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Given a vacuum in any theory, important question: is it stable?

. . VA
® Most immediate challenge: ‘tachyons’

® instability: once excited, they grow exponentially.

- : 9 (d—1)? time
o but 1n Ade, ﬁelds Wlth m-s > — AT [Breitenlohner, Freedman 82}
AdS D
. . N
form a standing wave by reflecting off the boundary
and thus are stable TN
N

[dual to relevant operators in the boundary CFT}

® in vacua with extra dimensions, instabilities detected via KK analysis

{Kim, Romans, Van Nieuwenhuizen ’8s;
Fabbri, Fré, Gualtieri, Termonia ’99; ...
Malek, Samtleben, '19;

Malek, Nicolai, Samtleben, 201

very complicated, but doable in principle.
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® More subtle issue: tunnel effects \/

false vacuum

true vacuum

® spacetime can’t all tunnel at once in true vacuum, —
but bubbles can nucleate ~——
and then expand to destroy all the false vacuum \CD/
~__
examples ab()und [Maldacena, Michelson, Strominger ’98; Gaiotto, AT ’09;

Apruzzi, De Luca, Gnecchi, Lo Monaco, AT ’19; Bena, Pilch, Warner 20...1

® This doesn’t always happen. Suppose for example bubble is a D-brane. Does it expand?

S=[-Ty/=g+qC4_ for supersymmetric vacua, they compensate
and bubble doesn’t expand.

makes it shrink makes it expand

{Il’l fact it doesn’t even nucleate]
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® Weak Gravity conjecture: there is always a particle for which gravity is weakest force

analogue for branes: there is always a brane
for which gravity is weakest force =>  expansionwins 5> instability

so maybe all non-susy AdS vacua are unstable? (0o vita s Freivoget, Kicban

® difficult to check in theories with many vacua, such as string theory
alternative protection against bubbles?
® AdS8 Wlth 08—planes [Cordova, De Luca, AT ‘18]

[Giambrone, Guarino, Malek,

e S-fold AdS Samtleben, Sterckx, Trigiante ‘21}
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[Schoen, Yau 79; Witten 81}

® Rough idea: e energy ~ (1Q,Q}) >0

o then show energy = 0 = Minkowski

® can be used in pure GR using auxiliary spinor, but even more natural in sugra

o>  stability for susy vacua in pure gauged N’ = 8, N = 4 sugra
{Gibbons, Hull, Warner ’83}
Widely expected to extend to all susy vacua.

® in 4d models, proof can be extended to some non-susy vacua!

: 1y - . [Boucher ’84; T d’84;...
idea: ‘fake’ supersymmetry that still implies EoM Amsel, Hertog, Hollands, Marolf ‘o7]



This talk:

e Show how stability argument works for susy vacua
directly in d = 10, 11

. . . . St
extra dimensions expected to introduce subtleties: ( :) r

recall infamous ‘bubble of nothing’ for Mink, x S 1

® Try to adapt argument to find some stable non-susy AdS vacua



Plan

® Review of stability in 4d theories
® Stability of supersymmetric compactifications

® Supersymmetry breaking
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Stability in 4d

® Toy model: minimal sugra L = R+iyy""? Dy, l+matter]
0, = D€
Minkowski
Noether ©> supercharge @ = [, €Y,,,¢” * dat A da” n
| 9%
energy B ~ {Q,Q} = faz Y pDPe x dxt N dz” =
same as ADM mass L l
ife — o+ O(1/r) fE V (G’yluprpG) x daot
| null
|+ (DY &ypDPe + T, 7" €)ntvols
® a fun identity: \:)/ if Dominant
v _ 1pap v Energy
VO LDy, Dol = 1 R0 as Condition holds

= (R* — }Rg™) 5,
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e pick frame such that n = eg D40, D% = (D%)T Dye — [y Dyel?

ot i
at index flat along ¥
e as. constant € can always be chosen [~ existence of Green’s function for ¥* D,
. a B
to Satley "}/ Da’e o O [Witten ’82; more formal proof in
‘“Witten condition’ Parker, Taubes ’82]

eallinall E = [ (D%)"D,e + T,pey"e= 0

Minkowski is the only spacetime
e moreover F =0 = D,e =0VX C> with zero energy; it can’t decay
to anything

v

Minkowski vacuum is stable
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® Similar arguments for AdS [Gibbons, Hall, Warner 53] < >
e minimal case: D, — D, + Wy, Q oy = 52
® as. AdS boundary conditions our energy coincides with

covariant phase space formalism —~—~

v

doesn’t depend on choice of 0%

[Hollands, Ishibashi, Marolf ’os}

® More realistic theories: same strategy

eminimal gauged N = 4 sugra: dilatino transf.

V“(€i*yu,,prei) — D“nyu,,prei + 5_)\ifyy5)\i + Tlf,lj‘téi’y“ei

matter outside the sugra multiplet

® other models: slightly different details



o Susy—bre aking: [Boucher ’84; Townsend "84}

forex. L =R — 0,00 ¢ — 2V (¢) no susy
e introduce auxiliary spinors € such that D,e = 0 D, =D, +W(®)v

earlier argument works if we assume usual V' = 2(9,W)?* — 3W?

e however, subtleties in boundary conditions for ¢

> ‘energy doesn’t always coincide with other definitions,
not guaranteed to be conserved

[Amsel, Hertog, Hollands, Marolf ‘o7}



M-theory & Type 11

Four-dimensional approach shows the way. But:

® some model dependence; should be worked out

® higher KK modes are not considered; could be important, recall BoN!

So we will work directly in d = 10, 11
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Warm-up: a simple argument in type II in the probe approximation

S=[-Tyv=g+qCq_1 evaluate on an S? in global coordinates:
1 2
makes it shrink makes it expand > Vegr = (TChp — §q5hp) sh P

bubble expands iff ¢ > 37T [actually it never

even nucleates']

a sign

F = f+voly Ne*d x \f > q:Lpr_2e4A>|<)\f

external RR flux I

3A—d
dp(e* ¢Im®s) = 2347 ¢9ImPy — e x \f 3 pr_2 ¢ Im® 4
one of the ‘pure spinor equations’ for bulk susy A calibration

[Martucci, Smyth *o5;
Koerber, Martucci ‘06}

3 pr_2 e34=Pyol=T

[Grana, Minasian, Petrini, AT ’06}

no bubble v



Beyond the probe approximation: back to positive energy

/\
M-theory: ~
N gy o
® again energy = [g» \, *F> 51y, = Dyye _ Joz=stxag
I
v

Eyvn = €yun' Dpe D, + i(—FPG + GFP)
XM7



Beyond the probe approximation: back to positive energy

/\
M-theory: ~
T N ~
® again energy = [g» \, *F> 51y, = Dyye _ Joz=stxag
I
_ ~__
FEyy = €yun' Dpe Dy + 2—14(—FPG + GI'p) ¥
X Vi

e also again need V,, EM" = lengthy computation, but everything collapses to



Beyond the probe approximation: back to positive energy

)
M-theory: [e—
N oy
® again energy = [g» \, *F> 51y, = Dyye _ Joz=stxag
1
_ ~—_
FEuny = €yun'Dpe D, + 2—14(—FPG -+ GFP)
X M7
e also again need V,, EM" = lengthy computation, but everything collapses to

Dy el™MPNDoe+ LENPET e+ e[dz™ A (dG+d+x G+ 3G A G)) e



Beyond the probe approximation: back to positive energy

)
M-theory: [e—
N oy
® again energy = [g» \, *F> 51y, = Dyye _ Joz=stxag
1
_ ~—_
FEuny = €yun'Dpe D, + 2—14(—FPG -+ GFP)
X M7
e also again need V,, EM" = lengthy computation, but everything collapses to

Dy el™MPNDoe+ LENPET e+ e[dz™ A (dG+d+x G+ 3G A G)) e
! 1

Einstein
My sources M2 sources

can be handled as in 4d )
equation



Beyond the probe approximation: back to positive energy

)
M-theory: [e—
N oy
® again energy = [g» \, *F> 51y, = Dyye _ Joz=stxag
1
_ ~—_
FEuny = €yun'Dpe D, + 2—14(—FPG -+ GFP)
X M7
e also again need V,, EM" = lengthy computation, but everything collapses to

Dy el™MPNDoe+ LENPET e+ e[dz™ A (dG+d+x G+ 3G A G)) e
! 1

Einstein
My sources M2 sources

can be handled as in 4d )
equation

Using calibrations we can prove energy positivity even in presence of sources.

[Martucci ’11}
® math lemma about Witten condition
rest of the stability argument

similar to 4d. Need: ® in AdS case, comparison with conserved energy
from covariant phase space formalism



type 11: ~
N v~
e again energy = fs2><M6 s s Scthyy = D€ oz =8?x M
v
but now F),n = _e_2¢E(FMNPDP —I'ynO)e 0cA = Oe

XM6



type 11: ~
® again energy — f52xM6 x F)o 0 = D€ Q 0% = 5% x Mg
but now E,,xy = —e_2¢€(FMNPDP — T unO)e 0 A = Qe ~—
X Mg
e now V,, EMY = much lengthier computation still, but same structure:

e 2?(Dy — 213 O0) eTMPN (Dp — 2T,0) € — 26 220N O¢

_I_gNPKP i %HNPQEDFl) . (dH A de) . Q(NSS) 1+ %(dHF A de) . Q(D)

1
2



type 11: ~
® again energy — f52xM6 x F)o 0 = D€ Q 0% = 5% x Mg
but now E,,xy = —e_2¢€(FMNPDP — T unO)e 0 A = Qe ~—
X Mg
e now V,, EMY = much lengthier computation still, but same structure:

—2¢ 1 MPN 1 _1.-2¢/), TN positive with appropriate
e (DM 8FMC’)) el’ (DP SFPO) € — g€ ODeT'N e Witten condition’

_I_gNPKP i %HNPQEDFl) . (dH A de) . Q(NSS) 1+ %(dHF A de) . Q(D)

1
2



type 11: ~
® again energy — f52xM6 x F)o 0 = D€ Q 0% = 5% x Mg
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type 11:
e again energy = [, i, ¥

but now E,,xy = —e 2?€(l'yyn"Dp — L'yinO)e

e now V ,, EMY =

e 2% (DM — %FMO) e [ MEN (DP — %FPO) € — %e_%@FNOe
+ENAR A AU L(dH A de™) SQNSSEy L(dy oA daY)
................ | !
Einst.ein EoM for B NS5 D-brane
equation sources sources

So again we can prove energy positivity

0crr = D€

0 A = Oe

Q 0% = 52 x Mg

N~
XM6

much lengthier computation still, but same structure:

positive with appropriate
‘Witten condition’

-----------------------
o '.

-------------------------

[Martucci II]
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Supersymmetry breaking?

Why all this work? We all expected susy vacua to be stable.

Well, now we can try to apply the same argument to some non-susy vacua.
Idea: [in M-theory, for simplicity}

[I1 find ‘fake susy’ D), operator such that D’ e = 0
admits a solution € on a non-susy vacuum

[I1] define new energy [y, *Es B! = &yunD,e
and check if stability argument still works

This is roughly the same ‘take susy’ idea that works in 4d.

[Boucher ’84; Townsend ’84;...
Amsel, Hertog, Hollands, Marolf ‘071
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[I1 find ‘fake susy’ D), operator such that D’ e = 0
admits a solution € on a non-susy vacuum

first-order in derivatives,
;t r(zlrosirliﬁear iZ ﬂl:fX =~ Dy =D + 2_14(alFMG + a2GT ) + asl'y

[susy: a; = —1, as = 3, a3 = 0]

Not hard to find solutions to D’ e = 0:

o ‘Skew-whithng’: flipping G — —G in a Freund—Rubin AdS, x M- [Duff, Nilsson, Pope ’83]

J solution witha; = 1, a0 = —3,a3 =0

® Englert vacua: AdS4 X (Wea|1|(|_G2) [Englert ’82]

3 single Killing spinor, V., = 27,7 with also internal flux:

or: Go-structure |dp = —4 % ¢ G = govolags, + g1 % ¢

- solution with

purely algebraic
*xp-n=1Tn o> o> V1 - — 421720
! equations ar = BG4, a1 = 3 — a3, a3 =5
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[I1] define new energy [,y ;. *Es E! = €éyunTDle
and check if stability argument still works

e First issue: V, (E' )Y D (3a1 4+ a2)e[I'"", G| Dpe

) also, not clear how to send it away
sign?

by ‘completing the square’

e Take now az = —3a;. This already excludes Englert!

Now V,(E')™Y = the various terms now combine imperfectly

D), elMPNDl e + L(—2GN 4+ aiTHP VK,

(&)
positive for |a1| < 1

+1edz A (—a1dG — ad * G + La2G A G + 12a1a3G + 360a3)]e

sign? sign?

® So we don’t find any positivity



We could restart the same strategy in type II.

first-order in derivatives, N

. . lots of possibilities!
at most linear in flux

systematic analysis initiated in
[Liist, Marchesano, Martucci, Tsimpis *08}

1
0chnr = D€ D,=D,®1,—-H, ®o3+FI,,
4 _e¢ 0 F
1 ]:=1—6(iA(F)o)
56)\206 OEd¢®12—§H®O—3—|—FMFFM

® change coefhicients

e add new terms ~ HI',,, '\, F, O, @, ... ® 2 X 2 matrix



Conclusions

® As we all expected, susy compactifications are stable

® Modification of stability argument in M-theory doesn’t succeed

but there could of course be another stability argument

® Type 11 wide open; computation doable in principle



