsilon & \mathcal{D}_{M} \equiv D_{M} \otimes \mathbf{1}_{2}-\frac{1}{4} H_{M} \otimes \sigma_{3}+\mathcal{F} \Gamma_{M} \\
\delta_{\epsilon} \lambda & =\mathcal{O} \epsilon & \mathcal{O} \equiv \mathrm{d} \phi \otimes \mathbf{1}_{2}-\frac{1}{2} H \otimes \sigma_{3}+\Gamma^{M} \mathcal{F} \Gamma_{M}
\end{aligned}
$$

$$
\mathcal{F} \equiv \frac{\mathrm{e}^{\phi}}{16}\left(\begin{array}{c}
0 \\
\pm \lambda(F) \\
0
\end{array}\right)
$$

- change coefficients
\bullet add new terms $\sim H \Gamma_{M}, \Gamma_{M} \mathcal{F}, \partial_{M} \phi, \ldots \otimes 2 \times 2$ matrix

Conclusions

- As we all expected, susy compactifications are stable
- Modification of stability argument in M-theory doesn't succeed
but there could of course be another stability argument
- Type II wide open; computation doable in principle

[^0]: examples abound
 [Maldacena, Michelson, Strominger '98; Gaiotto, AT '09; Apruzzi, De Luca, Gnecchi, Lo Monaco, AT'19; Bena, Pilch, Warner '20...]

