

Pedro de la Torre Luque pedro.delatorreluque@fysik.su.se

Scrutinizing current predictions for cosmic-ray antiparticles

LPTHE particle physics seminar – 24/01/2023

The current generation of detectors provides accurate measurements on the spectra of Galactic cosmic rays leaving many open questions

> We focus in the GeV-TeV part, where diffusion dominates and WIMPs can leave imprints in CR antiparticles

Injection of CRs by sources

Diffusive shock acceleration (inspired in the Fermi mechanism) explains the power law distribution of CR particles

CRs are accelerated in shocks - Like those found in SNRs, star clusters or PWNe

Then, they are injected to the interstellar medium where they can interact with gas and magnetic fields

Injection of CRs by sources

In Galactic CR studies, the injection spectrum is parametrized as a (broken) power-law and the distribution of sources follow SNR distrib.

A few key observations show evidence that CRs propagate in the Galaxy for millions of years

Transport of CRs is described as a diffusive process!

Secondary-to-primary ratios – the diffusion coefficient

Simplest approximation to the diffusion equation:

$$\frac{\partial J_{pr}}{\partial t} = Q(E) - \frac{J_{pr}}{\tau^{\text{esc}}}$$
$$J_{pr}(E) \sim Q(E)\tau^{\text{esc}}(E) \sim \frac{Q(E)}{D(E)}$$

The CR fluxes at E>tens of GeV/n are the convolution of diffusion and injection power-laws

$$J_{pr}(E) \sim \frac{Q_{inj}(E)}{D(E)} \propto E^{-(\alpha_{inj} + \delta)}$$
$$J_{pr}(E) \sim \frac{\sigma(E)J_{pr}(E)}{D(E)} \propto E^{-(\alpha_{inj} + 2\delta)}$$

$$\int \frac{\mathbf{J}_{\mathrm{sec}}}{\mathbf{J}_{\mathrm{pr}}} \sim \sigma(\mathbf{E}) / D(\mathbf{E})$$

Lepton energy losses

$e + N \rightarrow e' + \gamma' + N$

Ionization, Coulomb and bremsstrahlung energy losses depend on the gas distribution and are subdominant above the GeV

Lepton energy losses

IC and Synchrotron losses impede high energy electrons and positrons travel long distances!

Positron propagation horizon

GeV-TeV e^- are dominated by the emission from local sources!

Manconi et al PRD 2020

Effect of the Heliosphere – Solar modulation

CRs experience a "firewall" when they enter the heliosphere from interstellar space

It significantly affects the propagation of low-energy CRs (below $E \sim 10$ GeV/n)

High uncertainty related with its treatment:

- Neutron monitor experiments to Propager-1 data with Force-Field approx.
- Detailed heliosphere simulations vs refined semi-enalytical approximations

Antiproton excesses – The spectral excess

Several studies claimed the possibility of an **excess** of data over the predicted flux **at around 10-20 GeV**, which can be the **signature of dark matter** annihilating or decaying into antiprotons

 $p_{CR} + p_{ISM} \rightarrow \bar{p}$ $\chi + \chi \rightarrow \bar{p}$

ISM

Antiproton excesses – The spectral excess

Recent studies have claimed the possibility of an **excess** of data over the predicted flux **at around 10-20 GeV**, which can be the **signature of dark matter** annihilating or decaying into antiprotons

 $p_{CR} + p_{ISM} \rightarrow \bar{p}$

ISM

 $\chi + \chi \rightarrow \bar{p}$

Antiproton excess and Galactic centre excess

GC excess points to a WIMP of about 50 GeV and $< \sigma v >$ close to thermal relic cross section

Di Mauro, PRD 103, 063029 (2021)

Antiproton excesses – The spectral excess

All analysis coincided in the position of the excess, but not in its significance... again, **the astrophysical uncertainties were not completely understood** (and they aren't yet!)

ISM

Antiproton excesses – The grammage excess

significantly our predictions and can explain the excess

Energy (GeV/n)

Search for DM features in the antiproton spectrum

- Combination of B, Be and Li to determine prop. Params
- Cross-section (XS) normalizations as nuisance parameters
- Two modifications of XS prior constraints:
 - No constraints Penalty factor same as for B (Full cons.)

B/C, B/O, Be/C, Be/O, Ap/p (Prop. parameters) ¹⁰Be/⁹Be, ¹⁰Be/Be (H), Li/B

No statistical evidence in any analysis ($0.6 < \sigma < 1.1$)

Dark matter bounds from antiproton combined analyses

No hints for WIMP signals in recent analyses...

These analyses can rule out the thermal relic cross-section for WIMP masses below ~60 GeV Tension with the GCE!

However, we are constrained to the classical model of production of antiprotons

DM searches with antiprotons – *More possibilities*

SNRs accelerating antiprotons

Inhomogeneous diffusion coefficient

Gas Inhomogeneities and the non-uniformity of the CR transport are not explored in depth

ANTI-NUCLEI: AMS-02 mass-charge spectra

Paolo Zuccon MIAPP 2021

Anti-nuclei as the dark matter smoking gun

The window to prove (or disprove) many possible astrophysical excesses

For kinematical reasons, the production of anti-nuclei from CR interactions is not important at energies below the GeV, offering a **clear way to spot the production of anti-nuclei from dark matter** (at least for masses below ~hundreds of GeV)

M. Korsmeir et al. (2018) Phys. Rev. D97, 103011

Formation of anti-nuclei

Simplest coalescence model: Factorised coalescence

$$E_{\bar{d}}\frac{d^3N_{\bar{d}}}{dp_{\bar{d}}^3} \simeq B_2\left(E_{\bar{n}}\frac{d^3N_{\bar{n}}}{dp_{\bar{n}}^3}\right) \times \left(E_{\bar{p}}\frac{d^3N_{\bar{p}}}{dp_{\bar{p}}^3}\right) \simeq B_2\left(E_{\bar{p}}\frac{d^3N_{\bar{p}}}{dp_{\bar{p}}^3}\right)^2$$

Antineutrons and antiprotons are produced uncorrelated

$$E_{\bar{A}}\frac{d^3N_{\bar{A}}}{dp_{\bar{A}}^3} \simeq B_A \left(E_{\bar{p}}\frac{d^3N_{\bar{p}}}{dp_{\bar{p}}^3}\right)^A$$

<u>Coalescence parameter</u> can be approximated from the coalescence momentum, p_0

(anti)nucleons with low relative momentum merge to form (anti)nuclei

Anti-D
$$|\Delta p| < p_0$$

Formation of anti-nuclei

Coalescence parameter may depend on many kinematical parameters, including the size of the projectile and target

Anti-nuclei as the dark matter smoking gun

The window to prove (or disprove) many possible astrophysical excesses

PPPC – M. Cirelli tables: http://www.marcocirelli.net/PPPC4DMID.html

Propagation code: github.com/tospines/Customised-DRAGON-versions

Boosting the dark matter signal

✓ Λ_b production is a very important source of anti-helium, even able to explain the events reported by AMS-02, although not yet well constrained

Astrophysical production

 $CR + ISM \rightarrow He, d$

New cross sections: Derived analytically using the factorized coalescence model model from the Winkler (2017) cross sections for antiprotons. Coalescence momentum adjusted to reproduce ALICE p+p data. CR propagation simulated with DRAGON code (github.com/tospines/Customised-DRAGON-versions)

25

Dark matter production

Dark matter yield derived with Pythia, simulating a electrically neutral and colourless resonance decaying, adjusting the coalescence momentum to reproduce ALEPH data.

Uncertainty band comes from the uncertainty of the determination dark matter properties.

DM production: Upper Limits

Maximal antinuclei flux allowed from our antiproton bounds. Uncertainties in the coalescence momentum can hardly explain the detection of O(1) antihelium-3 event by AMS-02, but are unable to explain any detection of antihelium-4...

A solution: QCD-Like Dark sector

Winkler, **PDL**, Linden ArXiv:2211.00025

The observation of antihelium-4 is much harder to explain because standard models predict a production ratio $\sim 1/1000$

A **strongly coupled dark sector** can produce a "dark parton shower", generating high multiplicity of "dark pions". These would subsequently decay into SM quarks through, e.g., the Higgs or top portals, **triggering a hadronic shower**.

Simulated with Pythia as $\chi\chi \to \phi\phi \to 2\bar{q}'q' \to N_{\pi'} \pi' \to N_{\pi'} \bar{t}t$

This could have escaped detection at LHC and it offers a pathway to look for excesses in the ditop channel

QCD-Like Dark sector

From factorized formula: $N_A \propto (N_p)^A$

Conclusions

Scrutinizing current predictions for cosmic-ray antiparticles

- Uncertainty associated to the different CR antiparticles prevents us from constraining transport parameters, environment properties, ...
- Exciting period when experimental data is allowing us to go beyond standard paradigm of Galactic CR propagation – Multimessenger studies
- A formal study of the **generation and interaction of turbulence** in the **heliosphere** and in different zones of the **Galaxy** is necessary
- Antinuclei seem a very promising channel to study signals from dark matter and constrain our current WIMP models – At reach in the next decade!

Pedro de la Torre Luque – 24/01/2023 pedro.delatorreluque@fysik.su.se