On the Categorification problem for Motivic Donaldson-Thomas invariants

Marco Robalo (Jussieu)

Work in progress joint with B. Hennion (Orsay) and J. Holstein (Hamburg)

Slides available at marco robalo imj-prg

Contents

- 1 Introduction: DT-invariants
- 2 Derived Geometry
- (-1)-shifted symplectic forms
- 4 The gluing problem
- Moduli of Darboux Coordinates
- 6 Action of Quadratic Bundles
- Main Results

Table of Contents

- 1 Introduction: DT-invariants
- 2 Derived Geometry
- 3 (-1)-shifted symplectic forms
- The gluing problem
- 5 Moduli of Darboux Coordinates
- 6 Action of Quadratic Bundles
- Main Results

Motivation from Physics

• General Relativity:

Gravity = Geometry of a 4-dim. spacetime M^4

• Other Forces?: Kaluza-Klein (1920's)

Gravity + Electromagnetic force in 4-dim = Geometry of a 5-dim. spacetime $M^4 \times S^1$

Other Forces? Candelas-Horowitz-Strominger-Witten

In string theory, spacetime = $M^4 \times Y$ where Y is a Calabi-Yau-manifold of real dim. 6 (complex dimension 3).

Principle

Physical forces in 4-dim are consequence of the geometric and topological properties of the extra dimensions in Y.

CY varieties

• Y a Calabi-Yau variety of dimension 3 over \mathbb{C} , ie, $\omega_Y \simeq \mathcal{O}_Y$.

Example: The Fermat quintic

$$X_5 = \{x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 = 0\} \subseteq \mathbb{P}^4_\mathbb{C}$$

or more generally, any smooth quintic in $\mathbb{P}^4_\mathbb{C}$, $\omega_Y \simeq \mathfrak{O}(5-4-1) \simeq \mathfrak{O}_Y$

Worldsheets

Paths/interactions of string-particles through a spacetime $M^4 \times Y$, define 2-dimensional real surfaces (1-dimensional algebraic curves) of genus g in Y.

Path-integrals → summing over all possible such curves.

Counting algebraic curves in a Calabi-Yau

• Counting **parametrized** curves $f: C \rightarrow Y$ (GW-invariants)

$$\overline{\overline{\mathbb{M}}_{g,n}(Y,eta)}$$
 quasi-smooth, $\mathit{Vol} = \int_{[\overline{\mathbb{M}}_{g,n}(Y,eta)]} \in \mathbb{Q}$ \checkmark moduli space of stable maps

• Counting **embedded** curves $C \subseteq Y$:

$$Hilb_{codim 2}(Y)$$
 not quasi-smooth, Vol X

• Counting **ideal sheaves** $I_C \in Coh(Y)$ (DT-invariants)

$$\mathcal{M}\mathit{Coh}(Y)^\mathit{st}$$
 quasi-smooth , $\mathit{Vol} = \int_{\mathit{virt.\ class}} \in \mathbb{Z} \checkmark$

Behrend approach to DT-invariants

Observation(Thomas): Serre duality + CY condition imposes a symmetry on the obstruction theory of $\mathcal{M}Coh(Y)^{st}$:

 $\{1^{\textit{st order}} \mathsf{def.} \ \mathsf{of} \ E \in \textit{Coh}(Y)\} \simeq \{\mathsf{Obstructions} \ \mathsf{to} \ \mathsf{def.} \ \mathsf{of} \ E \in \textit{Coh}(Y)\}^{\vee}$

Theorem (K. Behrend)

There is a uniquely defined function $\nu_{\mathsf{Behrend}}: \mathfrak{M} \mathsf{Coh}(\mathsf{Y})^{\mathsf{st}} \to \mathbb{Z}$ such that

$$Vol(\mathcal{M}Coh(Y)^{st}) := \int_{[\mathcal{M}Coh(Y)^{st}]^{vir}} = \sum_{n} n.\chi(\nu_{Behrend} = n)$$

Behind the scenes: This extra symmetry is a shadow of a (-1)-shifted symplectic form on $\mathcal{M}Coh(Y)^{st}$ [Pantev-Toën-Vaquié-Vezzosi].

In this talk: DT-theory \leftrightarrow (-1)-shifted symplectic derived geometry

Table of Contents

- Introduction: DT-invariants
- 2 Derived Geometry
- 3 (-1)-shifted symplectic forms
- 4 The gluing problem
- 5 Moduli of Darboux Coordinates
- 6 Action of Quadratic Bundles
- Main Results

Why Derived Geometry?

Example with multiplicities:

$$(y=x^2)\cap (y=0)$$

Multiplicity 2

$$dim_k[k[X,Y]/(Y-X^2) \otimes_{k[X,Y]} k[X,Y]/(Y-0)] \simeq dim_k k[X]/(X^2) = 2$$

This computation fails in higher dimensions:

Why Derived Geometry?

Example: Intersect the axis in 4-dimensions (x, y, z, w), with the diagonal

The intersection • should have multp. 2 but the naive computation gives:

 $k[x, y, z, w]/(xz, xw, yz, yw) \otimes_{k[x, y, z, w]} k[x, y, z, w]/(x - z, y - w) \simeq k[x, y]/(x^2, xy, y^2), dim_k = 3 \neq 2$

Why Derived Geometry?

Problem: Our strategy for solving equations (tensor product) does not discount redundancies!

Behind the scenes: f := xw - yz = w(x - z) - z(y - w) vanishes for <u>two</u> reasons:

$$f \in \underbrace{(x-z,y-w)}_{I_{Diag}} \cap \underbrace{(xz,xz,yz,yw)}_{I_{Axis}} = (wy[w-y], \ yz[y-w], \ f, \ [x-z]yz, \ xz[x-z])$$

but f does not belong to the product ideal $I_{Diag}.I_{Axis}$, ie, the two reasons why f vanish are <u>different</u>.

$$< f > = \frac{I_{Diag} \cap I_{Axis}}{I_{Diag} I_{Axis}} \simeq \text{Tor}_{R=k[x,y,z,w]}^{1} (R/I_{Diag}, R/I_{Axis})$$

Corrected formula:
$$\underbrace{\text{Multiplicity}}_{2} = \underbrace{\text{Algebraic multiplicity}}_{3} - \underbrace{\text{redundancies}}_{\text{dim}\text{Tor}^{1}=1}$$

Derived geometry

Lesson: functions in higher cohomological degree contain geometric information

Derived geometry: Systematically resolve/replace in every computation, the naive tensor ring \otimes by the resolved/derived ring

$$\underbrace{R/I_{Diag} \otimes_{R}^{\mathbb{L}} R/I_{Axis}}_{cdga\leq 0}$$

Derived geometry

Example: Landau-Ginzburg model: U a smooth k-scheme (space of fields) with a function $f: U \to \mathbb{A}^1_k$ (the action).

The derived critical locus X = dCrit(f) is the derived intersection

$$X := dCrit(f) = \{(u \in U, \lambda) : df_{|_{u}} \sim_{\lambda} 0\} \xrightarrow{i} U$$

$$\downarrow^{i} \qquad \qquad \downarrow^{df}$$

$$U \xrightarrow{0} T^{*}U$$

$$\mathfrak{O}_{X} := \mathfrak{O}_{U} \otimes_{\mathfrak{O}_{T^{*}U}}^{\mathbb{L}} \mathfrak{O}_{U}$$

Tangent information distributed through multiple cohomological degrees:

$$\begin{array}{cccc} coh.deg & -1 & 0 & 1 \\ & & & & & & & & & \\ [0 & \longrightarrow & \mathbb{T}_U & \stackrel{\mathsf{Hess}(f)}{\longrightarrow} \mathbb{L}_U] & & = & & \mathbb{T}_X \end{array}$$

Derived Geometry

Example: In this talk we care about the natural derived structure on the moduli of coherent sheaves on a Calabi-Yau 3-fold,

$$X = \mathcal{M}Coh(Y)^{st}$$

Table of Contents

- Introduction: DT-invariants
- 2 Derived Geometry
- 3 (-1)-shifted symplectic forms
- 4 The gluing problem
- 5 Moduli of Darboux Coordinates
- 6 Action of Quadratic Bundles
- Main Results

- Deformation theory of a stack/derived stack X is controlled by its cotangent complex $\mathbb{L}_X \in \mathsf{DQcoh}_\infty(X)$. When X is locally of finite presentation, \mathbb{L}_X is a perfect complex, with dual $\mathbb{T}_X = \mathbb{L}_X^\vee$ the tangent complex.
- X Smooth, $\mathbb{L}_X = \Omega^1_X = \text{Classical 1-forms}$.
- *n*-shifted 2-forms = $\{\mathcal{O}_X \to \mathbb{L}_X \land \mathbb{L}_X[n]\} = \{\mathbb{T}_X \land \mathbb{T}_X \to \mathcal{O}_X[n]\}$
- de Rham diff. $DR(X) := [\mathcal{O}_X \xrightarrow{d_R} \mathbb{L}_X \xrightarrow{d_R} \mathbb{L}_X \wedge \mathbb{L}_X \longrightarrow ...]$ [Connes, Toën-Vezzosi]: d_R should not be understood as an internal differential but rather as the action of an extra operator ϵ of degree 1
- *n*-shifted closed 2-forms: Need homotopy $d_R(\omega) \sim 0$

{maps
$$\underbrace{k(2)[-2n-1]}_{\epsilon=0 \ action} \rightarrow \underbrace{DR(X)}_{\epsilon=d_R}$$
}

Definition (Pantev-Toën-Vaquié-Vezzosi)

An n-shifted symplectic form on X is a n-shifted closed 2-form such that its underlying 2-form $\mathbb{T}_X \wedge \mathbb{T}_X \to \mathfrak{O}_X[n]$ is non-degenerate , ie, induces an equivalence

$$\mathbb{T}_X \simeq \mathbb{L}_X[n]$$

- ullet $X=T^*\mathbb{A}^1=\mathbb{A}^2$ has 0-shifted symplectic form given by $\omega=dx\wedge dy$.
- *X* = *Perf* the derived stack classifying perfect complexes has a 2-shifted symplectic form.

$$\mathbb{T}_{E,Perf} = REnd(E)[1] \simeq E \otimes E^{\vee}[1]$$

$$\mathbb{T}_{E,Perf} \wedge \mathbb{T}_{E,Perf} \simeq E \otimes E^{\vee}[1] \otimes E \otimes E^{\vee}[1] \to \mathfrak{O}[2] \quad \text{evaluation map}$$

- (PTVV) Y a CY of dimension 3 over k. Then $X := \operatorname{Map}(\underbrace{Y}_{3}, \underbrace{Perf}_{2})$ is (2-3=-1)-symplectic. In particular,
 - $\mathcal{M}\mathit{Coh}^{\mathit{st}}(Y) \subseteq \mathrm{Map}(Y,\mathit{Perf})$ is -1-symplectic $(\Rightarrow \mathsf{Behrend}\ \mathsf{Symmetry})$

Theorem (Pantev-Toen-Vaquié-Vezzosi)

If M is a classical symplectic manifold (0-shifted) and L_1 and L_2 are Lagrangians, then the derived intersection

$$L_1 \times_M^{\mathbb{L}} L_2$$

is (-1)-shifted symplectic.

Example: Landau-Ginzburg model. The derived critical locus X = dCrit(f) is defined as

$$X := dCrit(f) = \xrightarrow{i} U$$

$$\downarrow^{i} \qquad \downarrow^{df}$$

$$U \xrightarrow{0} T^{*}U$$

$$coh.deg \qquad -1 \qquad 0 \qquad 1$$

$$\mathbb{T}_{U} \xrightarrow{\mathsf{Hess}(f)} \mathbb{L}_{U} \qquad = \qquad \mathbb{T}_{X}$$

$$\mathbb{T}_{U} \xrightarrow{\mathsf{H}(f)^{\vee}} \mathbb{L}_{U} \qquad = \qquad \mathbb{L}_{X}$$

symmetry of the Hessian $\Rightarrow \mathbb{T}_X \simeq \mathbb{L}_X[-1]$ is a (-1)-shifted symplectic structure on X.

Example:
$$(U, f) = (\mathbb{A}^1, x^3)$$
 $dCrit = Spec \ k[x]/(f' = 3x^2)$

Joyce's approach to DT-invariants

All examples are locally of this form:

Theorem (Brav-Bussi-Joyce (Darboux Lemma))

Let X be a (-1)-symplectic derived scheme. Then Zariski locally X is symplectomorphic to a derived critical locus dCrit(U,f) with U smooth.

Consequence: Locally on X it makes sense to analyse the singularities of the function f on U via the perverse sheaf of vanishing cycles

$$P_{U,f} \in \mathsf{Perv}_{dCrit(f)}(U) = \mathsf{Perv}(dCrit(f)) = \mathsf{Perv}(Crit(f))$$

Problem: Ambiguity in the choice of local presentations:

$$dCrit(\mathbb{A}^1, x^3) = \operatorname{Spec} k[x]/(3x^2) \simeq \operatorname{Spec} k[x, y]/(3x^2, 2y) = dCrit(\mathbb{A}^2, x^3 + y^2)$$

$$P_{(\mathbb{A}^1, x^3)} \text{ and } P_{(\mathbb{A}^2, x^3 + y^2)} \text{ non-canonically isomorphic.}$$

Joyce's approach to DT-invariants

Theorem (Brav-Bussi-Dupont-Joyce-Szendroi (BBDJS))

Let X be a (-1)-symplectic derived scheme. Assume that there exists a line bundle L together with an equivalence $L \otimes L \simeq \det(\mathbb{T}_X)$ (aka orientation data). Then:

- The locally defined perverse sheaves of vanishing cycles $P_{U,f}$ glue to a globally defined perverse sheaf $P \in Perv(X)$.
- $\chi(P) = \nu_{Behrend}$ computing locally the Euler characteristic of vanishing cycles. Gives back DT-counting.

Proof: Glue by hand using local presentations of the underlying classical scheme as classical critical loci.

- method does not see the full derived structure.
- strategy works for perverse sheaves because:
 - ▶ they form a **1-category** (no higher homotopies needed to glue).
 - ▶ they have the A¹-homotopy invariance property.

Table of Contents

- Introduction: DT-invariants
- 2 Derived Geometry
- 3 (-1)-shifted symplectic forms
- 4 The gluing problem
- Moduli of Darboux Coordinates
- 6 Action of Quadratic Bundles
- Main Results

Motivic DT and categorification

Different invariants capture vanishing cycles of f on U:

MF: $U_0 := f^{-1}(0)$, $M \in Coh(U_0)$, infinite resolution by projective modules becomes eventually 2-periodic [Serre-Auslander-Buchsbaum-Eisenbud]

$$\underbrace{\dots \to F \to Q \to F \to Q}_{\in \mathit{MF}(U,f)} \to \underbrace{P_n \to \dots \to P_2 \to P_1 \to P_0}_{\in \mathit{Perf}(U_0)} \to M$$

Motivic DT and categorification

Gluing Problem: Given a (-1)-symplectic derived scheme X, can we glue the Darboux locally defined dg-categories MF(U, f) as a sheaf of dg-categories on X? Is Joyce's orientation data enough?

Rmk: Version of the gluing problem for the Fukaya category (Seidel, Kontsevich, Nadler, Shende, Ganatra, Pardon,...).

Complications: The gluing no longer takes place in a 1-category but in an ∞ -category. Complicated coherences are required. Need a gluing mechanism.

Table of Contents

- Introduction: DT-invariants
- 2 Derived Geometry
- 3 (-1)-shifted symplectic forms
- 4 The gluing problem
- Moduli of Darboux Coordinates
- 6 Action of Quadratic Bundles
- Main Results

Moduli of Darboux Coordinates

Classical Picture: X a classical symplectic manifold, then locally X is of symplectomorphic to some T^*M (Darboux's lemma). We can analyse the moduli of such Darboux parametrizations:

$$\mathit{Darb}_X: S \subseteq X \text{ open } \mapsto \{\mathit{M} \text{ smooth manifold}, S \simeq \mathit{T}^*\mathit{M} \text{ symplectic}\}$$

The data of a symplectomorphism $S \simeq T^*M$ in particular implies:

- The fibers of the projection $S \simeq T^*M \to M$ define a smooth Lagrangian foliation $\mathcal F$ on S (ie, $\omega_{|_{\mathsf{fibers}}} = 0$).
- The symplectic form on S is exact ie, there exists a 1-form α (Liouville form on T^*M) with $d_R(\alpha) = \omega$.

We call such (\mathcal{F}, α) a Darboux datum on S.

Moduli of Darboux Coordinates

(-1)-shifted geometry: These notions make sense thanks to the work of Toën-Vezzosi on derived foliations.

Theorem (Pantev-Toën)

S a (-1)-symplectic derived scheme. Then the following data are equivalent:

- Darboux data on S, ie a globally defined smooth derived Lagrangian foliation $\mathfrak F$ on S + an exact structure α .
- the data of a smooth formal scheme \mathcal{U} , a function f on \mathcal{U} and a symplectomorphism $S \simeq dCrit(\mathcal{U}, f)$

Classical Picture: Darboux data on $S \Leftrightarrow [S \subseteq T^*M \to M]$.

(-1)- **picture :** Darboux data on $S \Leftrightarrow [S \simeq dCrit(\mathcal{U}, f) \hookrightarrow \mathcal{U}]$.

Idea: $\mathcal{U} := S/\mathcal{F}$ the formal leaf space. f = exact struct. - isotropic struct.

The Darboux Stack

Example: $(\hat{\mathbb{A}}^1, x^3)$ gives Darboux data

$$dCrit(x^3) = Spec(k[x]/(3x^2)) \hookrightarrow \widehat{\mathbb{A}}^1$$

Construction (Gluing Moduli of Darboux coordinates)

The assignment:

$$S \to X$$
 étale $\mapsto \{(\alpha, \mathfrak{F}) : \text{Exact structure } \alpha + \text{smooth Lag. fol. } \mathfrak{F} \text{ on } S\}$

defines a hypercomplete stack on the small étale site of a n-shifted symplectic derived scheme X. We call it the Darboux stack $Darb_X$.

Remark: $Darb_X := Exact_X \times LagFol_X^{sm}$

Comment: In the case where X is (-2)-symplectic, this recovers the local data used by Borisov-Joyce and Oh-Thomas to glue DT-invariants for Calabi-Yau 4-folds.

The Darboux Stack

Construction

The Behrend's function, MF and Joyce's construction have $Darb_X$ as a natural domain, and define natural transformations of sheaves on the small étale site of X:

$$\nu: \mathit{Darb}_X(S)
i (\mathcal{U}, f)
ightarrow \mathit{dim}(\mathit{vanishing cycles of } f) \in \mathbb{Z}_X(S) := \mathbb{Z}$$

$$P: Darb_X(S) \ni (\mathcal{U}, f) \rightarrow P_{\mathcal{U}, f} \in Perv_X(S) := Perv(S)^{\simeq}$$

$$extbf{MF}: Darb_X(S) \ni (\mathcal{U}, f) \rightarrow MF(\mathcal{U}, f) \in dgcat_{X_{dR}}^{2per}(S) := \underbrace{(dgcat_{S_{dR}}^{2per})^{\simeq}}_{categorical \ crystals}$$

Table of Contents

- Introduction: DT-invariants
- 2 Derived Geometry
- (-1)-shifted symplectic forms
- 4 The gluing problem
- Moduli of Darboux Coordinates
- 6 Action of Quadratic Bundles
- Main Results

Action of Quadratic Bundles

Ambiguity Problem: in the choice of local presentations:

$$dCrit(\mathbb{A}^1, x^3) = \operatorname{Spec} k[x]/(3x^2) \simeq \operatorname{Spec} k[x, y]/(3x^2, 2y) = dCrit(\mathbb{A}^2, x^3 + y^2)$$

Definition

 $Quad_{dR}(S) := \{(Q,q) : (loc. trivial) \text{ quadratic vector bundles on } S_{dR}\}$

Construction (Moduli of Quadratic bundles)

X a (-1)-symplectic derived scheme. Then:

- The assignment S/X étale $\mapsto Quad_{dR}(S)$ defines a sheaf of monoids $Quad_{X_{dR}}$ on X_{et} for the sum of quadratic bundles.
- $Quad_{X_{dR}}(S)$ acts on $Darb_X(S)$,

$$dCrit(\mathcal{U}, f) \simeq S \simeq dCrit(\mathcal{U} \underset{S_{dR}}{\times} Q, f + q)$$

Table of Contents

- Introduction: DT-invariants
- 2 Derived Geometry
- 3 (-1)-shifted symplectic forms
- 4 The gluing problem
- 5 Moduli of Darboux Coordinates
- 6 Action of Quadratic Bundles
- Main Results

Recovering the perverse gluing of BBDJS:

Fact: $(M, q) \in Quad_{X_{dR}}(S)$ then det(M) is a 2-torsion line bundle over S, ie, $det(M)^2 \simeq \mathcal{O}_S$. This follows from the non-degeneracy of the Hessian.

Construction

X a (-1)-symplectic derived scheme. Then:

- det: $Quad_{X_{dR}} \to B\mu_{2,X} = Ker(B\mathbb{G}_{m,X} \xrightarrow{2} B\mathbb{G}_{m,X})$ is a map of monoids.
- P: Darb_X → Perv_X comes with homotopy coherent data rendering the actions compatible on both sides

$$Quad_{X_{dR}} \circlearrowleft Darb_X \to Perv_X \circlearrowleft B\mu_2$$

(on the right the action of $B\mu_2$ is defined by BBDJS).

Recovering the perverse gluing of BBDJS:

Corollary (Hennion-Holstein-R. as a reformulation of BBDJS)

Let X be a (-1)-shifted symplectic derived scheme with a fixed exact structure α (always exists by a theorem of Deligne).

Then there exists a canonical factorization

Here X is the final object of the étale topos of X. In other words, the gluing of the perverse sheaves $P_{U,f}$ is always well-defined in the quotient:

$$\overline{P}: X \to Perv_X/B\mu_{2,X}$$

Recovering the perverse gluing of BBDJS:

Remark

The composition

$$X \rightarrow Perv_X/B\mu_{2,X} \rightarrow */B\mu_{2,X} = BB\mu_{2,X}$$

is the class in $H^2(X, \mathbb{Z}/2\mathbb{Z})$ of the bundle classifying square roots of $det(\mathbb{T}_X)$.

An orientation data of BBDJS corresponds precisely to the choice of a **null-homotopy** of this composition

Such a null-homotopy provides a lifting through the fiber product and defines a well-defined glued perverse sheaf $P_{Joyce}: X \rightarrow Perv_X$.

Gluing MF:

Fact: $(M,q) \in Quad_{X_{dR}}(S)$ then MF(M,q) has a structure of 2-torsion 2-periodic derived Azumaya algebra over S_{dR} . This is a consequence of Preygel-Thom-Sebastiani followed by Knörrer periodicity

$$MF(M,q) \otimes MF(M,q) \simeq MF(M \times M, q \boxplus -q) \simeq MF(S_{dR},0)$$

Construction

X a (-1)-symplectic derived scheme. Then:

- MF: $Quad_{X_{dR}} \rightarrow Az_{X_{dR}}^{2per,2-tor}$ is a map of monoids.
- $MF: Darb_X o dgcat_{X_{dR}}^{2per}$ comes with homotopy coherent data rendering the actions compatible on both sides

$$Quad_{X_{dR}} \circlearrowright Darb_X \rightarrow dgcat_{X_{dR}}^{2per} \circlearrowleft Az_{X_{dR}}^{2per,2-tor}$$

On the right the action of $Az_{X_{dR}}^{2per,2-tor}$ is given by tensor products of dg-categories.

Gluing MF:

Work in progress (Hennion-Holstein-R.)

X a (-1)-shifted symplectic derived scheme with an exact structure. There exists a factorization of morphisms of étale sheaves:

Definition

A categorical orientation data is a trivialization of the composition

$$X o Darb_X/Quad_{X_{dR}} o dgcat_{X_{dR}}^{2per}/Az_{X_{dR}}^{2per,2-tor} o BAz_{X_{dR}}^{2per,2-tor}$$

Gluing MF:

Corollary

Let X be a (-1)-shifted symplectic derived scheme. Assume X is equipped categorical orientation data. Then the locally defined categories $MF(\mathfrak{U},f)$ glue as a sheaf of 2-periodic dg-categories on X as a result of

New Orientation data

The orientation data of BBDJS is (a priori) not enough to glue MF. A categorical orientation provides new obstruction classes coming from the fibration sequence

$$Az_{X_{dR}}^{2per,2-tor}
ightarrow Az_{X_{dR}}^{2per}
ightarrow Az_{X_{dR}}^{2per}$$

•
$$\pi_0(Az_{X_{dR}}^{2per,2-tor}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \{MF(*,0),MF(\mathbb{A}^1,x^2)\}\}.$$

•
$$\pi_1(Az_{X_{dR}}^{2per,2-tor}) \simeq \underbrace{\mathbb{Z}/2\mathbb{Z}}_{BBDJS} \simeq \{Id,[1]\}$$

•
$$\pi_2(Az_{X_{dR}}^{2per,2-tor}) = \mathbb{Z}/2\mathbb{Z} \simeq \operatorname{Ker}(z^2:\mathbb{C}^* \to \mathbb{C}^*)$$

•
$$\pi_n(Az_{X_{dR}}^{2per,2-tor}) = 0 \ n \ge 3$$
,

