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with Evgeny Feigin (Haifa) and Markus Reineke (Bochum)

June 15, 2023



Motivation

Let Q be a quiver (directed graph). A representation of Q:
assignment of vector spaces to vertices of Q and of linear maps to
the arrows of Q (Gabriel 1972). For example • → • is represented
by two vector spaces and a linear map between them.

For a given “dimension vector” d = (dim(Vi ))i∈Q0 , we can define
the moduli space of representations Md: the quotient of the space
of representations Rd by the group of change of basis Gd. (Finite
type classified by Gabriel, Gelfand–Ponomarev, Ringel etc. using
Dynkin diagrams, started a really active research area.)

In 1990s quivers became prominent in geometric representation
theory (Lusztig, Ringel–Hall, Nakajima etc.): construction of
representations of Kac–Moody algebras and quantum groups using
geometry of certain moduli spaces of quiver representations.
(Actions were defined on cohomology and/or constructible
functions on those — generally very complicated — spaces.)



Motivation

More recenty (Kontsevich–Soibelman 2010): the cohomological
Hall algebra (CoHA) HQ made of equivariant cohomologies
H•Gd

(Rd) for all d, and its modules (this uses “framed” quivers).
This bypasses the intricate geometry of Rd/Gd, since Rd is
contractible!

CoHA is designed to fulfil a prediction in string theory postulating
that to some supersymmetric quantum field theories, one can
associate Lie superalgebras, called “algebras of BPS states”.
Mathematically, this is related to the theory of Donaldson–Thomas
invariants (studying families of curves in algebraic three-folds),
though for that one mainly is interested in quivers with potentials.

Throughout this talk, we are going let us assume that Q is
symmetric (number of arrows from i to j is the same as the
number of arrows from j to i). In this case HQ is a
(super)commutative algebra.



What this talk is about

Kontsevich and Soibelman used HQ to define the “refined
Donaldson–Thomas invariants of Q”. They conjectured, and
Efimov (2011) proved that, as a commutative algebra, HQ is freely
generated by a super vector space of the form WQ ⊗Q[t], which
implies that the “refined Donaldson–Thomas invariants of Q” are
equal to dimensions of multigraded components of WQ , and, in
particular, are non-negative integers.

In this talk, I shall discuss two new algebraic constructions which
computes the refined DT invariants as dimensions of graded
components of something, and I (not so) secretly hope that
perhaps these “somethings” are known from a physics viewpoint to
people in the audience.



A non-free commutative algebra

Denote by (mi ,j) the adjacency matrix of the quiver Q. The
algebra AQ is defined as follows. Its space of generators VQ has a
basis ai ,k with i ∈ Q0, k ≥ 0. There are two groups of relations:

ai ,k1aj ,k2 = (−1)mi,imj,jaj ,k2ai ,k1 for all i , j , k1, k2,∑
k1+k2=k

(
k2
p

)
ai ,k1aj ,k2 = 0 for all k ≥ 0 and 0 ≤ p < mi ,j .

The first of these is (super)commutativity: “parity is the number
of loops at a vertex”. The second is found among the coefficients
of the power series

ai (z)
1

p!

dp

dzp
aj(z) = 0,

where ai (z) =
∑

k≥0 ai ,kz
k . It ensures that ai (z)aj(w) vanishes at

z = w with multiplicity mi ,j .



Examples

Let Q have one vertex and no edges. Then the algebra AQ is
generated by a0, a1, . . . ; the only relations are those of
supercommutativity, and our algebra is the polynomial algebra
Q[a0, a1, . . . ].

Let Q have one vertex and one loop. Then the algebra AQ is
generated by a0, a1, . . . . Relations of the first group say that the
generators anti-commute, and the only relation a(z)a(z) = 0 of
the second group is redundant. Thus, our algebra is the infinite
Grassmann algebra

∧
(a0, a1, . . . ).



Examples

Let Q be the quiver with one vertex and two loops. Then the
algebra AQ is generated by commuting generators a0, a1, . . .
modulo the relations

(a0 + a1z + a2z
2 + . . . )2 = 0,

(a0 + a1z + a2z
2 + . . . )

d

dz
(a0 + a1z + a2z

2 + . . . ) = 0.

The second relation follows from the first one by differentiation, so
our algebra is

Q[a0, a1, . . . ](
a20, 2a0a1, 2a0a2 + a21, . . . ,

∑
i+j=k

aiaj

) .

This algebra was studied by B. Feigin and A. Stoyanovsky in 1990s
in the context of level 1 modules over the Kac–Moody algebra ŝl2.



Examples

Let Q be the quiver •←→•. Then the algebra AQ is generated by
a0,0, a0,1, . . . and a1,0, a1,1, . . . . Relations of the first group say
that the generators commute, and relations of the second group
say that

(a0,0 + a0,1z + a0,2z
2 + . . . )(a1,0 + a1,1z + a1,2z

2 + . . . ) = 0,

so our algebra is

Q[a0,0, a0,1, . . . , a1,0, a1,1, . . . ](
a0,0a1,0, a0,0a1,1 + a0,1a1,0, . . . ,

∑
i+j=k

a0,ia1,j

)

This algebra is known as the jet algebra of the arc scheme of
Q[x , y ]/(xy). In fact, for every simple graph Γ, the algebra
associated to its doubling has the same interpretation.



Poincaré series

To explain how these algebras can be used, we set

deg(ai ,k) = (ei , 2k +mi ,i ) ∈ NQ0 × N,

and extend this “degree” to AQ , creating the multigraded
components (AQ)

n
d; here d counts vertices of the quivers where

the generators sit, and n is some kind of homological degree
(refinement of parity). This allows us to define the Poincaré series

P(AQ , x , q) =
∑

(d,n)∈NQ0×N

(−1)n dim(AQ)
n
dq

nxd.

It is a formal power series in variables q and xi , i ∈ Q0.

It is not easy to compute this series directly, since describing a basis
in the algebra AQ is, in general, hard. Using the specific form of
defining relations, we shall rather examine the graded dual of AQ .



Functional realisation
For a dimension vector d, and a linear function ξ ∈ ((AQ)

n
d)
∗, let

us compute

ξ (a1(z1,1) · · · a1(z1,d1)a2(z2,1) · · · a2(z2,d2) · · · ak(zk,1) · · · ak(zk,dk )) .

It is a polynomial, symmetric (or anti-symmetric) in each group of
variables zi ,1,. . . , zi ,di , and, according to the defining relations, it is
divisible by (zi ,s − zj ,t)

mi,j for all i , j , s, t. Moreover, one can show
that each such polynomial gives rise to a unique linear function.

Using this description of the graded dual, we immediately find that

P(AQ , x , q) =
∑

d∈NQ0

(−q)d
TMd∏

i∈Q0
(q2)di

xd.

(Here (a)n = (1− a)(1− a2) · · · (1− an).) Some versions of this
formula are often referred to as a “Nahm sum” for the given
matrix M.



Relationship to CoHA
In the context of cohomological Hall algebras, the conventions for
the Poincaré series are a bit different, and

P(HQ , x , q) =
∑

d∈NQ0

(−q
1
2 )d

T (M−I )d∏
i∈Q0

(q−1)di
xd,

which is a formal power series in xi , whose coefficients are formal

Laurent series (in q−
1
2 ). Using the λ-ring structure on power

series, the refined Donaldson–Thomas invariants DTQ,d(q) are
defined by the formula

P(HQ , x , q) = Exp

 1

1− q−1

∑
d∈NQ0

(−1)d
T (M−I )dDTQ,d(q)x

d

 .

Here Exp is the “plethystic exponential”.

Observation. For each d, the coefficient of xd represents a

rational function in q
1
2 . In the ring Q(q

1
2 )[[xi : i ∈ Q0]], we have

P(HQ , x , q) = P(AQ , q
1
2 x , q

1
2 ).



Koszul duality and DT invariants

A priori, DTQ,d(q) ∈ Q(q
1
2 ). To say more, we shall use the Koszul

duality theory. That theory assigns to any algebra A with
quadratic relations another algebra A! with quadratic relations. If
A is supercommutative, the algebra A! is isomorphic to the
universal enveloping algebra of a certain Lie superalgebra g(A).

Theorem. The Koszul dual Lie superalgebra gQ := g(AQ) has a
Diff1-module structure, and the action of Q[z ] ⊂ Diff1 on gQ is
free, with the space of generators Ker(∂), which happens to be a
Lie subalgebra. Moreover, for each d ∈ NQ0

DTQ,d(q) =
∑
n

dim(Ker(∂)nd)q
1
2
n−1.

Additionally, these sums are finite: DTQ,d(q) ∈ N[q±
1
2 ]



Sketch of the proof I

First, one may describe the Koszul dual Lie algebra explicitly. It
has generators bi ,k with i ∈ Q0, k ≥ 0. The multidegrees of these
are deg(bi ,k) = (ei ,−2k −mi ,i − 1) ∈ NQ0 × N. The relations are

ni,j∑
p=0

(−1)p
(
ni ,j
p

)
[bi ,k−p, bj ,l+p] = 0,

where ni ,j = max(mi ,j − δi ,j , 0). In terms of the generating series,
(z − w)ni,j [bi (z), bj(w)] = 0. (Locality relations: will get back to
them later.)
This particular form of relations may be used as follows. Let us
define endomorphisms p and q of the space of generators as
p(bi (z)) = zbi (z), q(bi (z)) = ∂zbi (z), and extend them as
derivations to products of generators. It turns out that those
derivations preserve all relations and thus act on gQ .



Sketch of the proof II
For the derivations p and q of gQ that we defined, we have
pq − qp = n · 1 on Lie monomials involving n generators, and so if
we redefine the operator ∂ on gQ setting ∂ = 1

nq on Lie monomials
involving n generators, we get an action of the Weyl algebra. Every
module over the Weyl algebra that is graded and bounded from
below is a free Q[z ]-module generated by Ker(∂).
This already implies that

(1− q)P((g∗Q)d, q) =
∑
n

dim(Ker(∂)nd)q
1
2
n−1 ∈ N[[q±

1
2 ]].

Since p and q are derivations, the kernel is a Lie subalgebra.

To show that
∑

n dim(Ker(∂)nd)q
1
2
n−1 ∈ N[q±

1
2 ] is finite, one may

use a bound on the size of gQ coming from the theory of
Gröbner–Shirshov bases for Lie superalgebras. Specifically, for each
d ∈ ZQ0

≥0, we have

(1− q|d|)P((g∗Q)d, q) ∈ N[q
1
2 ].

Combining the two formulas, the necessary result follows.



Interlude: vertex algebras

Our result is a positivity result but for gQ , not for refined DT
invariants. Before proceeding, shall discuss my work with Sergey
Mozgovoy relating the CoHA to vertex algebras. It started from a
simple observation that as multigraded vector space, HQ looks like
the dual vector space of lattice vertex algebra associated with the
“Euler form” of the quiver (given by the matrix I −M).

A key observation is that three vertex algebras coincide: the lattice
vertex algebra associated with the Euler form, the free vertex
algebra of a given non-negative locality function, and the universal
envelope of a vertex Lie algebra. The first one gives the “size” of
the CoHA, the third a cocommutative coproduct, and the second
connects them together.



Sketch of the proof III

Let us denote by CQ the free vertex Lie algebra corresponding to
the locality function NQ(i , j) = mi ,j − δi ,j . One can show that it is
isomorphic to the free vertex Lie algebra corresponding to the
non-negative locality function N+

Q (i , j) = max(NQ(i , j), 0).
Using the general theory of vertex Lie algebras, we may associate
to the vertex Lie algebra CQ an honest Lie algebra LQ , the
coefficient algebra of CQ ; moreover, we have a graded vector space
decomposition

LQ = L−Q ⊕ L+
Q ,

where L−Q and L+
Q are Lie subalgebras of LQ .

It is established by Roitman (1999) that both the Lie algebra LQ

and its subalgebra L+
Q admit explicit presentations by generators

and relations which we shall use.



Sketch of the proof IV

The Lie algebra LQ is generated by elements i(k) of degree
(ei , 2k +mi ,i + 1), i ∈ Q0, k ∈ Z, subject to the relations

N+
Q (i ,j)∑
p=0

(−1)p
(
N+
Q (i , j)

p

)
[i(k − p), j(l + p)] = 0 (1)

for all i , j ∈ Q0, and the Lie algebra L+
Q is generated by elements

i(k) of degree (αi , 2k+mi ,i +1), i ∈ Q0, k ≥ 0, subject to those of
the relations (1) that only contain the generators i(k) with k ≥ 0.
The subalgebra L−Q is defined more indirectly. We note that (up to
multiplying gradings by −1) there is a Lie algebra isomorphism

L+
Q
∼= gQ

sending i(k) to bi ,k .



Sketch of the proof V

Using the isomorphism L+
Q
∼= gQ and the interpretation of the

universal enveloping vertex algebra U(CQ) as the dual of the CoHA
HQ which was discovered by myself and Mozgovoy (and confirms
the intuition coming from the much more general work of Joyce),
one can prove that

P(HQ , x , q)P(U(gQ)
∨, x , q) = 1.

That latter relation implies that computing the plethystic
logarithm of AQ is easily related to the plethystic logarithm of
P(U(gQ)

∨, x , q), equal to P(g∨Q , x , q).

We remark that this relation suggests that the algebras AQ and gQ
are Koszul; in fact, it expresses the so called “numerical
Koszulness”.We have been able to prove the Koszulness in some
particular cases, and conjecture it to be true in general.



Concluding remarks

Let us note that in work with Mozgovoy, I identified the dual space
of HQ with the the universal envelope L−Q of the “more
complicated half” of the coefficient algebra, so there is some extra
surprise relating two halves of the coefficient algebra, which
generally are defined in a very asymmetric way.

Conjecturally, the relationship between the two approaches are also
related by some version of the Koszul duality; specifically, it should
be the Koszul duality between commutative vertex algebras and
vertex Lie algebras.

Using the vertex algebra construction, Mozgovoy and myself also
found interpretations of CoHA-modules on cohomologies of
non-commutative Hilbert schemes (constructed by Franzen
geometrically). A baby version of this for two-loop quiver was
found in my work from some 15 years ago.


