Twistors for $L w_{1+\infty}$ symmetry in 4d gravity

 An open sigma model for celestial gravityLionel Mason

The Mathematical Institute, Oxford
lmason@maths.ox.ac.uk

Rencontres Théoriciennes, Paris November 10, 2022
We consider 4d pure gravity in split signature. Two parts:

- Adapt Math.DG/0504582, Duke Math (2007), LeBrun \& M. to present global SD gravity in split signature so as to manifest Strominger's celestial $L w_{1+\infty}$ symmetry.
- Adapt Adamo, M. \& Sharma 2103.16984, to construct amplitudes from \mathscr{I} to provide full gravity tree-level S-matrix from open chiral sigma model built from $L w_{1+\infty}$.

Holography from null infinity, and amplitudes

- Celestial Holography seeks to find boundary theory that constructs 4d gravity from \mathscr{I}.
- Newman '70's: tries to rebuild space-time from 'cuts' of \mathscr{I}.
- Yields instead 'H-space' a complex self-dual space-time.

- Penrose: \leadsto asymptotic Twistor space $P \mathscr{T} \sim \mathbb{C P}^{3}$, the nonlinear graviton.
- Embodies integrability of SD sector.
- Chiral sigma models in twistor space give full 4d gravity S-matrix expanding around
 SD sector; manifests $L w_{1+\infty}$ symmetry.

Gravity amplitudes at MHV ($--+\ldots+$ helicity $)$

Scatter n gravitons with momenta $k_{i}, i=1, \ldots n$.

- In 2-component spinors, null momenta $k_{i \alpha \dot{\alpha}}=\kappa_{i_{\alpha}} \kappa_{i \dot{\alpha}}$.
- Scaling of spinor $\kappa_{i_{\alpha}}$ encodes polarization of i th graviton.
- Compact spinor helicity notation:

$$
\left.\langle 12\rangle:=\kappa_{1 \alpha} \kappa_{2}^{\alpha},[12]:=\kappa_{1 \dot{\alpha}} \kappa_{2}^{\dot{\alpha}},\langle 1| 2 \mid 3\right]=\kappa_{1 \alpha} k_{2}^{\alpha \dot{\alpha}} \kappa_{3 \dot{\alpha}}
$$

- Hodges 2012 MHV formula, defines $n \times n$ matrix:

$$
\mathbb{H}_{i j}=\left\{\begin{array}{cl}
\frac{[i j]}{\langle i j\rangle} & i \neq j \\
-\sum_{k} \frac{[i k]}{\langle i k\rangle} & i=j .
\end{array}\right.
$$

- Then:

$$
\mathcal{M}(1, \ldots, n)=\langle 12\rangle^{6} \operatorname{det}^{\prime} \mathbb{H} \delta^{4}\left(\sum_{i} k_{i}\right)
$$

Why??? $\quad \mathcal{M}=\left\langle V_{1} \ldots V_{n-2}\right\rangle$.

Flat holography: the split signature story from \mathscr{I}

A celestial torus

Now $\mathscr{I}=\mathbb{R} \times S^{1} \times S^{1}$ with real coords $(u, \lambda, \tilde{\lambda}), \lambda=\lambda_{1} / \lambda_{0}$.

$$
d s^{2}=\frac{1}{R^{2}}\left(d u d R-d \lambda d \tilde{\lambda}+R \sigma d \tilde{\lambda}^{2}+R \tilde{\sigma} d \lambda^{2}+\ldots\right),
$$

where $R=1 / r$, and $\mathscr{I}=\{R=0\}$.

- The $\sigma, \tilde{\sigma}$ are now real asymptotic shears that encode gravitational data.
- σ encodes self-dual (SD) sector and $\tilde{\sigma}$ the ASD sector.
- Split signature \leadsto real 'twistors' = totally null ASD 2-planes.
- Twistors intersect \mathscr{I} in null geodesic circles in $\lambda=$ const. planes:

$$
u=Z(\lambda, \tilde{\lambda}), \quad \frac{\partial^{2} Z}{\partial \tilde{\lambda}^{2}}=\sigma(Z, \lambda, \tilde{\lambda}) .
$$

- We will show how twistor construction encodes ($\sigma, \tilde{\sigma}$) into twistor data $h(U), \tilde{h}(\tilde{U})$ encoding $L w_{1+\infty}$ action.
SD sector arises by solving open disk chiral sigma model, and gives formulae for perturbations about SD sector.

Conformal self-duality in 4d, split signature

Recall on 4d manifold (M^{4}, g),

$$
\Omega_{M}^{2}=\left(\begin{array}{c}
\Omega^{2+} \\
\oplus \\
\Omega^{2-}
\end{array}\right), \quad \text { Riem }=\left(\begin{array}{cc}
\mathrm{Weyl}^{+}+S \delta & \text { Ricci }_{0} \\
\text { Ricci }_{0} & \text { Weyl }^{-}+S \delta
\end{array}\right)
$$

This talk: focus on Ricci $=0=$ Weyl $^{-}$, so Ω^{2-} is flat.
Conformal group $=S O(3,3)$ acts on global models:

- Conformally flat models: $S^{2} \times S^{2}$ or $S^{2} \times S^{2} / \mathbb{Z}_{2}$:

$$
d s^{2}=\Omega^{2}\left(d s_{S_{\mathrm{x}}^{2}}^{2}-d s_{S_{\mathrm{y}}^{2}}^{2}\right)
$$

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{3} \times \mathbb{R}^{3},|\mathbf{x}|=|\mathbf{y}|=1$.

- \mathbb{Z}_{2} acts by $(\mathbf{x}, \mathbf{y}) \rightarrow(-\mathbf{x},-\mathbf{y})$.
- For flat $\Lambda=0: \Omega \sim \frac{1}{x_{3}-y_{3}}$, and

$$
\mathscr{I}=\left\{x_{3}=y_{3}\right\}=\mathbb{R} \times S^{1} \times S^{1}
$$

$\left(\right.$ For $\Lambda \neq 0: \Omega \sim 1 / y_{3}$, and $\left.\mathscr{I}=S^{2} \times S^{1}.\right)$

α and β-surfaces and the Zollfrei condition

The split signature conformally flat metric

$$
d s^{2}=\Omega^{2}\left(d s_{S_{\mathrm{x}}^{2}}^{2}-d s_{S_{\mathrm{y}}^{2}}^{2}\right)
$$

admits a 3-parameter family of β-planes denoted by $\mathbb{P T}_{\mathbb{R}}$:

- respectively totally null ASD S^{2} s given by

$$
\mathbf{x}=A \mathbf{y}, \quad A \in S O(3)=\mathbb{R P}^{3}
$$

- Weyl $^{-}=0 \Rightarrow \beta$-planes survive as β-surfaces.
- β-surfaces are projectively flat.
- If compact, β-surfaces are necessarily S^{2} or $\mathbb{R P}^{2}$.
- Null geodesics are projectively $\mathbb{R P}^{1}$ s or double cover.

Following Guillemin we define:

Definition

An indefinite space $\left(M^{d}, g\right)$ is (strongly) Zollfrei if all null geodesics are embedded $S^{1} s$ (of same projective length).

Conformally self-dual case

Theorem (LeBrun \& M. [Duke Math J. 2007, math.dg/0504582.)
Let $\left(M^{4},[g]\right)$ be Zollfrei with SD Weyl-curvature. Then either

- $M=S^{2} \times S^{2} / \mathbb{Z}_{2}$ with the standard conformally flat conformal structure, or
- $M=S^{2} \times S^{2}$ and there is a 1:1-correspondence between

1. $S D$ conformal structures on $S^{2} \times S^{2}$ near flat model \&
2. Deformations $\mathbb{P}_{\mathbb{R}}$ of standard embedding of $\mathbb{R} \mathbb{P}^{3} \subset \mathbb{C} \mathbb{P}^{3}$ modulo reparametrizations of $\mathbb{R P}^{3}$ and $P G L(4, \mathbb{C})$ on $\mathbb{C P}^{3}$.

The space $\mathbb{P}_{\mathbb{R}}=\{\beta$ surfaces in $M\}=$ graph of $F: \mathbb{R} \mathbb{P}^{3} \rightarrow \mathbb{R}^{3}$ in some neiahbourhood $U \simeq \mathbb{R}^{3} \times \mathbb{R P}^{3} \subset \mathbb{C P}^{3}$ of $\mathbb{R} \mathbb{P}^{3}$:

Data encoded in graph

Reconstruction of M from twistor space $\mathbb{P}_{\mathbb{R}}$

Each $x \in M \leftrightarrow$ holomorphic disc $\mathbb{D}_{x} \subset \mathbb{C P}^{3}$ with $\partial \mathbb{D}_{x} \subset \mathbb{P}_{\mathbb{R}}$.

- \mathbb{D}_{x} generates the degree-1 class in $H_{2}\left(\mathbb{C P}^{3}, \mathbb{P}_{\mathbb{R}}, \mathbb{Z}\right)=\mathbb{Z}$.
- Reconstruct M from $\mathbb{P T}_{\mathbb{R}}$ space of all such disks:
$M=\left\{\right.$ Moduli of degree-1 hol. disks: $\left.\mathbb{D}_{x} \subset \mathbb{C P}^{3}, \partial \mathbb{D}_{x} \subset \mathbb{P}_{\mathbb{R}}\right\}$
- Gives compact 4d moduli space
- M admits a conformal structure for which $\partial \mathbb{D}_{x} \cap \partial \mathbb{D}_{x^{\prime}}=Z$ means that x, x^{\prime} sit on same β-plane:
Space-time Twistor Space

Restriction to Einstein vacuum case

Adapting Penrose nonlinear graviton (1976) to split signature

Which $\mathbb{P T}_{\mathbb{R}} \subset \mathbb{C P}^{3}$ give SD Einstein $g \in[g]$ on $S^{2} \times S^{2}$?

- Let $Z^{A}=\left(\lambda_{\alpha}, \mu^{\dot{\alpha}}\right), \alpha=0,1, \dot{\alpha}=\dot{0}, \dot{1}$ be homogenous coordinates for $\mathbb{C P}^{3}$.
- Introduce Poisson structure and 1-form

$$
\begin{aligned}
\{f, g\} & :=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial f}{\partial \mu^{\dot{\alpha}}} \frac{\partial g}{\partial \mu^{\dot{\beta}}}=\left[\frac{\partial f}{\partial \mu} \frac{\partial g}{\partial \mu}\right], \\
\theta & :=\epsilon^{\alpha \beta} \lambda_{\alpha} d \lambda_{\beta}=\langle\lambda d \lambda\rangle
\end{aligned}
$$

of rank 2 and homogeneity degree -2 and 2 respectively.
Theorem
A vacuum $g \in[g]$ exists when $\left.\theta\right|_{\mathbb{P} \mathbb{T}_{\mathbb{R}}} \&\{,\}_{\mathbb{P} \mathbb{T}_{\mathbb{R}}}$ are real.

Poisson diffeos of plane \& $L w_{1+\infty}$

$W_{N}=$ higher spin symmetries in 2d CFT [Zamolodchikov 1980s].
For $N \rightarrow \infty$ classical limit $w_{\infty}=$ Poisson diffeos of plane ${ }_{\text {[Hopeе]. }}$.

- Plane has coords $\mu^{\dot{\alpha}}, \dot{\alpha}=\dot{0}, \dot{1}$ with Poisson bracket

$$
\{f, g\}:=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial f}{\partial \mu^{\dot{\alpha}}} \frac{\partial g}{\partial \mu^{\dot{\alpha}}}, \quad \varepsilon^{\dot{\alpha} \dot{\beta}}=\varepsilon^{[\dot{\alpha} \dot{\beta}]}, \quad \varepsilon^{\dot{0} \dot{1}}=1 .
$$

- Basis of $w_{1+\infty} \leftrightarrow$ polynomial hamiltonians

$$
w_{m}^{p}=\left(\mu^{\dot{0}}\right)^{p-m-1}\left(\mu^{\mathrm{i}}\right)^{p+m-1}, \quad|m| \leq p-1, \quad 2 p-2 \in \mathbb{N}
$$

- Poisson brackets \leftrightarrow commutation relations of $w_{1+\infty}$:

$$
\left\{w_{m}^{p}, w_{n}^{q}\right\}=(2(p-1) n-2(q-1) m) w_{m+n}^{p+q-2} .
$$

- Loop algebra $L w_{1+\infty}$, loop coord $\frac{\lambda_{1}}{\lambda_{0}}=\tan \frac{\theta}{2}$, generators

$$
g_{m, r}^{p}=w_{m}^{p} \mathrm{e}^{i r \theta}, \quad r \in \mathbb{Z} .
$$

- Poisson brackets now

$$
\left\{g_{m, r}^{p}, g_{n, s}^{q}\right\}=(2(p-1) n-2(q-1) m) g_{m+n, r+s}^{p+q-2} .
$$

This is the structure preserving diffeomorphism group of $\mathbb{P} \mathbb{P}_{\mathbb{R}}$.

Generating functions for Einstein embeddings

Explicitly in homogeneous coordinates:

- Let $Z^{A}=U^{A}+i V^{A}$, with $U^{A}, V^{A} \in \mathbb{R}^{4}$.
- Let $h(U)$ be an arbtrary function of homogeneity degree 2 ,

$$
U \cdot \frac{\partial h}{\partial U}=2 h .
$$

Proposition

All 'small' Einstein vacuum twistor data $\leftrightarrow h(U)$ by setting

$$
\mathbb{T}_{\mathbb{R}}=\left\{v^{A}=\left\{h, U^{A}\right\}\right\}=\left\{v_{\alpha}=0, v^{\dot{\alpha}}=\varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\partial h}{\partial u^{\dot{\beta}}}\right\}
$$

projectivising gives $\mathbb{P T}_{\mathbb{R}}$.
The corresponding self-dual $(2,2)$ vacuum metrics are Zollfrei on $S^{2} \times S^{2}$ with null \mathscr{I} modelled by $x_{3}=y_{3}$.
The Poisson bracket underpins Strominger's $L w_{1+\infty}$ structure, [Adamo, M . Sharma, 2110.006066 . Here $L w_{1+\infty}$ acts canonically on

$$
\{\text { SD gravity phase space }\}=L w_{1+\infty}^{\mathbb{C}} / L w_{1+\infty} \ni h(U)
$$

Holography: SD vacuum spaces from \mathscr{I}

Twistor space can be constructed from σ at \mathscr{I} :

- At fixed λ_{α}, real twistor coords $\mu^{\dot{\alpha}}$ parametrize null geodesics $u=Z(\tilde{\lambda})$ in \mathscr{I} where

$$
\partial_{\tilde{\lambda}}^{2} Z=\sigma(Z, \tilde{\lambda}, \lambda)
$$

Defines Zollfrei projective structure on each $\lambda=$ const..

- Flat $\sigma=0$ case has $Z=\mu^{\dot{\alpha}} \tilde{\lambda}_{\dot{\alpha}}$.
- In general \exists nonlinear correspondence [Lebrun \& M, JDififgeom. oz]:
$\{$ Zollfrei proj. str. $\leftrightarrow \sigma\} \stackrel{\text { 1:1 }}{\longleftrightarrow}\{h(U)\}$,
and gives $\mathscr{I} \leftrightarrow \mathbb{P}_{\mathbb{R}} \subset \mathbb{P T}$ at each fixed λ.
- In linear theory map is analogue of radon transform

$$
\sigma(u, \tilde{\lambda}, \lambda)=\partial_{u}^{2} \int_{-\infty}^{\infty} d t h\left(\mu^{\dot{\alpha}}+t \tilde{\lambda}^{\dot{\alpha}}, \lambda_{\alpha}\right)
$$

in α-planes at \mathscr{I} (cf inverse light-ray transform).

Examples:

- Let $T^{\alpha \dot{\alpha}}, T^{2}=2$, be symmetry.
- Use $T^{\alpha \dot{\alpha}}$ to eliminate dotted indices.
- So $Z^{A}=\left(\lambda_{\alpha}, \mu^{\alpha}\right)$, and $\{f, g\}=\varepsilon^{\alpha \beta} \frac{\partial f}{\partial \mu^{\alpha}} \frac{\partial g}{\partial \mu^{\beta}}$,
- Set $\mu^{\dot{\alpha}}=u^{\alpha}+i v^{\alpha}, h=h\left(u^{\alpha} \lambda_{\alpha}, \lambda_{\alpha}\right)$ then define

$$
\mathbb{P}_{\mathbb{R}}=\left\{\Im \lambda_{\alpha}=0, v^{\alpha}=\lambda^{\alpha} \dot{h}\right\}, \quad \dot{h}(w, \lambda):=\partial_{w} h(w, \lambda)
$$

- For hol. disks: use λ_{α} as hgs coords \& express as graphs:

$$
\mu^{\alpha}=x^{\alpha \beta} \lambda_{\beta}+(t+g(x, \lambda)) \lambda^{\alpha}, \quad x^{\alpha \beta}=x^{(\alpha \beta)}
$$

where

$$
g\left(x^{\alpha \beta}, \lambda\right)=\oint \frac{\lambda_{0}}{\lambda_{0}^{\prime}} \frac{1}{\left\langle\lambda \lambda^{\prime}\right\rangle} \dot{h}\left(\left(x^{\alpha \beta} \lambda_{\alpha}^{\prime} \lambda_{\beta}^{\prime}, \lambda_{\alpha}^{\prime}\right) D \lambda^{\prime}\right.
$$

- Gives split signature version of Gibbons-Hawking metrics

$$
d s^{2}=V d \mathbf{x} \cdot d \mathbf{x}+V^{-1}(d t+\omega)^{2}, \quad d V=^{*} d \omega, \quad V=\oint \ddot{h} D \lambda
$$

$\square_{2+1} V=0$. E.g. $V=1+2 m / r$ for SD Schwarzschild.

Amplitudes from open chiral twistor sigma models

 Represent holomorphic disks $\mathbb{D} \subset \mathbb{P T}$ with boundary $\partial \mathbb{D} \subset \mathbb{P T}_{\mathbb{R}}$ in homogeneous coordinates by$$
Z^{A}(\sigma): \mathbb{D} \rightarrow \mathbb{T},\left.\quad Z^{A}\right|_{\sigma=\bar{\sigma}} \in \mathbb{T}_{\mathbb{R}} .
$$

using disk as upper-half-plane $\mathbb{D}=\{\sigma \in \mathbb{C}, \Im \sigma \geq 0\}$.

- For k points $\sigma_{i} \in \mathbb{R}$, and $Z_{i}^{A} \in \mathbb{T}_{\mathbb{R}}, \exists$! deg $k-1$ disk thru Z_{i} :

$$
Z^{A}(\sigma)=\sum_{i=1}^{k} \frac{Z_{i}^{A}}{\sigma-\sigma_{i}}+M(\sigma), \quad M(\sigma) \text { holomorphic on } \mathbb{D} .
$$

- For $Z=\left(\lambda_{\alpha}, \mu^{\dot{\alpha}}\right) \in \mathbb{T}_{\mathbb{R}}$ implies λ_{α} real.
- Therefore $M^{A}=\left(0, m^{\dot{\alpha}}\right)$, but $m^{\dot{\alpha}} \neq 0$ unless $h=0$.
- Action for holomorphy and boundary conditions:

$$
S_{D}\left[Z(\sigma), Z_{i}\right]=\int_{\mathbb{D}}[m \bar{\partial} m] d \sigma+\oint_{\partial \mathbb{D}} h(Z) d \sigma
$$

using spinor-helicity notation $[\mu \nu]:=\mu_{\dot{\alpha}} \nu^{\dot{\alpha}},\langle 12\rangle:=\kappa_{1} \alpha \kappa_{2}^{\alpha}$.

Sigma model and gravity S-matrix on SD background

Amplitudes are functionals $\mathcal{M}\left[h, \tilde{h}_{i}\right]$ of gravitational data:

- $h \in C^{\infty}\left(\mathbb{P T}_{\mathbb{R}}, \mathcal{O}(2)\right)$ for fully nonlinear SD part,
- $\tilde{h}_{i} \in C^{\infty}\left(\mathbb{P}_{\mathbb{R}}, \mathcal{O}(-6)\right), i=1, \ldots, k$, ASD perturbations.
- For eigenstates of momentum $k_{i \alpha \dot{\alpha}}=\kappa_{i \alpha} \tilde{\kappa}_{i \dot{\alpha}}$ take:

$$
h_{i}=\int \frac{d t}{t^{3}} \delta^{2}\left(t \lambda_{\alpha}-\kappa_{i \alpha}\right) \mathrm{e}^{i t\left[\mu, \tilde{\kappa}_{i}\right]}, \quad \tilde{h}_{i}=\int \frac{d t}{t^{-5}} \delta^{2}\left(t \lambda_{\alpha}-\kappa_{i \alpha}\right) \mathrm{e}^{i t\left[\mu, \tilde{\kappa}_{j}\right]}
$$

Proposition (Adapted from [Adamo, м. \& Sharma, 2103.16984] to spitit signature.)
The amplitude for k ASD perturbations on SD background h is

$$
\mathcal{M}\left(h, \tilde{h}_{i}\right)=\int_{\left(S^{1} \times \mathbb{P}_{\mathbb{R}}\right)^{k}} S_{D}^{o s}\left[h, Z_{i}, \sigma_{i}\right] \operatorname{det}^{\prime} \tilde{\mathbb{H}} \prod_{i=1}^{k} \tilde{h}_{i}\left(Z_{i}\right) D^{3} Z_{i} d \sigma_{i}
$$

Here $S_{D}^{o s}\left[h, Z_{i}, \sigma_{i}\right]$ is the on-shell Sigma model action and

$$
\tilde{\mathbb{H}}_{i j}\left(Z_{i}\right)=\left\{\begin{array}{cl}
\frac{\left\langle\lambda_{i} \lambda_{j}\right\rangle}{\sigma_{i}-\sigma_{j}} & i \neq j \\
-\sum_{l} \frac{\left|\lambda_{i} \lambda_{l}\right\rangle}{\sigma_{i}-\sigma_{j}}, & i=j
\end{array}\right.
$$

Ideas in proof: the complete tree-level S-matrix

- Expand $h=h_{k+1}+\ldots+h_{n}$ to 1 st order in momentum e-states h_{i} to give flat background perturbative amplitude.
- On shell action expands as tree correlator

$$
S_{D}^{O S}\left[h_{k+1}+\ldots+h_{n}, Z_{i}, \sigma_{i}\right]=\left\langle V_{h_{k+1}} \ldots V_{h_{n}}\right\rangle_{\text {tree }}+O\left(h_{i}^{2}\right)
$$

- Here the 'vertex operators' are $V_{h_{i}}=\int_{\partial D} h_{i}\left(\sigma_{i}\right) d \sigma_{i}$.
- Propagators for S_{D} give Poisson bracket $\{$,

$$
\left\langle h_{i} h_{j}\right\rangle_{\text {tree }}=\frac{\left[\partial_{\mu} h_{i} \partial_{\mu} h_{j}\right]}{\sigma_{i}-\sigma_{j}}=\frac{[i j]}{\sigma_{i}-\sigma_{j}} h_{i} h_{j}, \quad i \neq j
$$

- Matrix-tree theorem then gives

$$
\begin{aligned}
&\left\langle h_{k+1} \ldots h_{n}\right\rangle_{\text {tree }}=\operatorname{det}^{\prime} \mathbb{H} \prod_{i=k+1}^{n} h_{i}, \quad \mathbb{H} i j=\frac{[i j]}{\sigma_{i}-\sigma_{j}}, \quad i \neq j \text { etc. } \\
& \leadsto \quad \mathcal{M}\left(h_{i}, \tilde{h}_{i}\right)=\int_{\left(S^{1}\right)^{n} \times\left(\mathbb{R}^{3}\right)^{k}} \operatorname{det}^{\prime} \mathbb{H} \operatorname{det}^{\prime} \tilde{\mathbb{H}} \prod_{j=k+1}^{n} h_{j} d \sigma_{j} \prod_{i=1}^{k} \tilde{h}_{i}\left(Z_{i}\right) D^{3} Z_{i} d \sigma_{i} .
\end{aligned}
$$

This is now equivalent to the Cachazo-Skinner formula,

Relation to Einstein-Hilbert action at $k=2$

[Adamo, M, Sharma, 2103.1239]

At $k=2, \operatorname{det}^{\prime} \tilde{\mathbb{H}}$ and Mobius symmetry trivialises σ integrals so

$$
\mathcal{M}\left[h, \tilde{h}_{1}, \tilde{h}_{2}\right]=\int d^{2} \mu_{1} d^{2} \mu_{2} \mathrm{e}^{i\left[\mu_{1} 1\right]+i\left[\mu_{2} 2\right]} S_{D}^{o s}\left[h, Z_{1}, Z_{2}\right]
$$

- Writing $x^{\alpha \dot{\alpha}}=\left(\mu_{1}^{\dot{\alpha}}, \mu_{2}^{\dot{\alpha}}\right)$ this a space-time integral

$$
\mathcal{M}\left[h, \tilde{h}_{1}, \tilde{h}_{2}\right]=\int d^{4} x \mathrm{e}^{i k_{1} \cdot x+i k_{2} \cdot x} S_{D}^{O S}\left[h, \mu_{1}, \mu_{2}\right]
$$

Proposition

Let $\Omega(x):=S_{D}^{o s}\left[h, \mu_{1}, \mu_{2}\right]$. Then Ω is the Plebanskis first potential (Kahler scalar) for the SD background metric

$$
d s^{2}=\frac{\partial^{2} \Omega}{\partial \mu_{1}^{\dot{\alpha}} \partial \mu_{2}^{\dot{\beta}}} d \mu_{1}^{\dot{\alpha}} d \mu_{2}^{\dot{\beta}}
$$

The second variation of the Einstein-Hilbert action

$$
\delta^{2} S_{\mathrm{EH}}\left[h, \tilde{h}_{1}, \tilde{h}_{2}\right]=\int d^{4} x \mathrm{e}^{i\left(k_{1}+k_{2}\right) \cdot x} \Omega(x)=\mathcal{M}\left[h, \tilde{h}_{1}, \tilde{h}_{2}\right]
$$

(Follows from Plebanski gravity action.)

Conclusions and open problems

- We have rigidity of conformally-flat SD split signature vacuum metrics with $\mathscr{I}=S^{1} \times S^{1} \times \mathbb{R} / \mathbb{Z}_{2}$.
- Have construction for split signature SD vacuum metrics on $S^{2} \times S^{2}$ with $\mathscr{I} \simeq S^{1} \times S^{1} \times \mathbb{R}$ depending on smooth sections h of $\mathcal{O}(2)$ over $\mathbb{R} \mathbb{P}^{3}$ defining deformed real slice.
- Similar results follow for $\Lambda \neq 0$ where $h \leftrightarrow 2+1$ signature conformal structure of $\mathscr{I}=S^{2} \times S^{1}$.
- Reconstruction via open holomorphic discs leads to chiral open sigma model that computes gravity amplitudes.
- MHV formula gives theory underlying tree formalism of Bern et. al. from 1998.
- Framework gives $L w_{1+\infty}$ action on full amplitude. Slogan: SD gravity phase space $=L w_{1+\infty}^{\mathbb{C}} / L w_{1+\infty}$
- Split signature twistors avoid 'lightray transform' or Čech-Dolbeult manifesting $L w_{1+\infty}$ directly.

Thank you!

