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Part 1: Motivation of the problem for non-experts/non-string theorists
Black hole partition functions, & how to construct them

Part 2: Some background on automorphic forms

Part 3: Constructing 4d black hole partition functions in supergravity/string theory with 16
supercharges and study their automorphic symmetries.

Complex analytic structure of the partition function leads to non-trivial phenomena which
leads to partition functions with “richer” automorphic symmetry (mock-modularity).

Part 4: How do we reconcile this mock modular symmetry with gravity?

For the physically oriented:
In the context of this talk, we will motivate how and possible ways of seeing how supergravity
might see this symmetry.

For the mathematically oriented:
Re-casting AdS/CFT as a dictionary between geometry and number theory.



Part 1: Motivation



Classically, black holes have no entropy.
Semi-classically, black holes have entropy. [Bekenstein; Hawking]
What 1s the quantum origin of this entropy?

Black hole
event horizon

Semiclassical black hole entropy:
A

SBekenstein—Hawking = 4G
N
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Known as the “area law” for black holes. It 1s universal.
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Q: Is there a partition function (PF)/microstate counting function Z such that
A
InZ = SBekenstein—Hawking = 4G !
N

Image taken from Sean Carroll’s blog.



This paradigm is not entirely sufficient.

The Bekenstein-Hawking entropy is a semi-classical entropy: No quantum corrections
Works when the radius of the black hole > 1.
(In string theory it works in the limit of large charges, no O(R?) corrections,..)

I
Quantum entropy of a black hole: Sg;; = e + cyln A + CIX + CZX + e+ e

—

Sub-leading/quantum corrections
Model dependent

More pertinent Qs:

a) Is there a function ZBH such that SBH = In ZpH ? What is the quantum PF of a black
hole?

b) What is the corresponding “geometry” of a given state counted by the PF?



Computing the quantum entropy requires ability to see all the saddle points of the Euclidean path
integral. Such saddles are difficult to evaluate semi-classically.

However, in string theory, one can evaluate all these saddle contributions exactly.

Before we proceed, it usually helps to understand how black holes arise in string theory.

1 : :
Key ingredients are
/ a. Strings
b. Extended “solitonic” objects called (D)(NS)Branes
/‘> At low string coupling (g,), the D-branes have no back reaction with
/ gravity. Increase g, the D-branes back react and strongly couple to

gravity/background spacetime. Spacetime eventually becomes singular.

Break down of the problem based on dualities. At different values of g, the brane dynamics 1s
can be obtained from different “theories”.
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World volume theory of the D branes
Superconformal field theory

Supergravity

In string theory, the number of string states grows as e™ (M is mass), while the number of black

hole states in supergravity grows as e " Expect some sort of renormalization to account for the
scaling of number of states. [Susskind "93, Susskind-Uglum ’94, Russo-Susskind ‘93]

The existence/proof of concept of such a black hole mass renormalization 1s still unknown.

Could restrict to special Hilbert subspaces in string theory with extended supersymmetry (BPS
states). Protected by non-renormalization theorems, degeneracy/spectrum is independent of g..



/ g,
/ g, ~0

Holography!

9/ AdS/CFT

World volume theory of the D branes
Superconformal field theory
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Derived for such BPS solutions as the leading order growth of density of states in the SCFT aka
“Cardy Formula” [Strominger-Vafa "95]

How does one obtain all quantum corrections to the entropy in the partition function? How does one
ensure that it matches with supergravitational quantum BH entropy? Does the BH quantum PF yield
integer degeneracies”?



We will mostly consider the case of maximal and half-maximal supersymmetry in 4d.
For #/ = 8: D1-D5-p-KK on 7% = T* x S! x §!

-a DI brane on S!

- a D5 brane on §' x T*

- n units of momentum along S
- £ units of momentum along S’
- KK monopole along S!

The charge invariant A ,,_¢ = 4n — ¢ 2

For #/ = 4: D1-D5-p-KK on K3 X T? = K3 x S' x §!

- Q, D1 brane on S

- Q5 D5 brane on §' x K3

- n units of momentum along S’
- £ units of momentum along S’
- KK monopole along S!

The charge invariant A ,._, = 4mn — £, where m = Q,0x



To study 4d BPS black holes, you need to compactly pack away (compactify) the extra
dimensions by wrapping the D branes on “cycles” of Calabi-Yau manifolds (complex, Ricci flat
manifolds) as seen on the previous slide.

In this compactified picture, the “gravitational” part of the black hole spacetime is AdS;, and the
world sheet part is a two dimensional superconformal field theory.

Computing the quantum PF of such 4d BPS black holes 1s therefore the same as computing the
BPS PF of the 2d CFT.

g \Q/\Q/

PFs have to behave a certain way under the deformation of such genus g Riemann surfaces



Part 2: Automorphic forms



An automorphic form is a complex function f : G — C, for G a topological group, such that three
properties are satisfied:

1. IfI is a discrete subgroup of GG, fhas nice transformation properties:
fly-g)=jin)f(g),g € G, y el jisa “factor of automorphy”

2. fis an eigenfunction of certain Laplacians on G

3. fsatisfies some growth condition as g approaches the boundary of the domain of G.




If G = SL2.R), T = SL(2.7). the
2 g=1 > automorphic forms are called
“modular forms”.

LetH = {r € C|S7 > 0} ~ SL2,R)/SO2,R).

A holomorphic modular form f of weight k € 2Z__is a holomorphic function f : H — C, such that

“HZ) = (ct + Y f(z), ¥ (2’ Z

CT +

a. f(7) |—>f< > e SL(2,7)

b. fis bounded as 7 — i

I won’t go into the Laplacian/Quadratic Casimir here. It does become important when one considers
spectral theory of automorphic forms.

oo

Since <(1) }) € SL(2,2), f(r) = f(r+ 1): f(z) = 2 c(n)q”, q := e*™* (Fourier expansion)
n=0




Holomorphic modular on SL(2,7) form generated by E,(7) and E¢(7) (Weight 4 and 6
Eisenstein series on SL(2,7), respectively)

(i} =M. fi= ) aE()Egx), M=@DM, wherea € R
L, J k=4
4i+6j =k

E,(t)=14240 ) q"0:(n) E(r)=1-504 ) q"o:(n)
4 ; 3 \ / 6 ’; 5

Eisenstein Series

o, (n) = 2 x“ : Divisor Sigma Function (Ex: 05(6) = Z ¥=14+22+3+6°=251

x|n x|6

= E, (1)’ — E(7)?
Example: 1(7)** = QH(l — g")** = 4 )1728 o7) is a weight 12 modular form

n=1

1 1
=T = — 4+ 24 4+ 324¢g + O(q?) : PF of 24 free bosons on a torus (weakly holomorphic)
nz q

Also the indexed PF of perturbative 1/2-BPS states in the Heterotic frame (4d, /" = 4)




N If G = SpQ2R), T = $p(2.2),
b/ automorphic forms are “Siegel
2 g=2 modular forms”

5522y =4 = (2 B e Ma )| MM =1 forg= (1 T
’ C D xd ’ I, O

T O

) € C|Sr. So > 0, det(Q) > o}.

A Siegel modular form f of weight k is a function f : H, — C, such that

f(Q) = f(AQ + B)(CQ + D)~! = det(CQ + D)* (Q), V (é g> e Sp(2,2)

Siegel Modular Forms also admit Fourier expansions, as well as Fourier-Jacobi expansions

Ji(£2) = Z dim,n,?) q"p"y!, where q := e?, p 1= €°™, y := ¢

nm,t

— n.,l
fil8d) = Z Vinld> €)q"y - Jacobi form of weight k and index m




It 1s also key to motivate a “Jacobi form” which in some sense are “elliptic” versions of modular forms.
Physically, they are “refinements” of a modular form by the supersymmetric R-charge.

Indexed PFs refined under R-charge: Z = Trg ((— D qLO_ﬁy%) , v = 2™ is the “elliptic” variable

Jacobi forms are automorphic forms on SL(2,Z) X H(Z,)* (*A particular parametrization choice
due to [Eichler-Zagier]. I will tell you what this 1s later since it does play a key role.)

A Jacobi form of weight k and index m is a function f : H X C — C such that,fort € H,z € C,

at + b Z
ct+d ct+d

a b
d

k 2mmcz

) = (ct+d)e«+df(t,2), ‘v’(

a.f(z,2) —>f< ) e SL(2,7)

b.f(7,2) = f(z,7 + AT+ p) = e 2AMEHVIf (1 N Y ) ueZ

Jacobi forms are periodic in both their arguments and admit a Fourier expansion

f@,2) =) ctn,O)q"y"

n,t

We will be interested in objects known as weak Jacobi forms.



® Weak Jacobi forms exhibit exponential growth of degeneracy (just like weakly
holomorphic modular forms)

They are generated by the ring:

9,(z,2)° S 9(1,2)
<¢_2’I(T’ D= S I =42, 19i<r,0>2’E4(T)’E6(T)>

[Eichler, Zagier, Feingold, Frenkel ]

e Examples include the elliptic genus of K3 which is 2¢ (7, 2)



Certain types of these automorphic forms (modular, Siegel, Jacobi) correspond to
examples of physical PF’s.

Modular forms: Black holes with electric or magnetic charges (zero area)
Jacobi forms: Black holes with electric or magnetic charges + angular momentum

Siegel modular forms: Black holes with electric and magnetic charges + angular momentum

Fourier expansion coefficients: Degeneracies of black holes



Part 3: Constructing partitions



Warm up example: Black holes in ./ = 8 4d compactification of string theory

1
Type II String Theory on T°: Theory with g—BPS dyonic black holes

1912(1, 2)
n(7)°

The indexed partition(*) of these black holes are the Jacobi form gb_z’l(r, 7) =

[Maldacena-Moore-Strominger]

The Fourier expansion: ¢_, (7, z) = Z c(n, O)q"y’ = Z C(A =4n—£%)q"y"
(n,0) (n,0)

give you the BH degeneracies dyy(n, ) = (— e, ?) = (- 1D)AHCA)



Instead of computing the Fourier expansion term by term, there 1s an analytic way to
derive all C(A > 0) given C(A < 0) (*and information about modular properties and
cusps) [Rademacher-Zuckermann] [G. Andrews]

Known as the Hardy-Ramanujan-Rademacher circle method
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On the supergravity side: Difficult because the path integral 1s complicated (infinite dim integral)

reg.
Zpn(q) = <€Xp <—iqﬂgA,>>
AdS,

The leading term of this expression is the area law. But to evaluate the full PI with saddle
contributions is hard. Localize this path integral (in the sense of Duistermaat-Heckman, Atiyah-Bott)

[Sen]
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Now, we can in principle compute Zg,;.



The path integral can be re-written in the form

ZBH (?; qf\ = <6XP[“LC-’r1£:AI AIt_k
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A = 8 Localization
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[Localization
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Rademacher expansion of a Jacobi form v/s Supersymmetric Localization

Consider  Radewacher for & = Z, (v2)
b

L A +| T _q|
A = (-1 zn(g)ll 2 ) A\I ]
Onlu, on e tovm -
Jith A ¢0O

A 1 0 3 1 7 3 11 12 15
adew;\ﬂ*

d(A) 1 2 8 12 39 56 152 208 513
WA) [1.040 1.855 7.972  12.201 38986 55.721 152.041 208.455 512.958
Dexp(nvVA) | - 1 230.765 535.492 4071.93 7228.35 33506 53252 192401

Local %0‘*\ oA [Dabholkar - Murthy- Gomes]



A dictionary
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N =4, d = 4 black holes
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Zero area black holes
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Large black holes
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Large black holes & Siegel Modular Forms
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Wall Crossing of Dyonic Black Holes
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DMZ theory

[Dabholkar-Murthy-Zagier]
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“Polar’” mock Jacobi forms

Pra(m + 1) is the m-th coefficient of n(z)=**

ma*+a. 2ma+1

Pos(m + 1) q y
n(r)>* Z (1 — g%y)?

\

“Appell-Lerch sum™;
Derived from the averaging function of all double poles of ®_,((7, 0, 2)

W, (7, 2) =
=y



The holomorphic part of the Jacobi forms still admit a Fourier expansion
L+2
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The essence of holography for negative discriminant states boils down to equivalence of
contours: Region in H where one can compute the degeneracies of negative discriminant states.

This region corresponds to a contour in supergravity over which the path integral 1s finally
localized 1.e. expressed as a convergent series of I-Bessel functions.
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The region bounded by the semicircle (“Farey circle at level 1) of radius 1/2 with end
points (0,1), the rays (0,ic0) and (1,ic0) corresponds to the region where one can
compute single center/Large black hole degeneracies.

So we wish to compute the degeneracies of negative discriminant states here.

The degeneracies of these A < 0 states are in fact governed by
finite sums of coefficients of 17(1)_24;7(7)_24.

There 1s a very nice “particle physics decay channel approach
that one can take here to show that set.

100 100
R R [AK, Chowdhury, Murthy, Reys, Wrase]|
There 1s also a more “topological way” of writing these
% degeneracies 1n terms of “continued fractions”.
° ee° [Cardoso, Nampuri, Rossello]




Once you know what all the negative discriminant degeneracies are, feed into Rademacher™

*for a mixed mock modular Jacobi form on SL(2,7)

l Mod ular

: RS _ ~ Kl(k,A,A) /|A]y23/4 VIAIA
C (12, €) ~ [ > (@, 0) ( 7 )<|A|) 123/2(7T n|1k| )
k=1 (7.6%/27112
A<O
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[Ferrari-Reys]



It is therefore possible to construct the entire Siegel modular form Cl)l_ol(Q) from just
Dedekind eta’s.
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Can the microscopic formulation help understand
localization better?

Where/Why/How does the mock-modular nature
of black hole entropy arise in supergravity?



Localizing 1/4- BPS states in4d A4 =4
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Correcting F
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Correct the measure
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Accounting for all contributions
from negative discriminant states
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Mock modularity from
supergravity
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Conclusions and Future
Directions

e Hidden number theory in supergravity/localization?
® Microscopics as a guide for gravity

® Mock modularity should be apparent in supergravity. But how/why is still WIP.



