On the Categorification problem for Motivic Donaldson-Thomas invariants

Marco Robalo (Jussieu)

Work in progress joint with B. Hennion (Orsay) and J. Holstein (Hamburg)

Slides available at marco robalo imj-prg

Contents

(1) Introduction: DT-invariants
(2) Derived Geometry
(3) (-1)-shifted symplectic forms

4 The gluing problem
(5) Moduli of Darboux Coordinates
(6) Action of Quadratic Bundles
(7) Main Results

Table of Contents

(1) Introduction: DT-invariants
(2) Derived Geometry
(3) (-1)-shifted symplectic forms

4 The gluing problem
(5) Moduli of Darboux Coordinates

6 Action of Quadratic Bundles
(7) Main Results

Motivation from Physics

- General Relativity:

$$
\text { Gravity }=\text { Geometry of a 4-dim. spacetime } M^{4}
$$

- Other Forces?: Kaluza-Klein (1920's)

Gravity + Electromagnetic force in 4-dim $=$ Geometry of a 5-dim. spacetime $M^{4} \times S^{1}$

- Other Forces? Candelas-Horowitz-Strominger-Witten In string theory, spacetime $=M^{4} \times Y$ where Y is a
Calabi-Yau-manifold of real dim. 6 (complex dimension 3).

Principle

Physical forces in 4-dim are consequence of the geometric and topological properties of the extra dimensions in Y.

CY varieties

- Y a Calabi-Yau variety of dimension 3 over \mathbb{C}, ie, $\omega_{Y} \simeq \mathcal{O}_{Y}$.
- Example: The Fermat quintic

$$
x_{5}=\left\{x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}+x_{5}^{5}=0\right\} \subseteq \mathbb{P}_{\mathbb{C}}^{4}
$$

or more generally, any smooth quintic in $\mathbb{P}_{\mathbb{C}}^{4}, \omega_{Y} \simeq \mathcal{O}(5-4-1) \simeq \mathcal{O}_{Y}$

Worldsheets

Paths/interactions of string-particles through a spacetime $M^{4} \times Y$, define 2-dimensional real surfaces (1-dimensional algebraic curves) of genus g in Y.

Path-integrals \rightsquigarrow summing over all possible such curves.

Counting algebraic curves in a Calabi-Yau

- Counting parametrized curves $f: C \rightarrow Y$ (GW-invariants)

$$
\underbrace{\overline{\mathcal{M}}_{g, n}(Y, \beta)} \quad \text { quasi-smooth, } \mathrm{Vol}=\int_{\left[\overline{\mathcal{M}}_{g, n}(Y, \beta)\right]} \in \mathbb{Q}
$$

moduli space of stable maps

- Counting embedded curves $C \subseteq Y$:
$\operatorname{Hilb}_{\text {codim 2 }}(Y)$ not quasi-smooth, Vol X
- Counting ideal sheaves $I_{C} \in \operatorname{Coh}(Y)$ (DT-invariants)

Behrend approach to DT-invariants

Observation(Thomas): Serre duality + CY condition imposes a symmetry on the obstruction theory of $\mathcal{M} \operatorname{Coh}(Y)^{s t}$:
$\left\{1^{\text {st order }}\right.$ def. of $\left.E \in \operatorname{Coh}(Y)\right\} \simeq\{\text { Obstructions to def. of } E \in \operatorname{Coh}(Y)\}^{\vee}$

Theorem (K. Behrend)

There is a uniquely defined function $\nu_{\text {Behrend }}: \mathcal{N C C o h}(Y)^{\text {st }} \rightarrow \mathbb{Z}$ such that

$$
\operatorname{Vol}\left(\mathcal{M} \operatorname{Coh}(Y)^{s t}\right):=\int_{\left[\mathcal{M} \operatorname{Coh}(Y)^{s t}\right]^{\text {vir }}}=\sum_{n} n \cdot \chi\left(\nu_{\text {Behrend }}=n\right)
$$

Behind the scenes: This extra symmetry is a shadow of a (-1)-shifted symplectic form on $\mathcal{M} \operatorname{Coh}(Y)^{\text {st }}$ [Pantev-Toën-Vaquié-Vezzosi].

In this talk: DT-theory $\leftrightarrow(-1)$-shifted symplectic derived geometry

Table of Contents

(1) Introduction: DT-invariants
(2) Derived Geometry
(3) (-1)-shifted symplectic forms
4. The gluing problem
(5) Moduli of Darboux Coordinates

6 Action of Quadratic Bundles
(7) Main Results

Why Derived Geometry?

Example with multiplicities:

$$
\left(y=x^{2}\right) \cap(y=0)
$$

Multiplicity 2

$\operatorname{dim}_{k}\left[k[X, Y] /\left(Y-X^{2}\right) \otimes_{k[X, Y]} k[X, Y] /(Y-0)\right] \simeq \operatorname{dim}_{k} k[X] /\left(X^{2}\right)=2$

This computation fails in higher dimensions:

Why Derived Geometry?

Example: Intersect the axis in 4-dimensions (x, y, z, w), with the diagonal

$$
\text { Axis }:=\left\{\begin{array}{l}
x z=0 \\
x w=0 \\
y z=0 \\
y w=0
\end{array} \quad \text { Diag }:=\left\{\begin{array}{l}
x-z=0 \\
y-w=0
\end{array}\right.\right.
$$

The intersection • should have multp. 2 but the naive computation gives:
$k[x, y, z, w] /(x z, x w, y z, y w) \otimes_{k[x, y, z, w]} k[x, y, z, w] /(x-z, y-w) \simeq k[x, y] /\left(x^{2}, x y, y^{2}\right), \operatorname{dim}_{k}=3 \neq 2$

Why Derived Geometry?

Problem: Our strategy for solving equations (tensor product) does not discount redundancies!

Behind the scenes: $f:=x w-y z=w(x-z)-z(y-w)$ vanishes for two reasons:
but f does not belong to the product ideal $I_{\text {Diag }} . I_{A x i s}$, ie, the two reasons why f vanish are different.

$$
<f>=\frac{I_{\text {Diag }} \cap I_{\text {Axis }}}{I_{\text {Diag }} \cdot I_{\text {Axis }}} \quad \simeq \operatorname{Tor}_{R=k[x, y, z, w]}^{1}\left(R / I_{\text {Diag }}, R / I_{A x i s}\right)
$$

Corrected formula: $\underbrace{\text { Multiplicity }}_{2}=\underbrace{\text { Algebraic multiplicity }}_{3}-\underbrace{\text { redundancies }}_{\text {dim Tor }^{1}=1}$

Derived geometry

Lesson: functions in higher cohomological degree contain geometric information

Derived geometry: Systematically resolve/replace in every computation, the naive tensor ring \otimes by the resolved/derived ring

$$
\underbrace{R / I_{\text {Diag }} \otimes_{R}^{\mathbb{L}} R / I_{A x i s}}_{c d g a \leq 0}
$$

Derived geometry

Example: Landau-Ginzburg model: U a smooth k-scheme (space of fields) with a function $f: U \rightarrow \mathbb{A}_{k}^{1}$ (the action).

The derived critical locus $X=d \operatorname{Crit}(f)$ is the derived intersection

$$
\begin{aligned}
& \mathcal{O}_{X}:=\mathcal{O}_{U} \otimes_{\mathcal{O}_{T^{*} U}}^{\mathbb{I}} \mathcal{O}_{U}
\end{aligned}
$$

Tangent information distributed through multiple cohomological degrees:

$$
\begin{array}{cccc}
\text { coh.deg } & -1 & 0 & 1 \\
& {\left[0 \longrightarrow \mathbb{T}_{U} \xrightarrow{\text { Hess }(\mathrm{f})} \mathbb{L}_{U}\right]}
\end{array}=\begin{gathered}
\\
\end{gathered}
$$

Derived Geometry

Example: In this talk we care about the natural derived structure on the moduli of coherent sheaves on a Calabi-Yau 3-fold,

$$
X=\mathcal{N} \operatorname{Coh}(Y)^{s t}
$$

Table of Contents

(1) Introduction: DT-invariants
(2) Derived Geometry
(3) (-1)-shifted symplectic forms
4. The gluing problem
(5) Moduli of Darboux Coordinates

6 Action of Quadratic Bundles
(7) Main Results

Shifted Symplectic Geometry

- Deformation theory of a stack/derived stack X is controlled by its cotangent complex $\mathbb{L}_{X} \in \mathrm{DQcoh}_{\infty}(X)$. When X is locally of finite presentation, \mathbb{L}_{X} is a perfect complex, with dual $\mathbb{T}_{X}=\mathbb{L}_{X}^{V}$ the tangent complex.
- X Smooth, $\mathbb{L}_{X}=\Omega_{X}^{1}=$ Classical 1-forms.
- n-shifted 2-forms $=\left\{\mathcal{O}_{X} \rightarrow \mathbb{L}_{X} \wedge \mathbb{L}_{X}[n]\right\}=\left\{\mathbb{T}_{X} \wedge \mathbb{T}_{X} \rightarrow \mathcal{O}_{X}[n]\right\}$
- de Rham diff. $D R(X):=\left[\mathcal{O}_{X} \xrightarrow{d_{R}} \mathbb{L}_{X} \xrightarrow{d_{R}} \mathbb{L}_{X} \wedge \mathbb{L}_{X} \longrightarrow \ldots\right]$
[Connes, Toën-Vezzosi]: d_{R} should not be understood as an internal differential but rather as the action of an extra operator ϵ of degree 1
- n-shifted closed 2-forms: Need homotopy $d_{R}(\omega) \sim 0$

$$
\{\text { maps } \underbrace{k(2)[-2 n-1]}_{\epsilon=0 \text { action }} \rightarrow \underbrace{D R(X)}_{\epsilon=d_{R}}\}
$$

Shifted Symplectic Geometry

Definition (Pantev-Toën-Vaquié-Vezzosi)

An n-shifted symplectic form on X is a n-shifted closed 2 -form such that its underlying 2-form $\mathbb{T}_{X} \wedge \mathbb{T}_{X} \rightarrow \mathcal{O}_{X}[n]$ is non-degenerate, ie, induces an equivalence

$$
\mathbb{T}_{X} \simeq \mathbb{L}_{X}[n]
$$

- $X=T^{*} \mathbb{A}^{1}=\mathbb{A}^{2}$ has 0-shifted symplectic form given by $\omega=d x \wedge d y$.
- $X=$ Perf the derived stack classifying perfect complexes has a 2-shifted symplectic form.

$$
\mathbb{T}_{E, \text { Perf }}=\operatorname{REnd}(E)[1] \simeq E \otimes E^{\vee}[1]
$$

$\mathbb{T}_{E, \text { Perf }} \wedge \mathbb{T}_{E, \text { Perf }} \simeq E \otimes E^{\vee}[1] \otimes E \otimes E^{\vee}[1] \rightarrow \mathcal{O}[2]$ evaluation map

- (PTVV) Y a CY of dimension 3 over k. Then $X:=\operatorname{Map}(\underbrace{Y}_{3}, \underbrace{\text { Perf }}_{2})$ is (2-3=-1)-symplectic. In particular, $\mathcal{M C O h}^{\text {st }}(Y) \subseteq \operatorname{Map}(Y$, Perf $)$ is -1-symplectic $\quad(\Rightarrow$ Behrend Symmetry $)$

Shifted Symplectic Geometry

Theorem (Pantev-Toen-Vaquié-Vezzosi)
If M is a classical symplectic manifold (0 -shifted) and L_{1} and L_{2} are Lagrangians, then the derived intersection

$$
L_{1} \times{ }_{M}^{\mathbb{L}} L_{2}
$$

is (-1)-shifted symplectic.

Shifted Symplectic Geometry

Example: Landau-Ginzburg model. The derived critical locus $X=$ $d \operatorname{Crit}(f)$ is defined as

symmetry of the Hessian $\Rightarrow \mathbb{T}_{X} \simeq \mathbb{L}_{X}[-1]$ is a (-1)-shifted symplectic structure on X.

Example: $(U, f)=\left(\mathbb{A}^{1}, x^{3}\right) \quad d$ Crit $=\operatorname{Spec} k[x] /\left(f^{\prime}=3 x^{2}\right)$

Joyce's approach to DT-invariants

All examples are locally of this form:

Theorem (Brav-Bussi-Joyce (Darboux Lemma))

Let X be a (-1)-symplectic derived scheme. Then Zariski locally X is symplectomorphic to a derived critical locus $d \operatorname{Crit}(U, f)$ with U smooth.

Consequence: Locally on X it makes sense to analyse the singularities of the function f on U via the perverse sheaf of vanishing cycles

$$
P_{U, f} \in \operatorname{Perv}_{d \operatorname{Crit}(f)}(U)=\operatorname{Perv}(d \operatorname{Crit}(f))=\operatorname{Perv}(\operatorname{Crit}(f))
$$

Problem: Ambiguity in the choice of local presentations:

$$
\begin{gathered}
\operatorname{dCrit}\left(\mathbb{A}^{1}, x^{3}\right)=\operatorname{Spec} k[x] /\left(3 x^{2}\right) \simeq \operatorname{Spec} k[x, y] /\left(3 x^{2}, 2 y\right)=d \operatorname{Crit}\left(\mathbb{A}^{2}, x^{3}+y^{2}\right) \\
P_{\left(\mathbb{A}^{1}, x^{3}\right)} \text { and } P_{\left(\mathbb{A}^{2}, x^{3}+y^{2}\right)} \text { non-canonically isomorphic. }
\end{gathered}
$$

Joyce's approach to DT-invariants

Theorem (Brav-Bussi-Dupont-Joyce-Szendroi (BBDJS))

Let X be a (-1)-symplectic derived scheme. Assume that there exists a line bundle L together with an equivalence $L \otimes L \simeq \operatorname{det}\left(\mathbb{T}_{X}\right)$ (aka orientation data). Then:

- The locally defined perverse sheaves of vanishing cycles $P_{U, f}$ glue to a globally defined perverse sheaf $P \in \operatorname{Perv}(X)$.
- $\chi(P)=\nu_{\text {Behrend }}$ computing locally the Euler characteristic of vanishing cycles. Gives back DT-counting.

Proof: Glue by hand using local presentations of the underlying classical scheme as classical critical loci.

- method does not see the full derived structure.
- strategy works for perverse sheaves because:
- they form a 1-category (no higher homotopies needed to glue).
- they have the \mathbb{A}^{1}-homotopy invariance property.

Table of Contents

(1) Introduction: DT-invariants
(2) Derived Geometry
(3) (-1)-shifted symplectic forms

4 The gluing problem
(5) Moduli of Darboux Coordinates

6 Action of Quadratic Bundles
(7) Main Results

Motivic DT and categorification

Different invariants capture vanishing cycles of f on U :

MF: $U_{0}:=f^{-1}(0), M \in \operatorname{Coh}\left(U_{0}\right)$, infinite resolution by projective modules becomes eventually 2-periodic [Serre-Auslander-BuchsbaumEisenbud]

$$
\underbrace{\ldots \rightarrow F \rightarrow Q \rightarrow F \rightarrow Q}_{\in M F(U, f)} \rightarrow \underbrace{P_{n} \rightarrow \ldots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0}}_{\in \operatorname{Perf}\left(U_{0}\right)} \rightarrow M
$$

Motivic DT and categorification

Gluing Problem: Given a (-1)-symplectic derived scheme X, can we glue the Darboux locally defined dg-categories $M F(U, f)$ as a sheaf of dg-categories on X ? Is Joyce's orientation data enough?

Rmk: Version of the gluing problem for the Fukaya category (Seidel, Kontsevich, Nadler, Shende, Ganatra, Pardon,...).

Complications: The gluing no longer takes place in a 1-category but in an ∞-category. Complicated coherences are required. Need a gluing mechanism.

Table of Contents

(1) Introduction: DT-invariants
(2) Derived Geometry
(3) (-1)-shifted symplectic forms
4. The gluing problem
(5) Moduli of Darboux Coordinates

6 Action of Quadratic Bundles
(7) Main Results

Moduli of Darboux Coordinates

Classical Picture: X a classical symplectic manifold, then locally X is of symplectomorphic to some $T^{*} M$ (Darboux's lemma). We can analyse the moduli of such Darboux parametrizations:
$\operatorname{Darb}_{X}: S \subseteq X$ open $\mapsto\left\{M\right.$ smooth manifold, $S \simeq T^{*} M$ symplectic $\}$

The data of a symplectomorphism $S \simeq T^{*} M$ in particular implies:

- The fibers of the projection $S \simeq T^{*} M \rightarrow M$ define a smooth Lagrangian foliation \mathcal{F} on $S\left(i e, \omega_{\text {fibers }}=0\right)$.
- The symplectic form on S is exact ie, there exists a 1 -form α (Liouville form on $T^{*} M$) with $d_{R}(\alpha)=\omega$.

We call such (\mathcal{F}, α) a Darboux datum on S.

Moduli of Darboux Coordinates

(-1)-shifted geometry: These notions make sense thanks to the work of Toën-Vezzosi on derived foliations.

Theorem (Pantev-Toën)

S a (-1)-symplectic derived scheme. Then the following data are equivalent:

- Darboux data on S, ie a globally defined smooth derived Lagrangian foliation \mathcal{F} on $S+$ an exact structure α.
- the data of a smooth formal scheme \mathcal{U}, a function f on \mathcal{U} and a symplectomorphism $S \simeq d \operatorname{Crit}(U, f)$

Classical Picture: Darboux data on $S \Leftrightarrow\left[S \subseteq T^{*} M \rightarrow M\right]$.
(-1) - picture : \quad Darboux data on $S \Leftrightarrow[S \simeq d \operatorname{Crit}(\mathcal{U}, f) \hookrightarrow \mathcal{U}]$.
Idea: $\mathcal{U}:=S / \mathcal{F}$ the formal leaf space. $f=$ exact struct. - isotropic struct.

The Darboux Stack

Example: $\left(\widehat{\mathbb{A}^{1}}, x^{3}\right)$ gives Darboux data

$$
d \operatorname{Crit}\left(x^{3}\right)=\operatorname{Spec}\left(k[x] /\left(3 x^{2}\right)\right) \hookrightarrow \widehat{\mathbb{A}^{1}}
$$

Construction (Gluing Moduli of Darboux coordinates)

The assignment:
$S \rightarrow X$ étale $\mapsto\{(\alpha, \mathcal{F}):$ Exact structure $\alpha+$ smooth Lag. fol. \mathcal{F} on $S\}$
defines a hypercomplete stack on the small étale site of a n-shifted symplectic derived scheme X. We call it the Darboux stack Darbx.

Remark: Darb $_{X}:=$ Exact $_{X} \times$ LagFol $_{X}^{s m}$
Comment: In the case where X is (-2)-symplectic, this recovers the local data used by Borisov-Joyce and Oh-Thomas to glue DT-invariants for Calabi-Yau 4-folds.

The Darboux Stack

Construction

The Behrend's function, MF and Joyce's construction have Darb X_{X} as a natural domain, and define natural transformations of sheaves on the small étale site of X :
$\nu: \operatorname{Darb}_{X}(S) \ni(\mathcal{U}, f) \rightarrow \operatorname{dim}($ vanishing cycles of $f) \in \mathbb{Z}_{X}(S):=\mathbb{Z}$

$$
\boldsymbol{P}: \operatorname{Darb}_{X}(S) \ni(\mathcal{U}, f) \rightarrow P_{u, f} \in \operatorname{Perv}_{X}(S):=\operatorname{Perv}(S)^{\simeq}
$$

MF: $\operatorname{Darb}_{x}(S) \ni(\mathcal{U}, f) \rightarrow M F(\mathcal{U}, f) \in \operatorname{dgcat}_{X_{d R}}^{2 p e r}(S):=\underbrace{\left(d g c a t t_{S_{d R}}^{2 p e r}\right) \simeq}_{\text {categorical crystals }}$

Table of Contents

(1) Introduction: DT-invariants
(2) Derived Geometry
(3) (-1)-shifted symplectic forms

4 The gluing problem
(5) Moduli of Darboux Coordinates
(6) Action of Quadratic Bundles
(7) Main Results

Action of Quadratic Bundles

Ambiguity Problem: in the choice of local presentations:

$$
d \operatorname{Crit}\left(\mathbb{A}^{1}, x^{3}\right)=\operatorname{Spec} k[x] /\left(3 x^{2}\right) \simeq \operatorname{Spec} k[x, y] /\left(3 x^{2}, 2 y\right)=d \operatorname{Crit}\left(\mathbb{A}^{2}, x^{3}+y^{2}\right)
$$

Definition

Quad $_{d R}(S):=\left\{(Q, q):\right.$ (loc. trivial) quadratic vector bundles on $\left.S_{d R}\right\}$

Construction (Moduli of Quadratic bundles)

X a (-1)-symplectic derived scheme. Then:

- The assignment S / X étale $\mapsto \operatorname{Quad}_{d R}(S)$ defines a sheaf of monoids Quad $_{X_{d R}}$ on $X_{\text {et }}$ for the sum of quadratic bundles.
- Quad $_{X_{d R}}(S)$ acts on $\operatorname{Darb}_{X}(S)$,

$$
d \operatorname{Crit}(\mathcal{U}, f) \simeq S \simeq d \operatorname{Crit}\left(\mathcal{U} \underset{S_{d R}}{\times} Q, f+q\right)
$$

Table of Contents

(1) Introduction: DT-invariants
(2) Derived Geometry
(3) (-1)-shifted symplectic forms
4. The gluing problem
(5) Moduli of Darboux Coordinates

6 Action of Quadratic Bundles
(7) Main Results

Recovering the perverse gluing of BBDJS:

Fact: $(M, q) \in \operatorname{Quad}_{X_{d R}}(S)$ then $\operatorname{det}(M)$ is a 2-torsion line bundle over S, ie, $\operatorname{det}(M)^{2} \simeq \mathcal{O}_{s}$. This follows from the non-degeneracy of the Hessian.

Construction

X a (-1)-symplectic derived scheme. Then:

- det: Quad $_{X_{d R}} \rightarrow B \mu_{2, X}=\operatorname{Ker}\left(B \mathbb{G}_{m, X} \underset{2}{ } B \mathbb{G}_{m, X}\right)$ is a map of monoids.
- $\boldsymbol{P}:$ Darb $_{X} \rightarrow$ PervX comes with homotopy coherent data rendering the actions compatible on both sides
(on the right the action of $B \mu_{2}$ is defined by $B B D J S$).

Recovering the perverse gluing of BBDJS:

Corollary (Hennion-Holstein-R. as a reformulation of BBDJS)

Let X be a (-1)-shifted symplectic derived scheme with a fixed exact structure α (always exists by a theorem of Deligne).
Then there exists a canonical factorization

$$
\begin{gathered}
\operatorname{Darb}_{X} / \text { Quad }_{X_{d R}} \xrightarrow{\bar{P}} \operatorname{Perv}_{X} / B \mu_{2, X} \\
{ }_{X}^{\vee}
\end{gathered}
$$

Here X is the final object of the étale topos of X. In other words, the gluing of the perverse sheaves $P_{U, f}$ is always well-defined in the quotient:

$$
\bar{P}: X \rightarrow P e r v x / B \mu_{2, X}
$$

Recovering the perverse gluing of BBDJS:

Remark

The composition

$$
X \rightarrow \operatorname{Perv}_{X} / B \mu_{2, X} \rightarrow * / B \mu_{2, x}=B B \mu_{2, X}
$$

is the class in $H^{2}(X, \mathbb{Z} / 2 \mathbb{Z})$ of the bundle classifying square roots of $\operatorname{det}\left(\mathbb{T}_{X}\right)$.

An orientation data of BBDJS corresponds precisely to the choice of a null-homotopy of this composition

Such a null-homotopy provides a lifting through the fiber product and defines a well-defined glued perverse sheaf $P_{\text {Joyce }}: X \rightarrow \operatorname{Perv}$.

Gluing MF:

Fact: $(M, q) \in$ Quad $_{X_{d R}}(S)$ then $M F(M, q)$ has a structure of 2-torsion 2-periodic derived Azumaya algebra over $S_{d R}$. This is a consequence of Preygel-Thom-Sebastiani followed by Knörrer periodicity

$$
M F(M, q) \otimes M F(M, q) \simeq M F(M \times M, q \boxplus-q) \simeq M F\left(S_{d R}, 0\right)
$$

Construction

X a (-1)-symplectic derived scheme. Then:

- MF : Quad $X_{d R} \rightarrow A z_{X_{d R}}^{2 p e r, 2-t o r}$ is a map of monoids.
- MF : Darb ${ }_{X} \rightarrow$ dgcat $_{X_{d R}}^{2 p e r}$ comes with homotopy coherent data rendering the actions compatible on both sides

$$
\text { Quad }_{X_{d R}} \circlearrowright \text { Darb }_{X} \rightarrow \text { dgcat }_{X_{d R}}^{2 \text { per }} \circlearrowleft A z_{X_{d R}}^{2 \text { per,2-tor }}
$$

On the right the action of $A z_{X_{d R}}^{2 p e r, 2-t o r}$ is given by tensor products of dg-categories.

Gluing MF:

Work in progress (Hennion-Holstein-R.)

X a (-1)-shifted symplectic derived scheme with an exact structure.
There exists a factorization of morphisms of étale sheaves:

$$
\begin{aligned}
& \text { Darb }_{X} / \text { Quad }_{X_{d R}} \xrightarrow{\overline{M F}} \text { dgcat }_{X_{d R}}^{2 p e r} / A z_{X_{d R}}^{2 p e r, 2-t o r} \\
& \quad \text { final } \\
& \quad{ }_{X}
\end{aligned}
$$

Definition

A categorical orientation data is a trivialization of the composition

$$
X \rightarrow \operatorname{Darb}_{X} / \text { Quad }_{X_{d R}} \rightarrow \text { dgcat }_{X_{d R}}^{2 p e r} / A z_{X_{d R}}^{2 p e r, 2-t o r} \rightarrow B A z_{X_{d R}}^{2 p e r, 2-t o r}
$$

Gluing MF:

Corollary

Let X be a (-1)-shifted symplectic derived scheme. Assume X is equipped categorical orientation data. Then the locally defined categories MF (U, f) glue as a sheaf of 2-periodic dg-categories on X as a result of

New Orientation data

The orientation data of BBDJS is (a priori) not enough to glue MF. A categorical orientation provides new obstruction classes coming from the fibration sequence

$$
A z_{X_{d R}}^{2 p e r, 2-\text { tor }} \rightarrow A z_{X_{d R}}^{2 p e r} \underset{2}{2 p} A z_{X_{d R}}^{2 p e r}
$$

- $\left.\pi_{0}\left(A z_{X_{d R}}^{2 \text { per, } 2 \text {-tor }}\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \rightarrow\left\{M F(*, 0), M F\left(\mathbb{A}^{1}, x^{2}\right)\right\}\right\}$.
- $\pi_{1}\left(A z_{X_{d R}}^{2 \text { per, }, 2-\text { tor }}\right) \simeq \underbrace{\mathbb{Z} / 2 \mathbb{Z}}_{\text {BBDJS }} \simeq\{I d,[1]\}$
- $\pi_{2}\left(A z_{X_{d R}}^{2 \text { per }, 2-\text { tor }}\right)=\mathbb{Z} / 2 \mathbb{Z} \simeq \operatorname{Ker}\left(z^{2}: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}\right)$
- $\pi_{n}\left(A z_{X_{d R}}^{2 p e r, 2-t o r}\right)=0 \quad n \geq 3$,

Thank you for your time.

