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We consider 4d pure gravity in split signature. Two parts:
▶ Adapt Math.DG/0504582, Duke Math (2007), LeBrun & M.

to present global SD gravity in split signature so as to
manifest Strominger’s celestial Lw1+∞ symmetry.

▶ Adapt Adamo, M. & Sharma 2103.16984, to construct
amplitudes from I to provide full gravity tree-level S-matrix
from open chiral sigma model built from Lw1+∞.



Holography from null infinity, and amplitudes

▶ Celestial Holography seeks to
find boundary theory that
constructs 4d gravity from I .

▶ Newman ’70’s: tries to rebuild
space-time from ‘cuts’ of I .

▶ Yields instead ‘H-space’ a
complex self-dual space-time.
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▶ Penrose: ; asymptotic Twistor space
PT ∼ CP3, the nonlinear graviton.

▶ Embodies integrability of SD sector.
▶ Chiral sigma models in twistor space give

full 4d gravity S-matrix expanding around
SD sector; manifests Lw1+∞ symmetry.



Gravity amplitudes at MHV (−−+ . . .+ helicity)

Scatter n gravitons with momenta ki , i = 1, . . .n.
▶ In 2-component spinors, null momenta kiαα̇ = κiακiα̇.
▶ Scaling of spinor κiα encodes polarization of i th graviton.
▶ Compact spinor helicity notation:

⟨1 2⟩ := κ1ακ
α
2 , [1 2] := κ1α̇κ

α̇
2 , ⟨1|2|3] = κ1αkαα̇

2 κ3α̇ .

▶ Hodges 2012 MHV formula, defines n × n matrix:

Hij =

{
[ij]
⟨ij⟩ i ̸= j

−
∑

k
[ik ]
⟨ik⟩ i = j .

▶ Then:
M(1, . . . ,n) = ⟨12⟩6 det ′H δ4(

∑
i ki)

Why??? M = ⟨V1 . . .Vn−2⟩.



Flat holography: the split signature story from I
A celestial torus

Now I = R× S1 × S1 with real coords (u, λ, λ̃), λ = λ1/λ0.

ds2 =
1

R2

(
dudR − dλd λ̃+ Rσd λ̃2 + Rσ̃dλ2 + . . .

)
,

where R = 1/r , and I = {R = 0}.
▶ The σ, σ̃ are now real asymptotic shears that encode

gravitational data.
▶ σ encodes self-dual (SD) sector and σ̃ the ASD sector.
▶ Split signature ; real ‘twistors’ = totally null ASD 2-planes.
▶ Twistors intersect I in null geodesic circles in λ = const.

planes:

u = Z (λ, λ̃),
∂2Z
∂λ̃2

= σ(Z , λ, λ̃) .

▶ We will show how twistor construction encodes (σ, σ̃) into
twistor data h(U), h̃(Ũ) encoding Lw1+∞ action.

SD sector arises by solving open disk chiral sigma model, and
gives formulae for perturbations about SD sector.



Conformal self-duality in 4d, split signature
Recall on 4d manifold (M4,g),

Ω2
M =

Ω2+

⊕
Ω2−

 , Riem =

(
Weyl+ + Sδ Ricci0

Ricci0 Weyl− + Sδ

)
.

This talk: focus on Ricci = 0 = Weyl−, so Ω2− is flat.

Conformal group = SO(3,3) acts on global models:
▶ Conformally flat models: S2 × S2 or S2 × S2/Z2:

ds2 = Ω2(ds2
S2

x
− ds2

S2
y
) ,

Coordinates (x,y) ∈ R3 × R3, |x| = |y| = 1.
▶ Z2 acts by (x,y)→ (−x,−y).
▶ For flat Λ = 0 : Ω ∼ 1

x3−y3
, and

I = {x3 = y3} = R× S1 × S1.

(For Λ ̸= 0: Ω ∼ 1/y3, and I = S2 × S1.)



α and β-surfaces and the Zollfrei condition
The split signature conformally flat metric

ds2 = Ω2(ds2
S2

x
− ds2

S2
y
) ,

admits a 3-parameter family of β-planes denoted by PTR:
▶ respectively totally null ASD S2s given by

x = Ay , A ∈ SO(3) = RP3 .

▶ Weyl− = 0⇒ β-planes survive as β-surfaces.
▶ β-surfaces are projectively flat.
▶ If compact, β-surfaces are necessarily S2 or RP2.
▶ Null geodesics are projectively RP1s or double cover.

Following Guillemin we define:

Definition
An indefinite space (Md ,g) is (strongly) Zollfrei if all null
geodesics are embedded S1s (of same projective length).



Conformally self-dual case
Theorem (LeBrun & M. [Duke Math J. 2007, math.dg/0504582.)
Let (M4, [g]) be Zollfrei with SD Weyl-curvature. Then either
▶ M = S2 × S2/Z2 with the standard conformally flat

conformal structure, or
▶ M = S2 ×S2 and there is a 1 : 1-correspondence between

1. SD conformal structures on S2 × S2 near flat model &
2. Deformations PTR of standard embedding of RP3 ⊂ CP3

modulo reparametrizations of RP3 and PGL(4,C) on CP3.

The space PTR = {β surfaces in M} = graph of F : RP3 → R3

in some neighbourhood U ≃ R3 × RP3 ⊂ CP3 of RP3:

Data encoded in graph



Reconstruction of M from twistor space PTR
Each x ∈ M ↔ holomorphic disc Dx ⊂ CP3 with ∂Dx ⊂ PTR.
▶ Dx generates the degree-1 class in H2(CP3,PTR,Z) = Z.
▶ Reconstruct M from PTR space of all such disks:

M = {Moduli of degree-1 hol. disks: Dx ⊂ CP3, ∂Dx ⊂ PTR}

▶ Gives compact 4d moduli space
▶ M admits a conformal structure for which ∂Dx ∩ ∂Dx ′ = Z

means that x , x ′ sit on same β-plane:

X ′

X
Zx

x′

Space-time Twistor Space



Restriction to Einstein vacuum case
Adapting Penrose nonlinear graviton (1976) to split signature

Which PTR ⊂ CP3 give SD Einstein g ∈ [g] on S2 × S2?
▶ Let Z A = (λα, µ

α̇), α = 0,1, α̇ = 0̇, 1̇ be homogenous
coordinates for CP3.

▶ Introduce Poisson structure and 1-form

{f ,g} := εα̇β̇
∂f
∂µα̇

∂g
∂µβ̇

=

[
∂f
∂µ

∂g
∂µ

]
,

θ := ϵαβλαdλβ = ⟨λdλ⟩

of rank 2 and homogeneity degree −2 and 2 respectively.

Theorem
A vacuum g ∈ [g] exists when θ|PTR & { , }PTR are real.



Poisson diffeos of plane & Lw1+∞
WN = higher spin symmetries in 2d CFT [Zamolodchikov 1980s].
For N →∞ classical limit w∞ = Poisson diffeos of plane [Hoppe].
▶ Plane has coords µα̇, α̇ = 0̇, 1̇ with Poisson bracket

{f ,g} := εα̇β̇
∂f
∂µα̇

∂g
∂µα̇

, εα̇β̇ = ε[α̇β̇], ε0̇1̇ = 1 .

▶ Basis of w1+∞ ↔ polynomial hamiltonians

wp
m = (µ0̇)p−m−1(µ1̇)p+m−1 , |m| ≤ p − 1, 2p − 2 ∈ N

▶ Poisson brackets↔ commutation relations of w1+∞:

{wp
m,w

q
n } = (2(p − 1)n − 2(q − 1)m)wp+q−2

m+n .

▶ Loop algebra Lw1+∞, loop coord λ1
λ0

= tan θ
2 , generators

gp
m,r = wp

meirθ , r ∈ Z.
▶ Poisson brackets now

{gp
m,r ,g

q
n,s} = (2(p − 1)n − 2(q − 1)m)gp+q−2

m+n,r+s .

This is the structure preserving diffeomorphism group of PTR.



Generating functions for Einstein embeddings
Explicitly in homogeneous coordinates:
▶ Let Z A = UA + iV A, with UA,V A ∈ R4.
▶ Let h(U) be an arbtrary function of homogeneity degree 2,

U · ∂h
∂U

= 2h.

Proposition
All ‘small’ Einstein vacuum twistor data↔ h(U) by setting

TR =
{

V A =
{

h ,UA
}}

=

{
vα = 0, v α̇ = εα̇β̇

∂h
∂uβ̇

}
projectivising gives PTR.
The corresponding self-dual (2,2) vacuum metrics are Zollfrei
on S2 × S2 with null I modelled by x3 = y3.
The Poisson bracket underpins Strominger’s Lw1+∞ structure,
[Adamo, M., Sharma, 2110.06066.]. Here Lw1+∞ acts canonically on

{SD gravity phase space} = LwC
1+∞/Lw1+∞ ∋ h(U)



Holography: SD vacuum spaces from I
Twistor space can be constructed from σ at I :
▶ At fixed λα, real twistor coords µα̇ parametrize null

geodesics u = Z (λ̃) in I where

∂2
λ̃
Z = σ(Z , λ̃, λ).

Defines Zollfrei projective structure on each λ = const..
▶ Flat σ = 0 case has Z = µα̇λ̃α̇.
▶ In general ∃ nonlinear correspondence [Lebrun & M, JDiffGeom. ’02]:

{Zollfrei proj. str. ↔ σ} 1:1←→ {h(U)} ,

and gives I ↔ PTR ⊂ PT at each fixed λ.
▶ In linear theory map is analogue of radon transform

σ(u, λ̃, λ) = ∂2
u

∫ ∞

−∞
dt h(µα̇ + t λ̃α̇, λα) .

in α-planes at I (cf inverse light-ray transform).



Examples:
▶ Let Tαα̇, T 2 = 2, be symmetry.
▶ Use Tαα̇ to eliminate dotted indices.
▶ So Z A = (λα, µ

α), and {f ,g} = εαβ ∂f
∂µα

∂g
∂µβ ,

▶ Set µα̇ = uα + ivα, h = h(uαλα, λα) then define

PTR = {ℑλα = 0, vα = λαḣ} , ḣ(w , λ) := ∂wh(w , λ) .

▶ For hol. disks: use λα as hgs coords & express as graphs:

µα = xαβλβ + (t + g(x , λ))λα, xαβ = x (αβ) .

where

g(xαβ, λ) =

∮
λ0

λ′
0

1
⟨λλ′⟩

ḣ((xαβλ′
αλ

′
β, λ

′
α)Dλ′

▶ Gives split signature version of Gibbons-Hawking metrics

ds2 = Vdx·dx+V−1(dt+ω)2 , dV =∗ dω , V =

∮
ḧDλ .

22+1V = 0. E.g. V = 1 + 2m/r for SD Schwarzschild.



Amplitudes from open chiral twistor sigma models
Represent holomorphic disks D ⊂ PT with boundary ∂D ⊂ PTR
in homogeneous coordinates by

Z A(σ) : D→ T , Z A|σ=σ̄ ∈ TR .

using disk as upper-half-plane D = {σ ∈ C,ℑσ ≥ 0}.
▶ For k points σi ∈ R, and Z A

i ∈ TR, ∃! deg k −1 disk thru Zi :

Z A(σ) =
k∑

i=1

Z A
i

σ − σi
+ M(σ) , M(σ) holomorphic on D.

▶ For Z = (λα, µ
α̇) ∈ TR implies λα real.

▶ Therefore MA = (0,mα̇), but mα̇ ̸= 0 unless h = 0.
▶ Action for holomorphy and boundary conditions:

SD[Z (σ),Zi ] =

∫
D
[m ∂̄m]dσ +

∮
∂D

h(Z )dσ

using spinor-helicity notation [µ ν] := µα̇ν
α̇, ⟨1 2⟩ := κ1ακ

α
2 .



Sigma model and gravity S-matrix on SD background
Amplitudes are functionalsM[h, h̃i ] of gravitational data:
▶ h ∈ C∞(PTR,O(2))for fully nonlinear SD part,
▶ h̃i ∈ C∞(PTR,O(−6)), i = 1, . . . , k , ASD perturbations.
▶ For eigenstates of momentum kiαα̇ = κiακ̃iα̇ take:

hi =

∫
dt
t3 δ

2(tλα−κiα)eit[µ,κ̃i ], h̃i =

∫
dt
t−5 δ

2(tλα−κiα)eit[µ,κ̃i ]

Proposition (Adapted from [Adamo, M. & Sharma, 2103.16984] to split signature. )
The amplitude for k ASD perturbations on SD background h is

M(h, h̃i) =

∫
(S1×PTR)k

Sos
D [h,Zi , σi ] det

′H̃
k∏

i=1

h̃i(Zi)D3Zidσi .

Here Sos
D [h,Zi , σi ] is the on-shell Sigma model action and

H̃ij(Zi) =


⟨λiλj ⟩
σi−σj

i ̸= j

−
∑

l
⟨λiλl ⟩
σi−σj

, i = j .



Ideas in proof: the complete tree-level S-matrix
▶ Expand h = hk+1 + . . .+ hn to 1st order in momentum

e-states hi to give flat background perturbative amplitude.
▶ On shell action expands as tree correlator

Sos
D [hk+1 + . . .+ hn,Zi , σi ] = ⟨Vhk+1 . . .Vhn⟩tree + O(h2

i ) .

▶ Here the ‘vertex operators’ are Vhi =
∫
∂D hi(σi)dσi .

▶ Propagators for SD give Poisson bracket { , }

⟨hihj⟩tree =
[∂µhi ∂µhj ]

σi − σj
=

[i j]
σi − σj

hihj , i ̸= j .

▶ Matrix-tree theorem then gives

⟨hk+1 . . . hn⟩tree = det ′H
n∏

i=k+1

hi , Hij =
[ij]

σi − σj
, i ̸= j etc.

; M(hi , h̃i) =

∫
(S1)n×(RP3)k

det ′H det ′H̃
n∏

j=k+1

hjdσj

k∏
i=1

h̃i(Zi)D3Zidσi .

This is now equivalent to the Cachazo-Skinner formula.



Relation to Einstein-Hilbert action at k = 2
[Adamo, M, Sharma, 2103.1239]

At k = 2, det ′H̃ and Mobius symmetry trivialises σ integrals so

M[h, h̃1, h̃2] =

∫
d2µ1d2µ2 ei[µ1 1]+i[µ2 2]Sos

D [h,Z1,Z2]

▶ Writing xαα̇ = (µα̇
1 , µ

α̇
2 ) this a space-time integral

M[h, h̃1, h̃2] =

∫
d4x eik1·x+ik2·xSos

D [h, µ1, µ2]

Proposition
Let Ω(x) := Sos

D [h, µ1, µ2]. Then Ω is the Plebanskis first
potential (Kahler scalar) for the SD background metric

ds2 = ∂2Ω

∂µα̇
1 ∂µ

β̇
2

dµα̇
1 dµβ̇

2 .

The second variation of the Einstein-Hilbert action

δ2SEH[h, h̃1, h̃2] =

∫
d4xei(k1+k2)·x Ω(x) =M[h, h̃1, h̃2]

(Follows from Plebanski gravity action. )



Conclusions and open problems

▶ We have rigidity of conformally-flat SD split signature
vacuum metrics with I = S1 × S1 × R/Z2.

▶ Have construction for split signature SD vacuum metrics
on S2 × S2 with I ≃ S1 × S1 × R depending on smooth
sections h of O(2) over RP3 defining deformed real slice.

▶ Similar results follow for Λ ̸= 0 where h↔ 2 + 1 signature
conformal structure of I = S2 × S1.

▶ Reconstruction via open holomorphic discs leads to chiral
open sigma model that computes gravity amplitudes.

▶ MHV formula gives theory underlying tree formalism of
Bern et. al. from 1998.

▶ Framework gives Lw1+∞ action on full amplitude.
Slogan: SD gravity phase space = LwC

1+∞/Lw1+∞
▶ Split signature twistors avoid ‘lightray transform’ or

Čech-Dolbeult manifesting Lw1+∞ directly.



Thank you!


