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Introduction
Given a vacuum in any theory, important question: is it stable?

• in vacua with extra dimensions, instabilities detected via KK analysis

very complicated, but doable in principle. [Kim, Romans, Van Nieuwenhuizen ’85; 
Fabbri, Fré, Gualtieri, Termonia ’99; …

Malek, Samtleben, ’19;
Malek, Nicolai, Samtleben, ’20]
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• More subtle issue: tunnel effects

• spacetime can’t all tunnel at once in true vacuum, 
but bubbles can nucleate

time

false vacuum true vacuum

and then expand to destroy all the false vacuum

V

examples abound [Maldacena, Michelson, Strominger ’98; Gaiotto, AT ’09; 
Apruzzi, De Luca, Gnecchi, Lo Monaco, AT ’19; Bena, Pilch, Warner ’20…]

• This doesn’t always happen. Suppose for example bubble is a D-brane. Does it expand?

makes it shrink makes it expand

for supersymmetric vacua, they compensate
and bubble doesn’t expand.

[In fact it doesn’t even nucleate]

S =
R
�T

p
�g + qCd�1
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analogue for branes: there is always a brane 
for which gravity is weakest force expansion wins instability
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• Weak Gravity conjecture: there is always a particle for which gravity is weakest force

analogue for branes: there is always a brane 
for which gravity is weakest force expansion wins instability

[Ooguri, Vafa ’16; Freivogel, Kleban ’16]so maybe all non-susy AdS vacua are unstable?

• difficult to check in theories with many vacua, such as string theory

alternative protection against bubbles? 

• AdS8 with O8-planes

• S-fold AdS

[Cordova, De Luca, AT ‘18]

[Giambrone, Guarino, Malek, 
Samtleben, Sterckx, Trigiante ‘21]
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Inspiration: earlier questions about stability of Minkowski in GR
[Schoen, Yau ’79; Witten ’81]

• then show energy = 0 ) Minkowski
• Rough idea: • energy ⇠ h{Q,Q}i � 0

• in 4d models, proof can be extended to some non-susy vacua!

idea: ‘fake’ supersymmetry that still implies EoM [Boucher ’84; Townsend ’84;…
Amsel, Hertog, Hollands, Marolf ‘07]

• can be used in pure GR using auxiliary spinor, but even more natural in sugra

[Gibbons, Hull, Warner ’83]

Widely expected to extend to all susy vacua.

stability for susy vacua in pure gauged N = 8, N = 4 sugra



This talk:

• Show how stability argument works for susy vacua
directly in d = 10, 11

r
S1

extra dimensions expected to introduce subtleties:
recall infamous ‘bubble of nothing’ for Mink4 ⇥ S1

• Try to adapt argument to find some stable non-susy AdS vacua



Plan

• Review of stability in 4d theories

• Supersymmetry breaking

• Stability of supersymmetric compactifications
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null
>

0
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Energy 
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flat index
Da✏̄�a0bDb✏ = (Da✏)†Da✏� |�aDa✏|2• pick frame such that n = e0

flat along ⌃

‘Witten condition’

• as. constant ✏ can always be chosen
to satisfy �aDa✏ = 0

[⇠ existence of Green’s function for �aDa]
[Witten ’82; more formal proof in 

Parker, Taubes ’82]

• all in all E =
R
⌃(D

a✏)†Da✏+ Tµ0✏̄�µ✏> 0

• moreover E = 0 ) Da✏ = 0 8⌃
Minkowski is the only spacetime
with zero energy; it can’t decay

to anything

Minkowski vacuum is stable



• Similar arguments for AdS
• minimal case: Dµ ! Dµ +W0�µ

• as. AdS boundary conditions our energy coincides with 
covariant phase space formalism

doesn’t depend on choice of @⌃

[Hollands, Ishibashi, Marolf ’05]

[Gibbons, Hull, Warner ’83]
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• Similar arguments for AdS
• minimal case: Dµ ! Dµ +W0�µ

• as. AdS boundary conditions our energy coincides with 
covariant phase space formalism

doesn’t depend on choice of @⌃

[Hollands, Ishibashi, Marolf ’05]

[Gibbons, Hull, Warner ’83]

• More realistic theories: same strategy

•minimal gauged N = 4 sugra:
rµ(✏̄i�µ⌫⇢D⇢✏i) = Dµ✏̄i�µ⌫⇢D⇢✏i + ��i�⌫��i + Tmat

µ⌫ ✏̄i�µ✏i

dilatino transf.

matter outside the sugra multiplet
• other models: slightly different details

@⌃ ⇠= S2



• Susy-breaking: [Boucher ’84; Townsend ’84]

for ex. L = R� @µ�@µ�� 2V (�) no susy

• introduce auxiliary spinors ✏ such that Dµ✏ = 0 Dµ ⌘ Dµ +W (�)�µ

earlier argument works if we assume usual V = 2(@�W )2 � 3W 2

• however, subtleties in boundary conditions for �

‘energy’ doesn’t always coincide with other definitions, 
not guaranteed to be conserved

[Amsel, Hertog, Hollands, Marolf ‘07]



M-theory & Type II
Four-dimensional approach shows the way. But:

• some model dependence; should be worked out

• higher KK modes are not considered; could be important, recall BoN!

So we will work directly in d = 10, 11
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3
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a sign
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Le

3A��Im�± � e4A ⇤ �f
one of the ‘pure spinor equations’ for bulk susy

[Graña, Minasian, Petrini, AT ’06]

3
R
Bp�2

e3A��Im�±

=

Veff =
�
T ch⇢� 1

3qsh⇢
�
sh2⇢

evaluate on an S2 in global coordinates:

bubble expands iff q > 3T [actually it never 
even nucleates!]

6

3
R
Bp�2

e3A��vol= T

calibration
[Martucci, Smyth ’05;

Koerber, Martucci ‘06]

no bubble X
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M-theory:

� M = DM✏

DP + 1
24 (��PG+G�P )

=

Einstein
equation M5 sources

=

M2 sources

=

can be handled as in 4d

EMN = ✏̄�MN
PDP ✏

lengthy computation, but everything collapses to• also again need rMEMN =

• again energy =
R
S2⇥M7

⇤E2

Using calibrations we can prove energy positivity even in presence of sources.

rest of the stability argument 
similar to 4d. Need:

• math lemma about Witten condition

• in AdS case, comparison with conserved energy
from covariant phase space formalism

[Martucci ’11]
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=
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sources
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=

type II:
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�✏� = O✏
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P � 1
2 (dH ^ dxN) · ⌦(NS5) + 1

2 (dHF ^ dxN) · ⌦(D)

• now rMEMN = much lengthier computation still, but same structure:

So again we can prove energy positivity

• again energy =
R
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⇤E2

calibrations
[Martucci ’11]
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Supersymmetry breaking?
Why all this work? We all expected susy vacua to be stable.

Well, now we can try to apply the same argument to some non-susy vacua.

Idea:* *[in M-theory, for simplicity]

[I] find ‘fake susy’ D0
M operator such that D0

M✏ = 0
admits a solution ✏ on a non-susy vacuum

[II] define new energy
R
@⌃⇥M7

⇤E0
2 E0

MN = ✏̄�MN
PD0

P ✏

and check if stability argument still works

This is roughly the same ‘fake susy’ idea that works in 4d.
[Boucher ’84; Townsend ’84;…

Amsel, Hertog, Hollands, Marolf ‘07]
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[I] find ‘fake susy’ D0
M operator such that D0

M✏ = 0
admits a solution ✏ on a non-susy vacuum

D0
M = DM + 1

24 (a1�MG+ a2G�M) + a3�M

first-order in derivatives,
at most linear in flux

[susy: a1 = �1, a2 = 3, a3 = 0]

• Englert vacua: AdS4⇥ (weak-G2)

or: G2-structure | d� = �4 ⇤ �

9 single Killing spinor, rm⌘ = 1
2�m⌘

⌘ [Englert ’82]

with also internal flux:
G = g0volAdS4 + g1 ⇤ �

⇤� · ⌘ = 7⌘ purely algebraic
equations

9 solution with
a2 = 3±

p
114

10 , a1 = 3� a2, a3 = ± 21�2a2
3

Not hard to find solutions to D0
M✏ = 0:

• ‘Skew-whiffing’: flipping G ! �G in a Freund–Rubin AdS4 ⇥M7 [Duff, Nilsson, Pope ’83]

9 solution with a1 = 1, a2 = �3, a3 = 0



[II] define new energy
R
@⌃⇥M7

⇤E0
2 E0

MN = ✏̄�MN
PD0

P ✏

and check if stability argument still works

• First issue: rM(E0)MN � (3a1 + a2)✏̄ [�NP , G]DP ✏

sign? also, not clear how to send it away 
by ‘completing the square’
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sign? sign?

• So we don’t find any positivity



We could restart the same strategy in type II.

first-order in derivatives,
at most linear in flux lots of possibilities!

�✏ M = DM✏

�✏� = O✏

even in IIA and odd in IIB, and the formal total sum F ⌘
P

k Fk satisfies

F = ⇤�F . (5.1)

Here � acts on a form by reversing the order its indices, i.e., �Fk = (�)
k(k�1)

2 Fk, and the

Hodge-star is computed in the string frame, which is more natural for the democratic for-

mulation. The theory is defined by a pseudo-action [66], whose equations of motion must be

supplemented by the self-duality conditions (5.1).

The supersymmetry parameters are two MW spinors ✏a, a = 1, 2. It is convenient to collect

all the spinors into doublets:  M ⌘
� 1M
 2M

�
, and so on. The supersymmetry transformations of

the fermions, with fermions set to zero, now read

�✏ M = DM✏ , �✏� = O✏ , (5.2)

where8

DM ⌘ DM ⌦ 1

2

� 1

4
HM ⌦ �

3

+ F �M ,

O ⌘ d�⌦ 1

2

� 1

2
H ⌦ �

3

+ �MF �M ,

with F ⌘ e�

16

⇣
0 F

±�(F ) 0

⌘
in

IIA
IIB .

(5.3)

Here and in what follows, the upper/lower sign will refer to IIA/IIB. We work in string units

2⇡
p
↵0 = 1.

5.1 BPS energy

In order to identify the BPS energy, we will start from the supercharge generator, following

the same strategy used in M-theory. The explicit form of the supercharge can be obtained

by various means. For instance, it can be identified in IIA by dimensional reduction of the

M-theory supercharge (4.1) – see App. E – and then extrapolated to IIB. The result is

Q(✏) =

Z

@S
e�2�

�
dxM ^ ✏��

(7)

 M + ✏��
(8)

�
�
, (5.4)

again in the notation of (4.2). In (5.4), S is a nine-dimensional spacelike surface and we have

introduced the chiral operator � ⌘ �01...9. 9

We can then compute �✏Q(✏) = {Q(✏), Q(✏)} by using (5.2), and obtain in this way the

BPS energy:

I(✏) =

Z

@S
⇤E

2

(5.5)

8Our conventions are as in [60]. They di↵er from those in [67] by a sign change H ! �H.
9 The supercharge (5.4) admits a simpler form in terms of the Einstein frame gravitino. Denoting the

Einstein frame quantities with a hat symbol ,̂ they are related to those in the string frame by gMN = e�/2ĝMN ,

✏ = e�/8✏̂, � = e��/8�̂,  M = e�/8
⇣
 ̂M + 1

8
�̂M �̂

⌘
. Then (5.4) takes the form Q(✏̂) =

R
@S

dxM ^ ✏̂��̂(7) ̂M .
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• add new terms ⇠ H�M , �MF , @M�, ... ⌦ 2⇥ 2 matrix

• change coefficients

systematic analysis initiated in 
[Lüst, Marchesano, Martucci, Tsimpis ’08]



Conclusions
• As we all expected, susy compactifications are stable

• Modification of stability argument in M-theory doesn’t succeed

• Type II wide open; computation doable in principle

but there could of course be another stability argument


