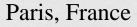
Accelerated expansion and scalar potentials from string theory

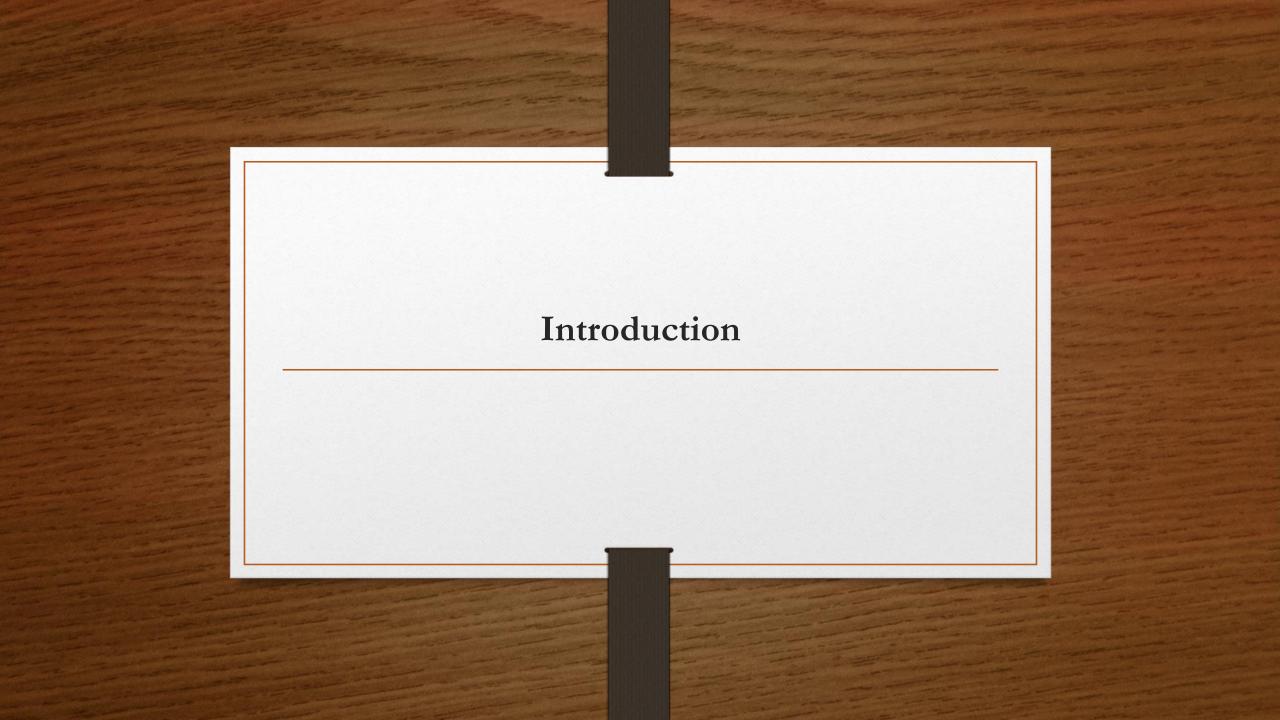
David Andriot

LAPTh, CNRS, Annecy, France

arXiv:2201.04152, 2204.05327 (with L. Horer, P. Marconnet) 2208.14462 (with L. Horer) 2209.08015 (with P. Marconnet, M. Rajaguru, T. Wrase) 2212.04517 (with L. Horer, G. Tringas)

20/01/23





Dark energy: energy responsible for accelerated expansion observed: today early universe (inflation)

Today: well-described by cosmological constant $\Lambda > 0$ Inflation: scalar potential V > 0, very flat $\frac{|V'|}{V} \ll 1$, single scalar field slowly rolling-down Planck '18 **Dark energy:** energy responsible for accelerated expansion observed: today early universe (inflation)

Today: well-described by cosmological constant $\Lambda > 0$ Inflation: scalar potential V > 0, very flat $\frac{|V'|}{V} \ll 1$, single scalar field slowly rolling-down Planck '18

Both described by 4d theory: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$ minimally coupled scalar fields φ^i (most of the talk: $M_p = 1, \varphi^i \to \varphi$)

 \hookrightarrow Reproduce dark energy as solutions

Dark energy: energy responsible for accelerated expansion observed: today early universe (inflation)

Today: well-described by cosmological constant $\Lambda > 0$ Inflation: scalar potential V > 0, very flat $\frac{|V'|}{V} \ll 1$, single scalar field slowly rolling-down Planck '18 Both described by 4d theory: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2}\mathcal{R}_4 - \frac{1}{2}g_{ij}\partial_\mu\varphi^i\partial^\mu\varphi^j - V\right)$ minimally coupled scalar fields φ^i (most of the talk: $M_p = 1, \varphi^i \to \varphi$)

 \hookrightarrow Reproduce dark energy as solutions:

Slow-roll single-field inflation: plateau V:

 $V(\varphi)$

 Λ : de Sitter solution: critical point of V:

$$\partial_{\varphi}V = 0, \quad \forall \varphi = 0, \quad V = V_0 = \Lambda = 1/4 \mathcal{R}_4 > 0$$

Dark energy from string theory?

$$\longrightarrow$$
 Can we get $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$ from string theory ?

+ V > 0 + right shape of V ?

Dark energy from string theory?

- \longrightarrow Can we get $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j V \right)$ from string theory ?
 - + V > 0 + right shape of V?
- → This would provide an origin/nature of dark energy!
 - + allow to distinguish among various V that are ok with observations (e.g. inflation)

Dark energy from string theory?

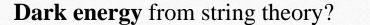
- $\longrightarrow \text{Can we get } \int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j V \right) \text{ from string theory }?$
 - + V > 0 + right shape of V ?

 \longrightarrow This would provide an origin/nature of dark energy!

+ allow to distinguish among various V that are ok with observations (e.g. inflation)

Answers:

Yes, natural from string compactification V is due to extra dimensions and physical content



$$\longrightarrow$$
 Can we get $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$ from string theory ?

+ V > 0 + right shape of V?

 \rightarrow This would provide an origin/nature of dark energy!

+ allow to distinguish among various V that are ok with observations (e.g. inflation)

Answers:

Difficult (in a controlled way)

Very challenging!

Yes, natural from string compactification V is due to extra dimensions and physical content

Dark energy from string theory? $\longrightarrow \text{ Can we get } \int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right) \text{ from string theory ?} \\ + V > 0 + \text{right shape of V ?} \\ \longrightarrow \text{ This would provide an origin/nature of dark energy!} \\ + \text{ allow to distinguish among various V that are ok with observations (e.g. inflation)}$

Answers:

Difficult (in a controlled way) Very challenging!

Yes, natural from string compactification V is due to extra dimensions and physical content

- Classical de Sitter solutions
- Potential slopes

Dark energy from string theory? \longrightarrow Can we get $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$ from string theory ? + V > 0 + right shape of V ? \rightarrow This would provide an origin/nature of dark energy! + allow to distinguish among various V that are ok with observations (e.g. inflation) Answers: Difficult Yes, natural from string compactification Very challenging! V is due to extra dimensions and physical content (in a controlled way) $\partial_{\varphi}^2 V \sim m^2$: solution stability / spectrum

- Classical de Sitter solutions
- Potential slopes

Dark energy from string theory? \longrightarrow Can we get $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$ from string theory ? + V > 0 + right shape of V ? + allow to distinguish among various V that are ok with observations (e.g. inflation) Answers: Difficult Yes, natural from string compactification Very challenging! V is due to extra dimensions and physical content (in a controlled way) $\partial_{\omega}^2 V \sim m^2$: solution stability / spectrum

Classical de Sitter solutions

→ Massless Minkowski Conjecture: always a massless mode

Potential slopes

 \longrightarrow Mass bound in (susy) AdS: always a mode $m^2 l^2 \leq -2$

I. Classical dS solutions

Classical de Sitter string backgrounds: why classical? \longrightarrow tree-level, low energy: ``easy'' to control: $g_s \ll 1, r \gg l_s, ...$

KKLT, LVS: include (non)-perturbative contributions Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 → debate on validity of approximations/regimes/control

Classical de Sitter string backgrounds: why classical? Andriot '19 \rightarrow tree-level, low energy: ``easy'' to control: $g_s \ll 1, r \gg l_s, ...$

KKLT, LVS: include (non)-perturbative contributions Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 → debate on validity of approximations/regimes/control

Classical: 1. find solution in 10d supergravity: candidate solution 2. verify that solution obeys $g_s \ll 1$, $r \gg l_s$, ... Classical de Sitter string backgrounds: why classical? Andriot '19 \rightarrow tree-level, low energy: ``easy'' to control: $g_s \ll 1, r \gg l_s, ...$

KKLT, LVS: include (non)-perturbative contributions Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 → debate on validity of approximations/regimes/control

Classical: 1. find solution in 10d supergravity: candidate solution 2. verify that solution obeys $g_s \ll 1$, $r \gg l_s$, ...

Before 2020: only known dS solutions: Danielsson, Haque, Koerber, Shiu, Van Riet, Wrase '11 $dS_4 \times 6d$ group manifold

obtained in 10d type IIA supergravity, with F_0 , with 4 sets of intersecting O_6/D_6 ($\mathcal{N} = 1$ in 4d) Why group manifold? Show that require $\mathcal{R}_6 < 0$ Classical de Sitter string backgrounds: why classical? Andriot '19 \rightarrow tree-level, low energy: ``easy'' to control: $g_s \ll 1, r \gg l_s, ...$

KKLT, LVS: include (non)-perturbative contributions Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 → debate on validity of approximations/regimes/control

Classical: 1. find solution in 10d supergravity: candidate solution 2. verify that solution obeys $g_s \ll 1$, $r \gg l_s$, ...

Before 2020: only known dS solutions: Danielsson, Haque, Koerber, Shiu, Van Riet, Wrase '11 $dS_4 \times 6d$ group manifold

obtained in 10d type IIA supergravity, with F_0 , with 4 sets of intersecting O_6/D_6 ($\mathcal{N} = 1$ in 4d) Why group manifold? Show that require $\mathcal{R}_6 < 0$

First difficulty: tough to find dS solutions! Require 6d curvature, fluxes, O_p/D_p

- \longrightarrow many no-go theorems: if $\mathcal{R}_6 \geq 0$, if $F_k = 0$, etc., then no dS.
- \rightarrow progress in identifying the required ingredients/where to find dS solutions \rightarrow new/all solutions

Classification of 10d type IIA/B supergravity solutions with dS_4 , $Mink_4$, AdS_4 + database Andriot, Horer, Marconnet '22

Classification of 10d type IIA/B supergravity solutions with dS_4 , $Mink_4$, AdS_4 + database

Andriot, Horer, Marconnet '22

Ansatz: 6d group manifold, smeared O_p/D_p , etc. + always include O_p (key)

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24] , ✓	[29]	✓
s_{555}	(2.17)	(2.16)	×	\checkmark	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[2 5], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	✓
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	\checkmark		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

Classification of 10d type IIA/B supergravity solutions with dS_4 , $Mink_4$, AdS_4 + database Andriot, Horer, Marconnet '22

Ansatz: 6d group manifold, smeared O_p/D_p , etc. + always include O_p (key)

Known solutions: [..] New solutions: ✓

No-go: \times

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24] , ✓	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	\checkmark	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[25], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	✓	\checkmark
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	\checkmark		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

 s_{6666}

Set I	Sources	Space dimensions									
			4d		1	2	3	4	5	6	
1	$\boxed{O_6, (D_6)}$	\otimes	\otimes	\otimes	\otimes	\otimes	\otimes				
2	$O_6, (D_6)$	\otimes	\otimes	\otimes	\otimes			\otimes	\otimes		
3	$O_6, (D_6)$	\otimes	\otimes	\otimes		\otimes			\otimes	\otimes	
4	$O_6, (D_6)$	\otimes	\otimes	\otimes			\otimes	\otimes		\otimes	

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24], ✓	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	\checkmark	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[25], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	✓	✓
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	\checkmark		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

 s_{6666}

Set I	Sources	Space dimensions									
			4d		1	2	3	4	5	6	
1	$\boxed{O_6, (D_6)}$	\otimes	\otimes	\otimes	\otimes	\otimes	\otimes				
2	$O_6, (D_6)$	\otimes	\otimes	\otimes	\otimes			\otimes	\otimes		
3	$O_6, (D_6)$	\otimes	\otimes	\otimes		\otimes			\otimes	\otimes	
4	$O_6, (D_6)$	\otimes	\otimes	\otimes			\otimes	\otimes		\otimes	

- dS Caviezel, Koerber, Kors, Lüst, Wrase, Zagermann '08 Danielsson, Haque, Koerber, Shiu, Van Riet, Wrase '11 + new solutions

- Mink

Camara, Font, Ibanez '05 Marchesano, Quirant '19

- AdS

Camara, Font, Ibanez '05 DeWolfe, Giryavets, Kachru, Taylor '05 Caviezel, Koerber, Kors, Lüst, Tsimpis, Zagermann '08

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24], √	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	√	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[25], √	[30]	[30 - 32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	√	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	√		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

4 main classes: $\begin{array}{cc} s_{6666} & s_{55} \\ m_{5577} & m_{46} \end{array}$

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.	
class	directions	$\operatorname{content}$				4 main classes: s_{6666} s_{55}
s_3	(2.7)	(2.6)	×	[27]		m_{5577} m_{46}
<i>s</i> ₄	(2.10)	(2.9)		[28]		
<i>s</i> ₅	(2.13)	(2.12)		[28]		
s_{55}	(2.15)	(2.14)	[9,24], √	[29]	\checkmark	\longrightarrow new dS solutions with $2O_5$, $1D_5$
\$555	(2.17)	(2.16)	×	 ✓ 	×	
s_6	(2.20)	(2.19)		[28]		
<i>S</i> 66	(2.22)	(2.21)	\checkmark	[29]		
\$6666	(2.24)	(2.23)	[<u>25</u>], ✓	[30]	[30-32]	\longrightarrow old (< 2020) dS solutions with $4O_6$
s_7	(2.27)	(2.26)	×	[28]		
s ₇₇	(2.29)	(2.28)	×			
m_4	(2.36)	(2.9)				
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark	\longrightarrow new dS solutions with $1O_4$, $1O_6$, $1D_6$
m_{466}	(2.35)	(2.34)	×	√	×	
m_6	(2.30)	(2.19)				
m_{66}	(2.31)	(2.21)				
m_5	(2.37)	(2.12)				
m_{55}	(2.38)	(2.14)	\checkmark			
m_{57}	(2.40)	(2.39)				
m_{5577}	(2.43)	(2.41)	[26], √		[32, 33]	\longrightarrow new dS solutions with $2O_5$, $2O_7$
m_7	(2.44)	(2.26)				
m ₇₇	(2.45)	(2.28)				

 s_{55} : O₅ along 12, 34, D₅ along 56

 s_{55} : O₅ along 12, 34, D₅ along 56

Previously: **Conjecture 1**: *no de Sitter solution with 1 set (i.e. parallel O_p/D_p)*. Here: **Conjecture 4**: *no de Sitter solution with 2 (intersecting) sets of O_p/D_p*. + T-duality argument: classes with 2 sets ``T-dual'' to a class with a no-go

 s_{55} : O₅ along 12, 34, D₅ along 56

Previously: **Conjecture 1**: *no de Sitter solution with 1 set (i.e. parallel O_p/D_p)*. Here: **Conjecture 4**: *no de Sitter solution with 2 (intersecting) sets of O_p/D_p.* + T-duality argument: classes with 2 sets ``T-dual'' to a class with a no-go

Implication: A 4d effective theory of a classical string compactification, with a de Sitter critical point, is at most $\mathcal{N} = 1$ supersymmetric.

in agreement with gauged supergravities de Sitter solutions

(see also Cribiori, Dall'Agata, Farakos '20, Dall'Agata, Emelin, Farakos, Morittu '21)

 s_{55} : O₅ along 12, 34, D₅ along 56

Previously: **Conjecture 1**: *no de Sitter solution with 1 set (i.e. parallel O_p/D_p)*. Here: **Conjecture 4**: *no de Sitter solution with 2 (intersecting) sets of O_p/D_p.* + T-duality argument: classes with 2 sets ``T-dual'' to a class with a no-go

Implication: A 4d effective theory of a classical string compactification, with a de Sitter critical point, is at most $\mathcal{N} = 1$ supersymmetric.

in agreement with gauged supergravities de Sitter solutions

(see also Cribiori, Dall'Agata, Farakos '20, Dall'Agata, Emelin, Farakos, Morittu '21)

Great news for phenomenology! $N \leq 1$ better for particle physics (chirality). Here a common stringy framework for (viable) cosmology and particle physics *naturally* appears.

+ important role for dS_d , d > 4 (\longrightarrow no solution?)

Do solutions with dS_d , $3 \le d \le 10$, exist (in 10d type II supergravities)? And riot, Horer '22

Do solutions with dS_d , $3 \le d \le 10$, exist (in 10d type II supergravities)? Andriot, Horer '22 \longrightarrow extend no-go theorems to *d*-dim., against dS_d

- Results: \longrightarrow No dS_d solution for $d \ge 8$ Van Riet '11
 - \longrightarrow No dS_d solution for d = 7 in IIB

Do solutions with dS_d , $3 \le d \le 10$, exist (in 10d type II supergravities)? Andriot, Horer '22 \longrightarrow extend no-go theorems to *d*-dim., against dS_d

- Results: \longrightarrow No dS_d solution for $d \ge 8$ Van Riet '11
 - \longrightarrow No dS_d solution for d = 7 in IIB
- + supersymmetry-preserving O_p/D_p
 - \longrightarrow No dS_d solution for d = 7
 - \rightarrow very constrained/unlikely dS_d solution for d = 6, 5

Do solutions with dS_d , $3 \le d \le 10$, exist (in 10d type II supergravities)? Andriot, Horer '22 \longrightarrow extend no-go theorems to *d*-dim., against dS_d

Results: \longrightarrow No dS_d solution for $d \ge 8$ Van Riet '11

 \longrightarrow No dS_d solution for d = 7 in IIB

+ supersymmetry-preserving O_p/D_p

- \longrightarrow No dS_d solution for d = 7
- \rightarrow very constrained/unlikely dS_d solution for d = 6, 5

Only O_p/D_p configuration with 1 or 2 sets: e.g. \longrightarrow conjectures 1 and 4: no dS_d ! (susy in d > 4 requires > 4 supercharges)

Sources	d = 6 spacetime	1	2	3	4
$O_6, (D_6)$	\otimes	\otimes			
(O_8, D_8)	\otimes		\otimes	\otimes	\otimes

Do solutions with dS_d , $3 \le d \le 10$, exist (in 10d type II supergravities)? Andriot, Horer '22 \longrightarrow extend no-go theorems to *d*-dim., against dS_d

Results: \longrightarrow No dS_d solution for $d \ge 8$ Van Riet '11

 \longrightarrow No dS_d solution for d = 7 in IIB

+ supersymmetry-preserving O_p/D_p

- \longrightarrow No dS_d solution for d = 7
- \rightarrow very constrained/unlikely dS_d solution for d = 6, 5

Only O_p/D_p configuration with 1 or 2 sets: e.g. \longrightarrow conjectures 1 and 4: no dS_d ! (susy in d > 4 requires > 4 supercharges)

Sources	d = 6 spacetime	1	2	3	4
$O_6, (D_6)$	\otimes	\otimes			
(O_8, D_8)	\otimes		\otimes	\otimes	\otimes

Summary: we know where to find dS solutions: d = 4, need 3 or more sets of intersecting O_p/D_p ($\mathcal{N} = 1$ in 4d), fluxes, 6d curvature

Second difficulty: (in)stability

All dS solutions found are perturbatively unstable: at least one tachyonic field/maximum in 4d V

$$\longrightarrow \eta_V < 0$$
 with $\eta_V = M_p^2 \frac{\operatorname{Min}(g^{ik} \nabla_k \partial_j V)}{V}$

Second difficulty: (in)stability

All dS solutions found are perturbatively unstable: at least one tachyonic field/maximum in 4d V

$$\longrightarrow \eta_V < 0$$
 with $\eta_V = M_p^2 \frac{\operatorname{Min}(g^{ik} \nabla_k \partial_j V)}{V}$

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

Single-field slow-roll inflation: data: $\eta_V \sim -0.01$ Planck '18

Second difficulty: (in)stability

All dS solutions found are perturbatively unstable: at least one tachyonic field/maximum in 4d V

$$\longrightarrow \eta_V < 0$$
 with $\eta_V = M_p^2 \frac{\operatorname{Min}(g^{ik} \nabla_k \partial_j V)}{V}$

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

Single-field slow-roll inflation: data: $\eta_V \sim -0.01$ Planck '18 Problem here: too unstable: $\eta_V < -1$ Andriot, Marconnet, Rajaguru, Wrase '22

More dedicated searches of specific solutions? Andriot '21

Second difficulty: (in)stability

All dS solutions found are perturbatively unstable: at least one tachyonic field/maximum in 4d V

$$\longrightarrow \eta_V < 0$$
 with $\eta_V = M_p^2 \frac{\operatorname{Min}(g^{ik} \nabla_k \partial_j V)}{V}$

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

Single-field slow-roll inflation: data: $\eta_V \sim -0.01$ Planck '18

Problem here: too unstable: $\eta_V < -1$ Andriot, Marconnet, Rajaguru, Wrase '22

More dedicated searches of specific solutions? Andriot '21

Third (and major) difficulty: (non)- classicality Roupec, Wrase '18, Junghans '18, Andriot, Marconnet, Wrase '20

Are 10d supergravity solutions classical string backgrounds? $g_s \ll 1, \ r \gg l_s, \ N_{O_5} \le 16$, fluxes quantized, compact group manifold (lattice quantization)

Second difficulty: (in)stability

All dS solutions found are perturbatively unstable: at least one tachyonic field/maximum in 4d V

$$\longrightarrow \eta_V < 0$$
 with $\eta_V = M_p^2 \frac{\operatorname{Min}(g^{ik} \nabla_k \partial_j V)}{V}$

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

Single-field slow-roll inflation: data: $\eta_V \sim -0.01$ Planck '18

Problem here: too unstable: $\eta_V < -1$ Andriot, Marconnet, Rajaguru, Wrase '22

More dedicated searches of specific solutions? Andriot '21

Third (and major) difficulty: (non)- classicality Roupec, Wrase '18, Junghans '18, Andriot, Marconnet, Wrase '20

Are 10d supergravity solutions classical string backgrounds? $g_s \ll 1, \ r \gg l_s, \ N_{O_5} \le 16$, fluxes quantized, compact group manifold (lattice quantization) ≥ 2018 : no! For s_{6666} solutions and 2 s_{55} solutions (difficult to check!)

Second difficulty: (in)stability

All dS solutions found are perturbatively unstable: at least one tachyonic field/maximum in 4d V

$$\longrightarrow \eta_V < 0$$
 with $\eta_V = M_p^2 \frac{\operatorname{Min}(g^{ik} \nabla_k \partial_j V)}{V}$

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

Single-field slow-roll inflation: data: $\eta_V \sim -0.01$ Planck '18

Problem here: too unstable: $\eta_V < -1$ Andriot, Marconnet, Rajaguru, Wrase '22

More dedicated searches of specific solutions? Andriot '21

Third (and major) difficulty: (non)- classicality Roupec, Wrase '18, Junghans '18, Andriot, Marconnet, Wrase '20

Are 10d supergravity solutions classical string backgrounds? $g_s \ll 1, r \gg l_s, N_{O_5} \le 16$, fluxes quantized, compact group manifold (lattice quantization) ≥ 2018 : **no**! For s_{6666} solutions and 2 s_{55} solutions (difficult to check!) Key: no parametric control on classicality for dS \longrightarrow solutions: isolated points in field space (bulk)

→ Numerically very challenging!

Side result 1: Massless Minkowski Conjecture

If we allow for many fluxes, 6d curvature, O_p/D_p , can all fields be stabilized for a Minkowski solution?

Classification of Minkowski solutions

 \longrightarrow diversity of solutions w.r.t. fluxes, 6d manifold, O_p/D_p

Spectrum computed thanks to V and mass matrix $(g^{ik}\nabla_k\partial_j V)$ first for (ρ, τ, σ_I) , then for full consistent truncation Andriot, Horer, Marconnet '22, Andriot, Marconnet, Rajaguru, Wrase '22 $s_{55}^{0}1$

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -1.0206,$ masses² = (3.6377, 1.5406, 0.33559, 0).

 $s^{0}_{555}1$

 $\mathcal{R}_4 = 0 \,, \quad \mathcal{R}_6 = -0.017241 \,,$ $\mathrm{masses}^2 = (0.052928, 0.0021215, 0.00005291, 0) \,.$

 $s^{0}_{555}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$, masses² = (0.83127, 0.07301, 0.068032, 0).

$m_{46}^0 1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, masses² = (3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-6}, 0).

$m_{46}^0 2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, masses² = (0.52608, 0.077079, 0.021226, 0, 0).

 $m^0_{466} 1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, masses² = (0.26972, 0.074729, 0.020261, 0, 0).

 $m^0_{466}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.039542$, masses² = (0.23513, 0.03448, 0.00023868, 0, 0). Classification of Minkowski solutions

 \longrightarrow diversity of solutions w.r.t. fluxes, 6d manifold, O_p/D_p

Spectrum computed thanks to V and mass matrix $(g^{ik}\nabla_k\partial_j V)$ first for (ρ, τ, σ_I) , then for full consistent truncation Andriot, Horer, Marconnet '22, Andriot, Marconnet, Rajaguru, Wrase '22

 $s^{0}_{55}1$ $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -1.0206,$ $masses^2 = (3.6377, 1.5406, 0.3355, 0)$ $s^{0}_{555}1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.017241$, $masses^2 = (0.052928, 0.0021215, 0.0000529, 0)$ $s^{0}_{555}2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$, $masses^2 = (0.83127, 0.07301, 0.068033, 0)$ $m_{46}^0 1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, $masses^2 = (3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-1}, 0)$ $m_{46}^0 2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, $masses^2 = (0.52608, 0.077079, 0.021226, 0, 0)$ $m^0_{466} 1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, masses² = (0.26972, 0.074729, 0.020261, 0, 0) $m^0_{466}2$ $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.039542,$

Mink solutions: always a massless mode (IIA/B, different D_p/O_p) \longrightarrow systematic massless mode in Mink solutions? (not nec. flat dir.) $s^{0}_{55}1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -1.0206$, $masses^2 = (3.6377, 1.5406, 0.3355, 0)$ $s^0_{555}1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.017241$, $masses^2 = (0.052928, 0.0021215, 0.0000529, 0)$ $s^{0}_{555}2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$, $masses^2 = (0.83127, 0.07301, 0.06803; 0)$ $m_{46}^0 1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, $masses^2 = (3.3631, 0.45394, 0.067729, 9.1638 \cdot 10^{-1}, 0)$ $m_{46}^0 2$ $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.023897,$ $masses^2 = (0.52608, 0.077079, 0.021226, 0, 0)$ $m^0_{466} 1$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, $masses^2 = (0.26972, 0.074729, 0.020261, 0, 0)$ $m^0_{466}2$ $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.039542$, $masses^2 = (0.23513, 0.03448, 0.00023868, 0, 0)$

Mink solutions: always a massless mode (IIA/B, different D_p/O_p) \longrightarrow systematic massless mode in Mink solutions? (not nec. flat dir.)

Here: Massless Minkowski Conjecture: Andriot, Horer, Marconnet '22 10d supergravity solutions compactified to 4d Minkowski always admit a massless 4d scalar, among the fields (ρ, τ, σ_I) $s_{55}^{0}1$

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -1.0206,$ masses² = (3.6377, 1.5406, 0.3355, 0)

 $s^{0}_{555}1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.017241$, masses² = (0.052928, 0.0021215, 0.0000529, 0)

 $s^{0}_{555}2$

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.11649,$ masses² = (0.83127, 0.07301, 0.06803, 0)

 $m_{46}^0 1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, masses² = (3.3631, 0.45394, 0.067729, 9.1638 · 10⁻, 0)

 $m_{46}^0 2$

 $m^0_{466} 1$

 $m^0_{466}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, masses² = (0.52608, 0.077079, 0.021226, 0)

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.026276$, masses² = (0.26972, 0.074729, 0.020261, (0.0))

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.039542,$ masses² = (0.23513, 0.03448, 0.00023868, 0, 0) Mink solutions: always a massless mode (IIA/B, different D_p/O_p) \rightarrow systematic massless mode in Mink solutions? (not nec. flat dir.)

Here: Massless Minkowski Conjecture: Andriot, Horer, Marconnet '22 10d supergravity solutions compactified to 4d Minkowski always admit a massless 4d scalar, among the fields (ρ, τ, σ_I)

2 important (new) points in claim:

- independent of $\ensuremath{\mathcal{N}}$ susy of theory or solution

- specification of field sector \longrightarrow useful for proof

 \rightarrow relation to dS tachyon?

 $s_{55}^{0}1$

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -1.0206,$ masses² = (3.6377, 1.5406, 0.3355, 0)

 $s^{0}_{555}1$

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.017241,$ masses² = (0.052928, 0.0021215, 0.0000529, 0)

 $s^{0}_{555}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.11649$, masses² = (0.83127, 0.07301, 0.06803, 0)

 $m_{46}^0 1$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.015368$, masses² = (3.3631, 0.45394, 0.067729, 9.1638 · 10⁻, 0)

 $m_{46}^0 2$

 $m^0_{466}1$

 $m^0_{466}2$

 $\mathcal{R}_4 = 0$, $\mathcal{R}_6 = -0.023897$, masses² = (0.52608, 0.077079, 0.021226, 0.0)

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.026276,$ masses² = (0.26972, 0.074729, 0.020261, 0)

 $\mathcal{R}_4 = 0, \quad \mathcal{R}_6 = -0.039542,$ masses² = (0.23513, 0.03448, 0.00023868, 0.0) Mink solutions: always a massless mode (IIA/B, different D_p/O_p) \rightarrow systematic massless mode in Mink solutions? (not nec. flat dir.)

Here: Massless Minkowski Conjecture: Andriot, Horer, Marconnet '22 10d supergravity solutions compactified to 4d Minkowski always admit a massless 4d scalar, among the fields (ρ, τ, σ_I)

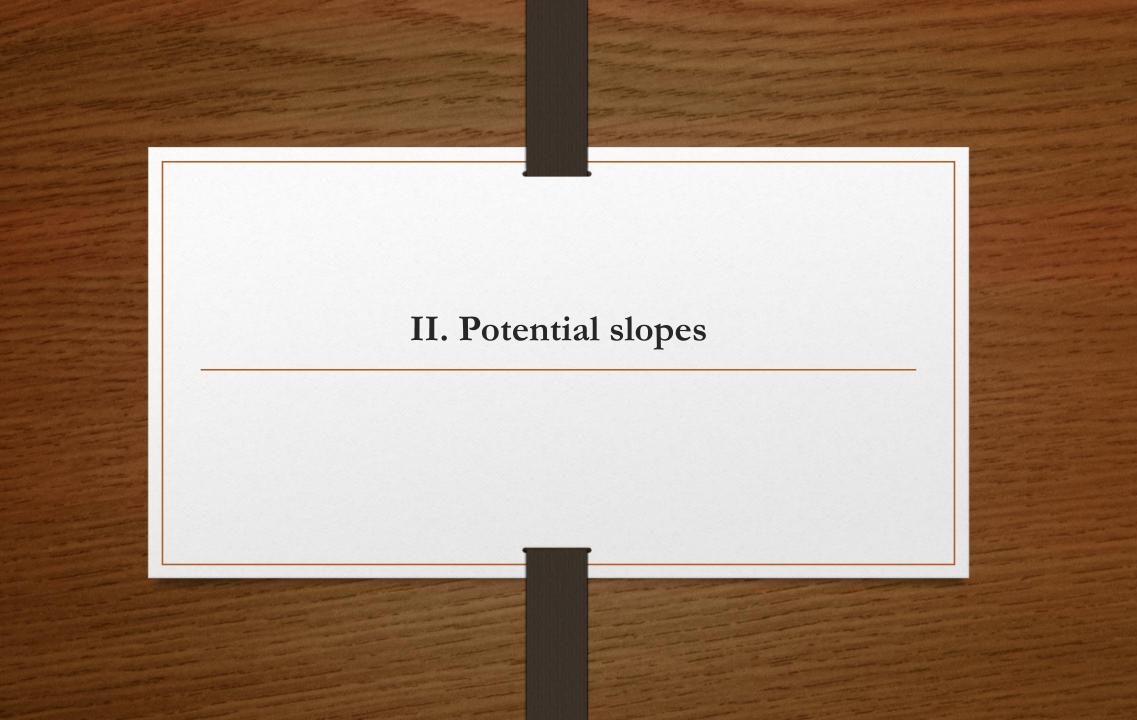
2 important (new) points in claim:

- independent of $\,\mathcal{N}$ susy of theory or solution

- specification of field sector \longrightarrow useful for proof

 \rightarrow relation to dS tachyon?

(reminiscent of the Tadpole Conjecture Bena, Blaback, Grana, Lust '20)
Beyond supergravity compactif.? Becker, Gonzalo, Walcher, Wrase '22
In a quantum gravity effective theory, any correction beyond supergravity could alter massless property...
Still interesting for phenomenology!



We consider as string EFT: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

If no de Sitter critical point: $V > 0, V' \neq 0, \frac{|V'|}{V} > 0$

Cosmology with potential slopes and rolling fields: inflation, quintessence

Can we get $\frac{|V'|}{V} \ll 1$: quasi de Sitter / almost flat V? \longrightarrow Very unlikely! There must be a lower bound: $\frac{|V'|}{V} \ge c$: how much? We consider as string EFT: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

If no de Sitter critical point: $V > 0, V' \neq 0, \frac{|V'|}{V} > 0$

Cosmology with potential slopes and rolling fields: inflation, quintessence

Can we get $\frac{|V'|}{V} \ll 1$: quasi de Sitter / almost flat V? \longrightarrow Very unlikely! There must be a lower bound: $\frac{|V'|}{V} \ge c$: how much?

De Sitter swampland conjecture: $c \sim O(1)$ Obied, Ooguri, Spodyneiko, Vafa '18

 \rightarrow no way to realise slow-roll single-field inflation: reminder: $\epsilon_V \approx 0.001$ Planck '18

We consider as string EFT: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

If no de Sitter critical point: $V > 0, V' \neq 0, \frac{|V'|}{V} > 0$

Cosmology with potential slopes and rolling fields: inflation, quintessence

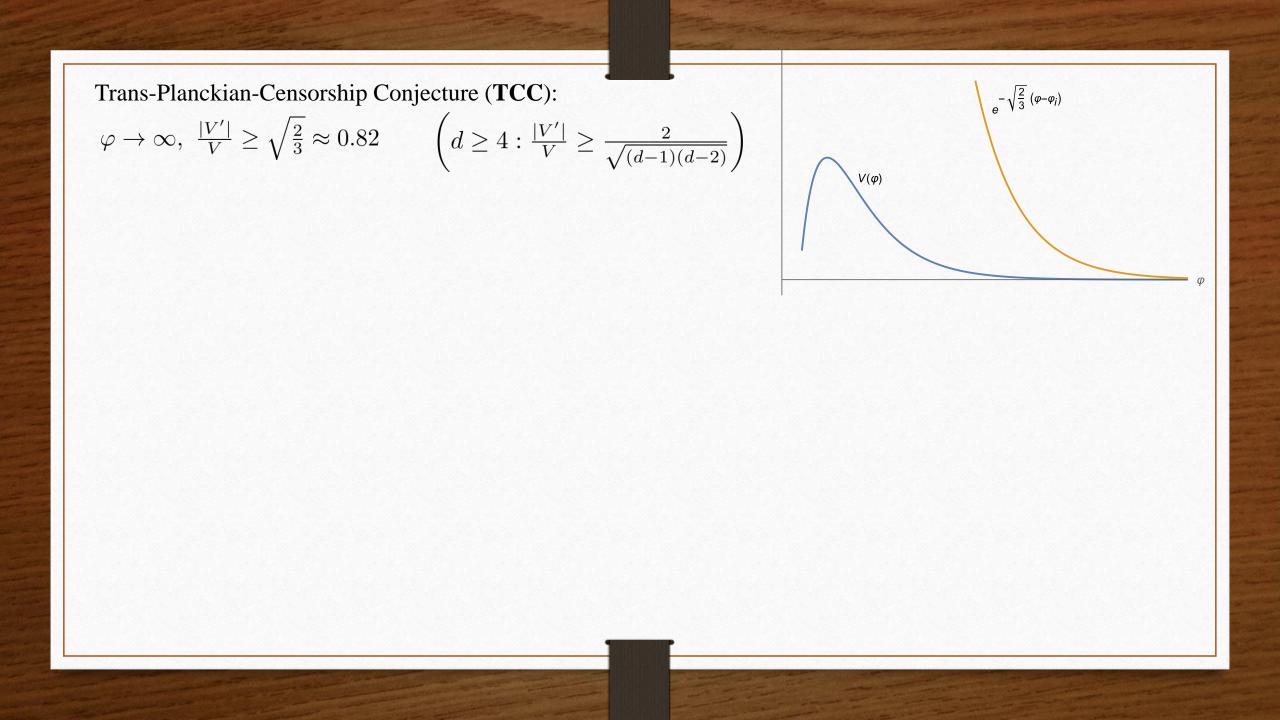
Can we get $\frac{|V'|}{V} \ll 1$: quasi de Sitter / almost flat V? \longrightarrow Very unlikely! There must be a lower bound: $\frac{|V'|}{V} \ge c$: how much?

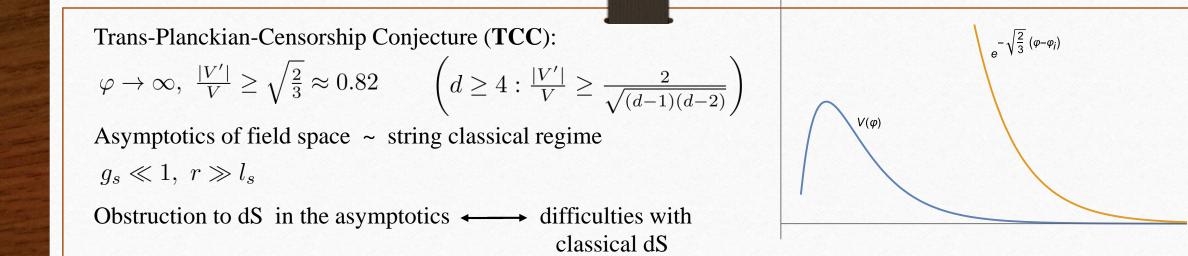
De Sitter swampland conjecture: $c \sim O(1)$ Obied, Ooguri, Spodyneiko, Vafa '18

 \rightarrow no way to realise slow-roll single-field inflation: reminder: $\epsilon_V \approx 0.001$ Planck '18 Discussions, refinements: this cannot be true everywhere in field space \rightarrow only true in the **asymptotics** of field space: $\varphi \rightarrow \infty$

Trans-Planckian Censorship ConjectureBedroya, Vafa '19(TCC): $\varphi \rightarrow \infty, \ \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$

We consider as string EFT: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$ If no de Sitter critical point: $V > 0, V' \neq 0, \frac{|V'|}{V} > 0$ Cosmology with potential slopes and rolling fields: inflation, quintessence Can we get $\frac{|V'|}{V} \ll 1$: quasi de Sitter / almost flat V? \longrightarrow Very unlikely! **Bulk** of field space: dS solution or There must be a lower bound: $\frac{|V'|}{V} \ge c$: how much? slow-roll inflation De Sitter swampland conjecture: $c \sim O(1)$ Obied, Ooguri, Spodyneiko, Vafa '18 \rightarrow no way to realise slow-roll single-field inflation: reminder: $\epsilon_V \approx 0.001$ Planck '18 Discussions, refinements: this cannot be true everywhere in field space \longrightarrow only true in the **asymptotics** of field space: $\varphi \to \infty$ $e^{-\sqrt{\frac{2}{3}}(\varphi-\varphi_i)}$ Trans-Planckian Censorship Conjecture Bedroya, Vafa '19 $\varphi \to \infty, \ \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$ (**TCC**): $V(\varphi)$ $V \sim V_0 e^{-\lambda \varphi}, \quad |V'|/V = \lambda$



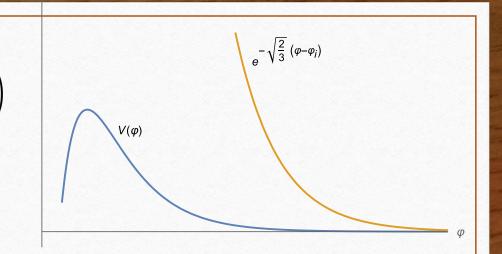


Trans-Planckian-Censorship Conjecture (TCC): $\varphi \to \infty, \ \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82 \qquad \left(d \ge 4 : \frac{|V'|}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}}\right)$ Asymptotics of field space ~ string classical regime $g_s \ll 1, \ r \gg l_s$

Obstruction to dS in the asymptotics \longleftrightarrow difficulties with classical dS

This link made precise with supergravity no-go theorems:

• in d = 4: 10 no-go theorems against classical dS_4 reformulated in the form $\frac{|V'|}{V} \ge c$



Trans-Planckian-Censorship Conjecture (**TCC**): $\varphi \to \infty, \ \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82 \qquad \left(d \ge 4 : \frac{|V'|}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}}\right)$ Asymptotics of field space ~ string classical regime $g_s \ll 1, \ r \gg l_s$

Obstruction to dS in the asymptotics \longleftrightarrow difficulties with classical dS

This link made precise with **supergravity no-go theorems**:

• in d = 4: 10 no-go theorems against classical dS_4 reformulated in the form $\frac{|V'|}{V} \ge c$ Result: $c \ge \sqrt{\frac{2}{3}}$ Andriot, Cribiori, Erkinger '20

Impressive/surprising matching because TCC based on bottom-up/effective cosmology argument

 $-\sqrt{\frac{2}{3}}(\varphi-\varphi_i)$

 $V(\varphi)$

Trans-Planckian-Censorship Conjecture (TCC): $\varphi \to \infty, \ \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82 \qquad \left(d \ge 4: \frac{|V'|}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}}\right)$ Asymptotics of field space ~ string classical regime $q_s \ll 1, \ r \gg l_s$ Obstruction to dS in the asymptotics \longleftrightarrow difficulties with

This link made precise with **supergravity no-go theorems**:

• in d = 4: 10 no-go theorems against classical dS_4 reformulated in the form $\frac{|V'|}{V} \ge c$ Result: $c \ge \sqrt{\frac{2}{3}}$ Andriot, Cribiori, Erkinger '20

Impressive/surprising matching because TCC based on bottom-up/effective cosmology argument

classical dS

 $-\sqrt{\frac{2}{3}}(\varphi-\varphi_i)$

 $V(\varphi)$

• in $d \ge 4$: 7 no-go theorems against classical dS_d reformulated in the form $\frac{|V'|}{V} \ge c$

Result: $c \ge \frac{2}{\sqrt{(d-1)(d-2)}}$ Andriot, Horer '22

Trans-Planckian-Censorship Conjecture (**TCC**): $\varphi \to \infty, \ \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82 \qquad \left(d \ge 4: \frac{|V'|}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}}\right)$ Asymptotics of field space ~ string classical regime $q_s \ll 1, \ r \gg l_s$ Obstruction to dS in the asymptotics \longleftrightarrow difficulties with classical dS

This link made precise with **supergravity no-go theorems**:

• in d = 4: 10 no-go theorems against classical dS_4 reformulated in the form $\frac{|V'|}{V} \ge c$ Result: $c \ge \sqrt{\frac{2}{3}}$ Andriot, Cribiori, Erkinger '20

Impressive/surprising matching because TCC based on bottom-up/effective cosmology argument

 $e^{-\sqrt{\frac{2}{3}}}(\varphi-\varphi_i)$

 $V(\varphi)$

• in $d \ge 4$: 7 no-go theorems against classical dS_d reformulated in the form $\frac{|V'|}{V} \ge c$

Result: $c \ge \frac{2}{\sqrt{(d-1)(d-2)}}$ Andriot, Horer '22

Many supergravity compactification potentials obey TCC asymptotic bound

 \rightarrow Cosmology in the asymptotics of field space?

- → Cosmology in the asymptotics of field space?
- $\longrightarrow \text{ We face the bounds: TCC: } \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$ (Possible exception: $\frac{|V'|}{V} \ge \sqrt{\frac{2}{7}} \approx 0.53$ (Multifield: Strong de Sitter conjecture: $\frac{\nabla V}{V} \ge \sqrt{2}$

Calderon-Infante, Ruiz, Valenzuela '22)

Rudelius '21, '22)

- → Cosmology in the asymptotics of field space?
- $\longrightarrow \text{ We face the bounds: TCC: } \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$ (Possible exception: $\frac{|V'|}{V} \ge \sqrt{\frac{2}{7}} \approx 0.53$ Calderon-Infante, Ruiz, Valenzuela '22)
 (Multifield: Strong de Sitter conjecture: $\frac{\nabla V}{V} \ge \sqrt{2}$ Rudelius '21, '22)

Advantage of the asymptotics: V is naturally small \longrightarrow today dark energy? \longrightarrow quintessence model!

- → Cosmology in the asymptotics of field space?
- $\longrightarrow \text{ We face the bounds: TCC: } \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$ (Possible exception: $\frac{|V'|}{V} \ge \sqrt{\frac{2}{7}} \approx 0.53$ Calderon-Infante, Ruiz, Valenzuela '22)
 (Multifield: Strong de Sitter conjecture: $\frac{\nabla V}{V} \ge \sqrt{2}$ Rudelius '21, '22)

Advantage of the asymptotics: V is naturally small \longrightarrow today dark energy? \longrightarrow quintessence model! $V \sim V_0 e^{-\lambda \varphi}$, Observational bounds on exponential rate λ ? $\lambda \leq 0.6$ Agrawal, Obied, Steinhardt, Vafa '18

- → Cosmology in the asymptotics of field space?
- $\longrightarrow \text{ We face the bounds: TCC: } \frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$ (Possible exception: $\frac{|V'|}{V} \ge \sqrt{\frac{2}{7}} \approx 0.53$ Calderon-Infante, Ruiz, Valenzuela '22)
 (Multifield: Strong de Sitter conjecture: $\frac{\nabla V}{V} \ge \sqrt{2}$ Rudelius '21, '22)

Advantage of the asymptotics: V is naturally small \longrightarrow today dark energy? \longrightarrow quintessence model! $V \sim V_0 e^{-\lambda \varphi}$, Observational bounds on exponential rate λ ? $\lambda \leq 0.6$ Agrawal, Obied, Steinhardt, Vafa '18 Asymptotic accelerated expansion: bound: $\lambda \leq \sqrt{2}$ Halliwell '86, Copeland, Liddle, Wands '97

 \rightarrow Tight!

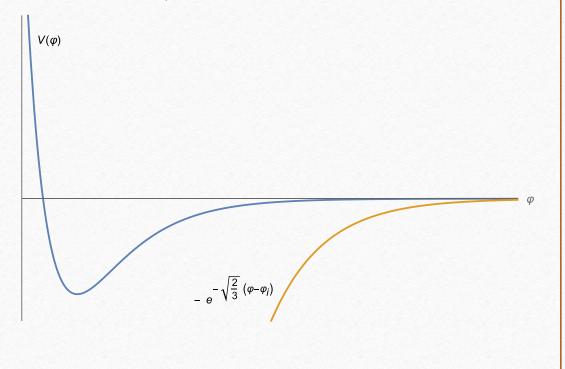
→ More examples or more exotic scenarios...

Negative scalar potentials from string theory: V < 0 : characterisation?

Negative scalar potentials from string theory: V < 0 : characterisation?

Proposed an Anti- Trans-Planckian Censorship Conjecture (ATCC) Andriot, Horer, Tringas '22 Bottom-up argument on contracting universe, Trans-Planckian modes, validity of EFT, etc.

$$\longrightarrow$$
 bound $(V < 0, V' > 0): d \ge 4: \varphi \to \infty, -\frac{V'}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}}$



Negative scalar potentials from string theory: V < 0 : characterisation?

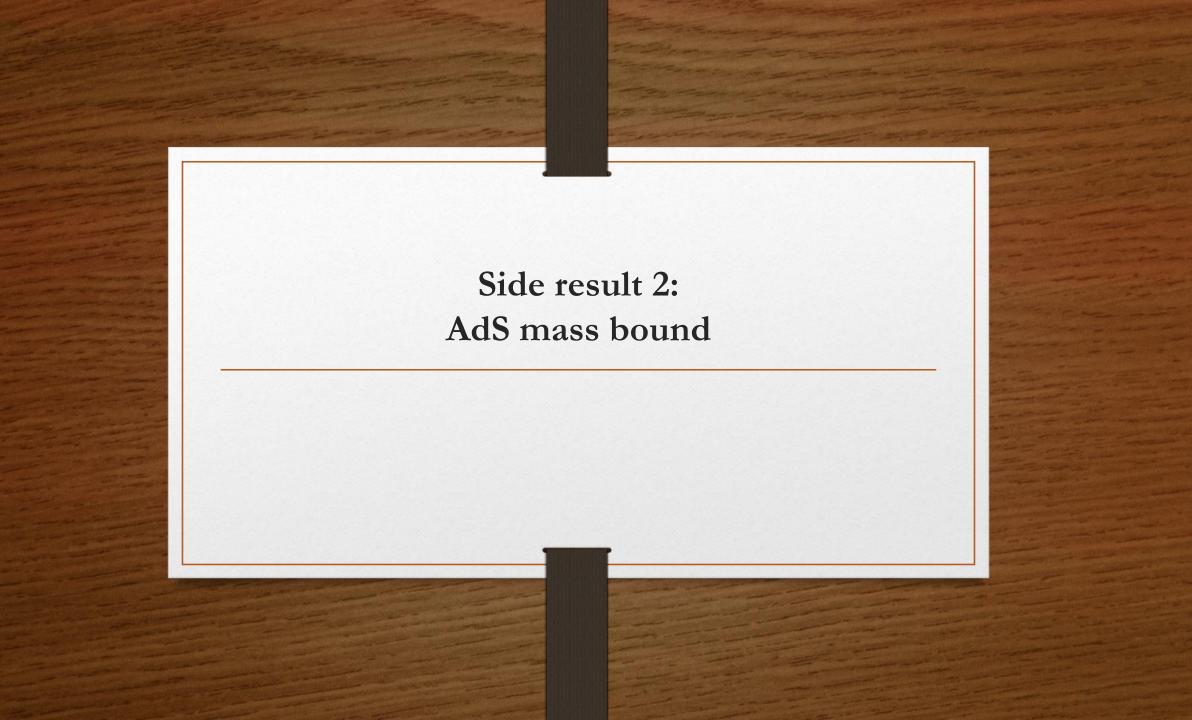
Proposed an Anti- Trans-Planckian Censorship Conjecture (ATCC) Andriot, Horer, Tringas '22 Bottom-up argument on contracting universe, Trans-Planckian modes, validity of EFT, etc.

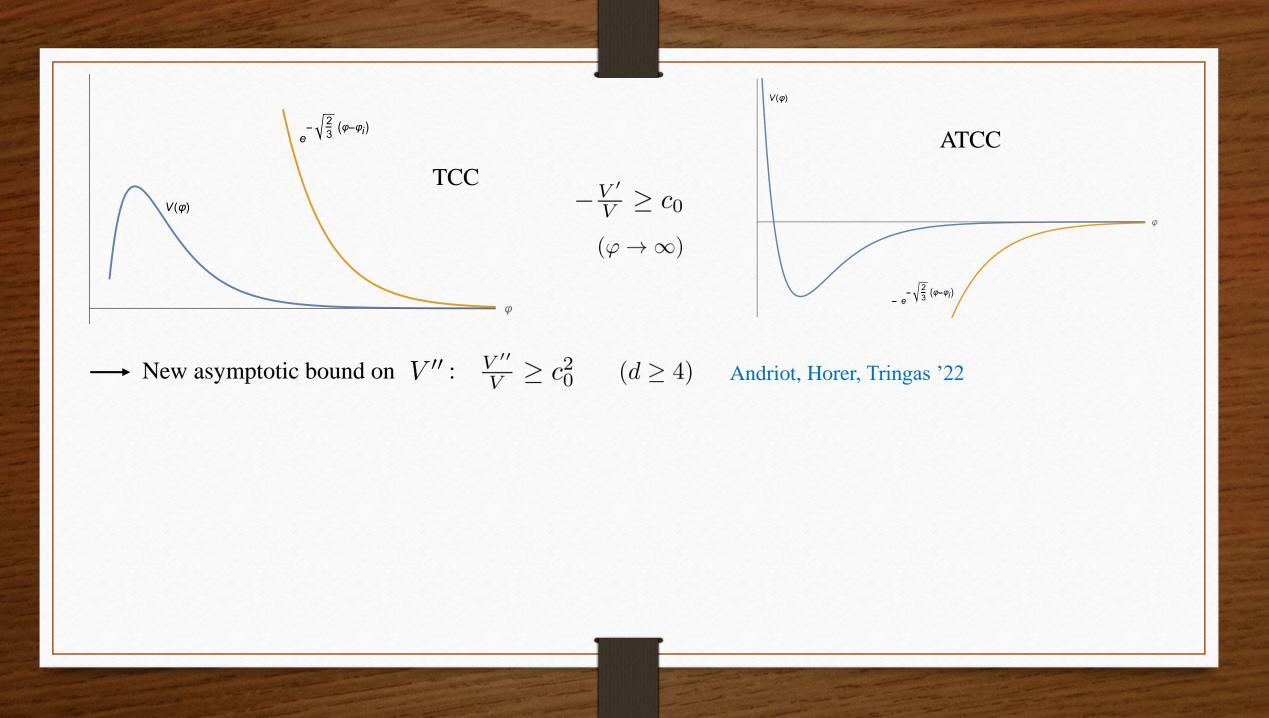
 \longrightarrow bound $(V < 0, V' > 0): d \ge 4: \varphi \to \infty, -\frac{V'}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}}$

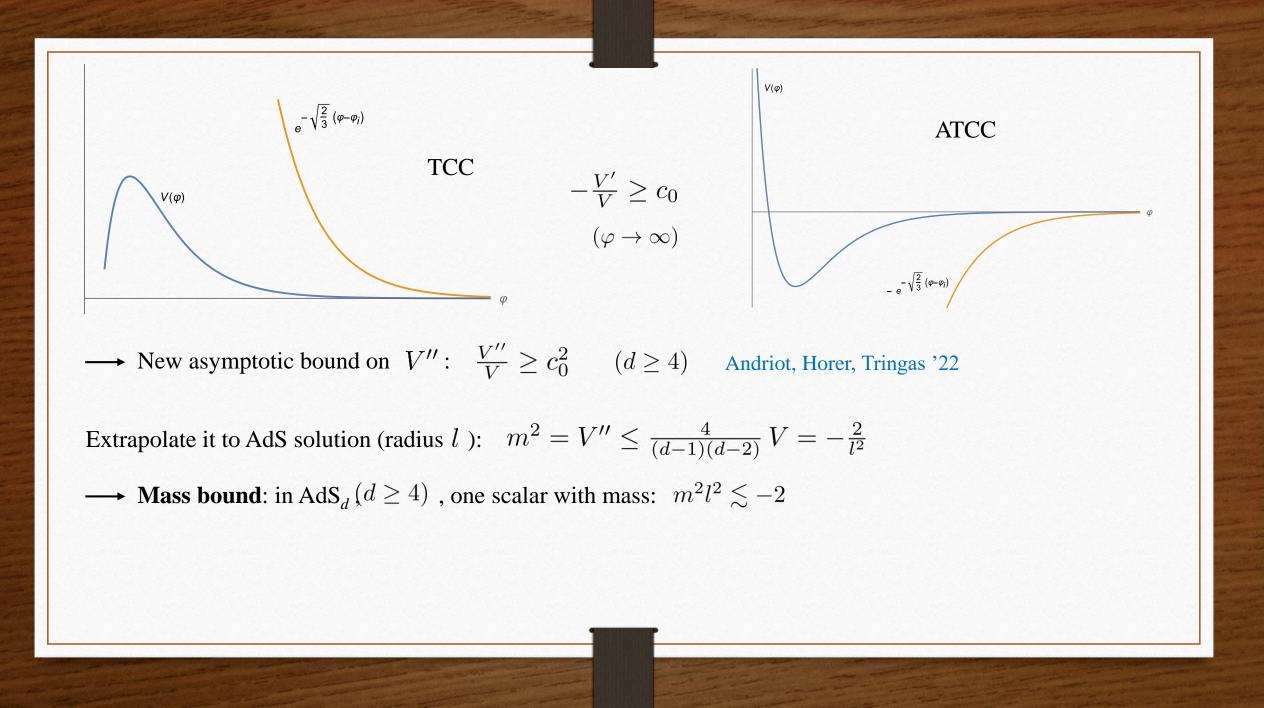
Well-tested in compactification examples:

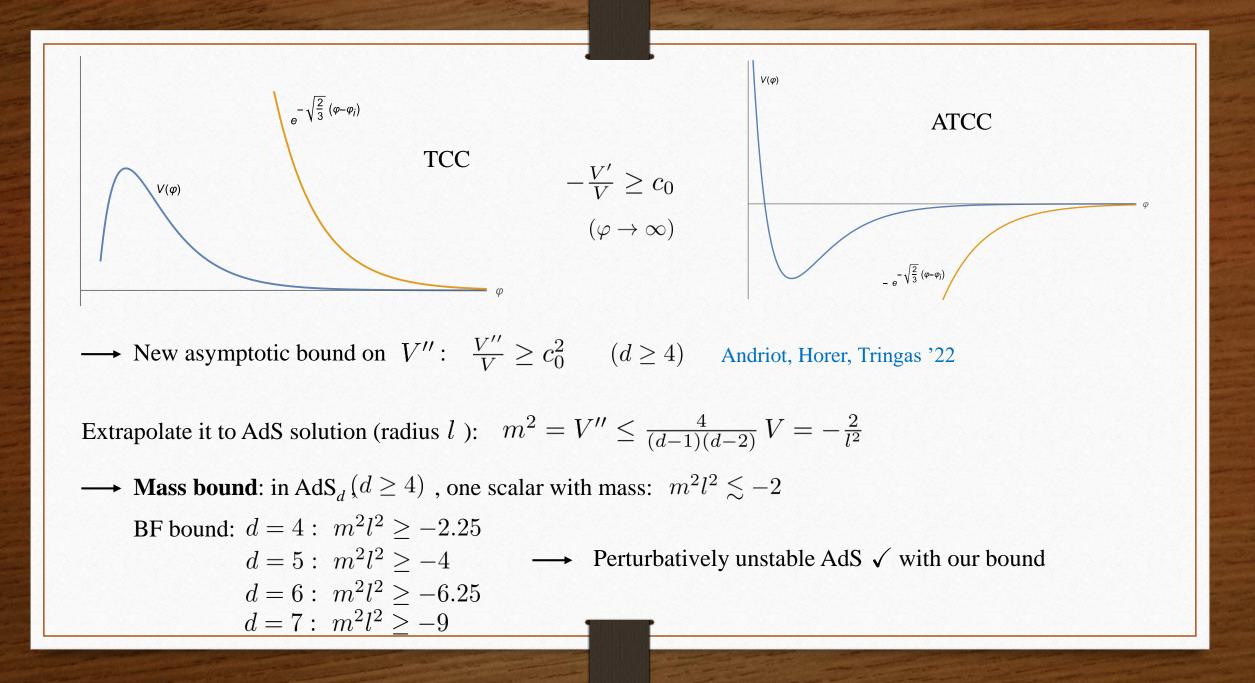
- $V(\rho, \tau, \sigma)$,
- AdS no-go theorems,
- DGKT 4d











AdS_d	\mathcal{N}	Specification	Spectrum reference	$ \begin{array}{c} {\rm Scalar \ lowest} \\ m^2 l^2 \end{array} $
	8 2 1 1 1	AdS ₄ , M-th., with: SO(8) $SU(3) \times U(1)$ G_2 $U(1) \times U(1)$ SO(3)	[39, Tab. 4] [40]	-9/4 -2.222 -2.242 -2.25 -2.245
d = 4	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	AdS ₄ × S ⁶ , IIA, with: G_2 $SU(3) \times U(1)$ $SO(3) \times SO(3)$ $SU(3)$ $U(1)$ \emptyset $U(1)$	[41, App. B] [42, App. A]	$\begin{array}{r} -2.24158 \\ -20/9 \\ -9/4 \\ -20/9 \\ -2.23969 \\ -2.24943 \\ -2.24908 \end{array}$
	1 1	DGKT, IIA DGKT-like Branch A1-S1, IIA	[29,43] [44, Tab. 2]	$> 0 \\ -2$
	1 1	KKLT, IIB LVS, IIB	[27,45] [46, Sec. 2]	≥ 0 ≥ 0
	1 2 4	S-fold, IIB, with: $U(1)^2$ $U(1)^2$ SO(4)	[47]	$-2 \\ -2 \\ -2$
d = 5	8 2	AdS ₅ × S ⁵ , IIB, with: SO(6) $SU(2) \times U(1)$	[48] [49, Tab. D.4]	$-4 \\ -4$
d = 7	1	$AdS_7 \times S^3$, IIA	[50]	-8

Susy AdS_d (stable): $m^2 l^2 \leq -2$ in most examples

AdS_d	N	Specification	Spectrum reference	$\frac{\text{Scalar lowest}}{m^2 l^2}$
	8 2 1 1 1	AdS ₄ , M-th., with: SO(8) $SU(3) \times U(1)$ G_2 $U(1) \times U(1)$ SO(3)	[39, Tab. 4] [40]	-9/4 -2.222 -2.242 -2.25 -2.245
d = 4	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	AdS ₄ × S ⁶ , IIA, with: G_2 $SU(3) \times U(1)$ $SO(3) \times SO(3)$ $SU(3)$ $U(1)$ \emptyset $U(1)$	[41, App. B] [42, App. A]	$\begin{array}{r} -2.24158 \\ -20/9 \\ -9/4 \\ -20/9 \\ -2.23969 \\ -2.24943 \\ -2.24908 \end{array}$
	1 1	DGKT, IIA DGKT-like Branch A1-S1, IIA	[29,43] [44, Tab. 2]	$> 0 \\ -2$
	1 1	KKLT, IIB LVS, IIB	[27, 45] [46, Sec. 2]	≥ 0 ≥ 0
	1 2 4	S-fold, IIB, with: $U(1)^2$ $U(1)^2$ SO(4)	[47]	$-2 \\ -2 \\ -2$
d = 5	8 2	AdS ₅ × S ⁵ , IIB, with: SO(6) $SU(2) \times U(1)$	[48] [49, Tab. D.4]	$-4 \\ -4$
d = 7	1	$\mathrm{AdS}_7 \times \mathrm{S}^3$, IIA	[50]	-8

Susy AdS_d (stable): $m^2 l^2 \leq -2$ in most examples

Except: KKLT, LVS, DGKT: already heavily debated in literature... If valid string vacua, then $V'' / Min (g^{ik} \nabla_k \partial_j V) / spectrum is highly$ changed when moving in field space

AdS_d	\mathcal{N}	Specification	Spectrum reference	$ \begin{array}{c} {\rm Scalar \ lowest} \\ m^2 l^2 \end{array} $
	8 2 1 1 1	AdS ₄ , M-th., with: $SO(8)$ $SU(3) \times U(1)$ G_2 $U(1) \times U(1)$ $SO(3)$	[<mark>39</mark> , Tab. 4] [40]	-9/4 -2.222 -2.242 -2.25 -2.245
d = 4	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	AdS ₄ × S ⁶ , IIA, with: G_2 $SU(3) \times U(1)$ $SO(3) \times SO(3)$ $SU(3)$ $U(1)$ \emptyset $U(1)$	[41, App. B] [42, App. A]	$\begin{array}{r} -2.24158 \\ -20/9 \\ -9/4 \\ -20/9 \\ -2.23969 \\ -2.24943 \\ -2.24908 \end{array}$
	1 1	DGKT, IIA DGKT-like Branch A1-S1, IIA	[29,43] [44, Tab. 2]	$> 0 \\ -2$
	1 1	KKLT, IIB LVS, IIB	[27,45] [46, Sec. 2]	≥ 0 ≥ 0
	1 2 4	S-fold, IIB, with: $U(1)^2$ $U(1)^2$ SO(4)	[47]	$-2 \\ -2 \\ -2$
d = 5	8 2	AdS ₅ × S ⁵ , IIB, with: SO(6) $SU(2) \times U(1)$	[48] [49, Tab. D.4]	$-4 \\ -4$
d = 7	1	$AdS_7 \times S^3$, IIA	[50]	-8

Susy AdS_d (stable): $m^2 l^2 \leq -2$ in most examples

Except: KKLT, LVS, DGKT: already heavily debated in literature... If valid string vacua, then $V'' / Min (g^{ik} \nabla_k \partial_j V) / spectrum is highly$ changed when moving in field space

Going from refined dS conj. to TCC: drop $\operatorname{Min}(g^{ik}\nabla_k\partial_j V) \leq -V$ Here the same with ATCC: drop the debate on scale separation

Lust, Palti, Vafa '19

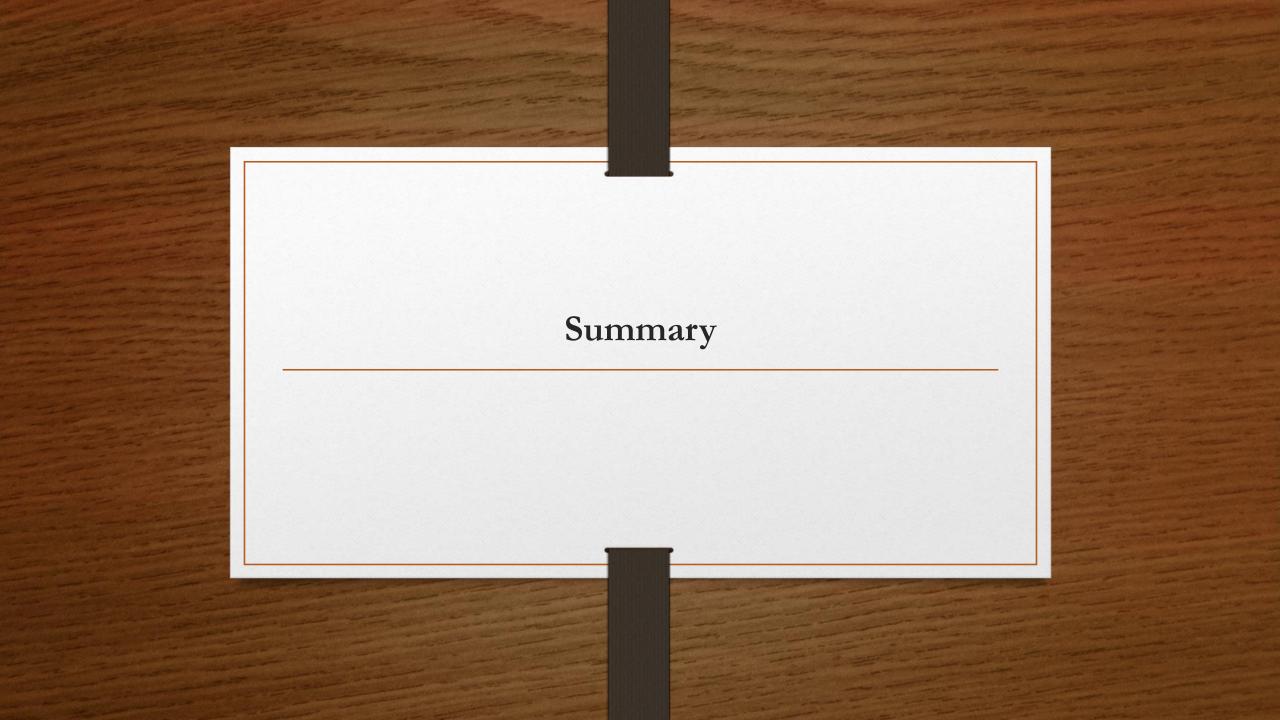
AdS_d	N	Specification	Spectrum reference	$\frac{\text{Scalar lowest}}{m^2 l^2}$
	8 2 1 1 1	AdS ₄ , M-th., with: $SO(8)$ $SU(3) \times U(1)$ G_2 $U(1) \times U(1)$ $SO(3)$	[<mark>39</mark> , Tab. 4] [40]	-9/4 -2.222 -2.242 -2.25 -2.245
d = 4	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	AdS ₄ × S ⁶ , IIA, with: G_2 $SU(3) \times U(1)$ $SO(3) \times SO(3)$ $SU(3)$ $U(1)$ \emptyset $U(1)$	[41, App. B] [42, App. A]	$\begin{array}{r} -2.24158 \\ -20/9 \\ -9/4 \\ -20/9 \\ -2.23969 \\ -2.24943 \\ -2.24908 \end{array}$
	1 1	DGKT, IIA DGKT-like Branch A1-S1, IIA	[29, 43] [44, Tab. 2]	$> 0 \\ -2$
	1 1	KKLT, IIB LVS, IIB	[27, 45] [46, Sec. 2]	≥ 0 ≥ 0
	1 2 4	S-fold, IIB, with: $U(1)^2$ $U(1)^2$ SO(4)	[47]	$-2 \\ -2 \\ -2$
d = 5	8 2	AdS ₅ × S ⁵ , IIB, with: SO(6) $SU(2) \times U(1)$	[48] [49, Tab. D.4]	$-4 \\ -4$
d = 7	1	$\mathrm{AdS}_7 \times \mathrm{S}^3$, IIA	[50]	-8

Susy AdS_d (stable): $m^2 l^2 \leq -2$ in most examples

Except: KKLT, LVS, DGKT: already heavily debated in literature... If valid string vacua, then $V'' / Min (g^{ik} \nabla_k \partial_j V) / spectrum is highly$ changed when moving in field space

Going from refined dS conj. to TCC: drop $Min(g^{ik}\nabla_k\partial_j V) \leq -V$ Here the same with ATCC: drop the debate on scale separation Lust, Palti, Vafa '19

Perturbatively stable non-susy AdS_d : most examples: $m^2 l^2 \leq -1$ Spectrum less preserved when moving in field space? + non-perturbative instabilities...



$$\longrightarrow$$
 via 4d theory: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

Classical de Sitter solutions

• Potential slopes and rolling fields

Can we obtain (observed) **dark energy** from string theory? \longrightarrow via 4d theory: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V\right)$

• Classical de Sitter solutions: no known example, only candidate solutions

If they exist: need at 3 intersecting sets of O_p/D_p / $\mathcal{N} \le 1$ EFT, and $d \le 4$ Seem very unstable: $\eta_V < -1$

- \longrightarrow needs more searches
- Potential slopes and rolling fields:

 \longrightarrow via 4d theory: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

• Classical de Sitter solutions: no known example, only candidate solutions

If they exist: need at 3 intersecting sets of O_p/D_p / $N \le 1$ EFT, and $d \le 4$ Seem very unstable: $\eta_V < -1$

- \longrightarrow needs more searches
- Potential slopes and rolling fields:

Well-controlled field space regions are close to asymptotics

 \longrightarrow conjectured + well-tested bounds (e.g. TCC): $\frac{|V'|}{V} \ge c \longrightarrow$ tight w.r.t. observations

 \rightarrow explore more

 \longrightarrow via 4d theory: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

• Classical de Sitter solutions: no known example, only candidate solutions

If they exist: need at 3 intersecting sets of O_p/D_p / $\mathcal{N} \le 1$ EFT, and $d \le 4$ Seem very unstable: $\eta_V < -1$

- \longrightarrow needs more searches
- Potential slopes and rolling fields:

Well-controlled field space regions are close to asymptotics

- \longrightarrow conjectured + well-tested bounds (e.g. TCC): $\frac{|V'|}{V} \ge c \longrightarrow$ tight w.r.t. observations
- \rightarrow explore more

Massless Minkowski conjecture: always a massless scalar in supergravity compactif. to Mink. Characterisation of negative potentials (ATCC), mass bound in (susy) AdS: $m^2 l^2 \lesssim -2$

 \longrightarrow via 4d theory: $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$

• Classical de Sitter solutions: no known example, only candidate solutions

If they exist: need at 3 intersecting sets of O_p/D_p / $\mathcal{N} \le 1$ EFT, and $d \le 4$ Seem very unstable: $\eta_V < -1$

- \longrightarrow needs more searches
- Potential slopes and rolling fields:

Well-controlled field space regions are close to asymptotics

- \longrightarrow conjectured + well-tested bounds (e.g. TCC): $\frac{|V'|}{V} \ge c \longrightarrow$ tight w.r.t. observations
- \rightarrow explore more

Massless Minkowski conjecture: always a massless scalar in supergravity compactif. to Mink. Characterisation of negative potentials (ATCC), mass bound in (susy) AdS: $m^2 l^2 \lesssim -2$

Thank you for your attention!

Further solution classes

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24] , ✓	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	\checkmark	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[<u>25</u>], ✓	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	\checkmark		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

 m_{5577}

Set I	Sources		Space dimensions							
			4d		1	2	3	4	5	6
1	$\boxed{O_5, (D_5)}$	\otimes	\otimes	\otimes	\otimes	\otimes				
2	$O_5, (D_5)$	\otimes	\otimes	\otimes			\otimes	\otimes		
3	$O_7, (D_7)$	\otimes	\otimes	\otimes		\otimes		\otimes	\otimes	\otimes
4	$O_7, (D_7)$	\otimes	\otimes	\otimes	\otimes		\otimes		\otimes	\otimes

T-dual D_p/O_p to s_{6666} (but not nec. for fields)

- dS Caviezel, Wrase, Zagermann '09
- + new solutions
- AdS

Caviezel, Koerber, Kors, Lüst, Tsimpis, Zagermann '08 Petrini, Solard, Van Riet '13

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24] , ✓	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	√	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[<u>25</u>], ✓	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	✓	\checkmark
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	\checkmark		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

S	55	
	$\mathbf{U}\mathbf{U}$	

Set I	Sources	Space dimensions								
			4d	2.20	1	2	3	4	5	6
1	$\boxed{O_5, (D_5)}$	\otimes	\otimes	\otimes	\otimes	\otimes				
2	$O_5, (D_5)$	\otimes	\otimes	\otimes			\otimes	\otimes		
3	(D_5)	\otimes	\otimes	\otimes					\otimes	\otimes

- dS Andriot, Marconnet, Wrase '20 Andriot '21
- + new solutions
- Mink Graña, Minasian, Petrini, Tomasiello '06 Andriot, Marconnet, Wrase '20
- AdS: new solutions

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
class	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24] , ✓	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	~	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[<u>25</u>], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	~	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	√		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

 m_{46}

Set I	Sources	Space dimensions							(
			4d		1	2	3	4	5	6
1	$O_4, (D_4)$	\otimes	\otimes	\otimes				\otimes		
2	$O_6, (D_6)$	\otimes	\otimes	\otimes	\otimes	\otimes	\otimes			
3	(D_6)	\otimes	\otimes	\otimes	\otimes				\otimes	\otimes
	(D_6)	\otimes	\otimes	\otimes						

T-dual D_p/O_p to s_{55} (but not nec. for fields)

- dS: new solutions
- Mink: new solutions
- AdS: new solutions

Solution	Source	Field	dS sol.	Mink. sol.	AdS sol.
$_{\rm class}$	directions	$\operatorname{content}$			
s_3	(2.7)	(2.6)	×	[27]	
s_4	(2.10)	(2.9)		[28]	
s_5	(2.13)	(2.12)		[28]	
s_{55}	(2.15)	(2.14)	[9,24], ✓	[29]	\checkmark
s_{555}	(2.17)	(2.16)	×	\checkmark	×
s_6	(2.20)	(2.19)		[28]	
s_{66}	(2.22)	(2.21)	\checkmark	[29]	
s_{6666}	(2.24)	(2.23)	[<u>25</u>], √	[30]	[30-32]
s_7	(2.27)	(2.26)	×	[28]	
s_{77}	(2.29)	(2.28)	×		
m_4	(2.36)	(2.9)			
m_{46}	(2.33)	(2.32)	\checkmark	\checkmark	\checkmark
m_{466}	(2.35)	(2.34)	×	\checkmark	×
m_6	(2.30)	(2.19)			
m_{66}	(2.31)	(2.21)			
m_5	(2.37)	(2.12)			
m_{55}	(2.38)	(2.14)	√		
m_{57}	(2.40)	(2.39)			
m_{5577}	(2.43)	(2.41)	[<u>26</u>], √		[32, 33]
m_7	(2.44)	(2.26)			
m_{77}	(2.45)	(2.28)			

2 peculiar classes: s_{555} and m_{466} We prove no-gos for dS and AdS

- \rightarrow only Mink. solutions!
- \longrightarrow we find examples.

Scale separation for AdS

Scale separation in AdS solutions: only with compact manifold being **Ricci flat** or a **nilmanifold**? \rightarrow the case for solutions in s_{6666} and m_{5577}

(see also Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase '21)

Scale separation in AdS solutions: only with compact manifold being **Ricci flat** or a **nilmanifold**? \longrightarrow the case for solutions in s_{6666} and m_{5577}

(see also Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase '21)

Arguments in favor of this: - group manifolds, not nilmanifold, can have curvature scales > KK scale \longrightarrow no scale separation with such solution Andriot '18

> - Ricci flat and nilmanifolds: gap between curvature \mathcal{R}_6 and eigenmode Laplacian Δ_6 Andriot, Tsimpis '18 Andriot '19

> > circumvent constraints on scale separation Gautason, Schillo, Van Riet, Williams '15

Scale separation in AdS solutions: only with compact manifold being **Ricci flat** or a **nilmanifold**? \longrightarrow the case for solutions in s_{6666} and m_{5577}

(see also Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase '21)

Arguments in favor of this: - group manifolds, not nilmanifold, can have curvature scales > KK scale \rightarrow no scale separation with such solution Andriot '18

> - Ricci flat and nilmanifolds: gap between curvature \mathcal{R}_6 and eigenmode Laplacian Δ_6 \longrightarrow circumvent constraints on scale separation

Gautason, Schillo, Van Riet, Williams '15

Can we find AdS solutions in new classes s_{55} and m_{46} on a Ricci flat or nilmanifold? \rightarrow no ! Prove no-gos about it \rightarrow probably no scale-separation in our new solutions Related to having only D_p along some internal dimensions...

 \longrightarrow Is s_{6666} only class for (classical) scale sep.?

No-go theorem and TCC

No-go: compactification with O_p/D_p , with p = 7, 8, 9, or p = 4, 5, 6 with $F_{6-p} = 0$ $\frac{2(p-3)}{d}\mathcal{R}_d = -|H|^2 + (4-p)|H_7|^2 + \frac{1}{2}g_s^2 \sum_{q=0}^7 (8-p-q)|F_q|^2 \leq 0$

No-go: compactification with
$$O_p/D_p$$
, with $p = 7, 8, 9$, or $p = 4, 5, 6$ with $F_{6-p} = 0$
$$\frac{2(p-3)}{d}\mathcal{R}_d = -|H|^2 + (4-p)|H_7|^2 + \frac{1}{2}g_s^2 \sum_{q=0}^7 (8-p-q)|F_q|^2 \leq 0$$

 $\frac{2}{M_p^2} \left(\frac{2(p-3)}{d-2} V - \frac{d+4-2p}{2(d-2)} \tau \partial_\tau V + \rho \partial_\rho V \right) \\ = -\tau^{-2} \rho^{-3} |H|^2 + (4-p) \tau^{2-2d} \rho^{3-d} |H_7|^2 + \tau^{-d} \frac{1}{2} g_s^2 \sum_{q=0}^{10-d} \rho^{\frac{10-d-2q}{2}} \left(8 - p - q \right) |F_q|^2 \le 0$

Valid at critical point: $\partial_{\varphi}V=0,\,\rho=\tau=1$, but also beyond

No-go: compactification with
$$O_p/D_p$$
, with $p = 7, 8, 9$, or $p = 4, 5, 6$ with $F_{6-p} = 0$
$$\frac{2(p-3)}{d}\mathcal{R}_d = -|H|^2 + (4-p)|H_7|^2 + \frac{1}{2}g_s^2 \sum_{q=0}^7 (8-p-q)|F_q|^2 \leq 0$$

$$\begin{split} &\frac{2}{M_p^2} \left(\frac{2(p-3)}{d-2} V - \frac{d+4-2p}{2(d-2)} \tau \partial_\tau V + \rho \partial_\rho V \right) \\ &= -\tau^{-2} \rho^{-3} |H|^2 + (4-p) \tau^{2-2d} \rho^{3-d} |H_7|^2 + \tau^{-d} \frac{1}{2} g_s^2 \sum_{q=0}^{10-d} \rho^{\frac{10-d-2q}{2}} \left(8 - p - q \right) |F_q|^2 \\ & \text{Valid at critical point: } \partial_\varphi V = 0, \ \rho = \tau = 1 \text{ , but also beyond} \end{split}$$

 \longrightarrow swampland format: $M_p \frac{|\nabla V|}{V} \ge \frac{2(p-3)}{\sqrt{(d-2)(5d-1-4p-pd+p^2)}}$

No-go: compactification with
$$O_p/D_p$$
, with $p = 7, 8, 9$, or $p = 4, 5, 6$ with $F_{6-p} = 0$
$$\frac{2(p-3)}{d}\mathcal{R}_d = -|H|^2 + (4-p)|H_7|^2 + \frac{1}{2}g_s^2 \sum_{q=0}^7 (8-p-q)|F_q|^2 \leq 0$$

- $\frac{2}{M_p^2} \left(\frac{2(p-3)}{d-2} V \frac{d+4-2p}{2(d-2)} \tau \partial_\tau V + \rho \partial_\rho V \right) \\ = -\tau^{-2} \rho^{-3} |H|^2 + (4-p) \tau^{2-2d} \rho^{3-d} |H_7|^2 + \tau^{-d} \frac{1}{2} g_s^2 \sum_{q=0}^{10-d} \rho^{\frac{10-d-2q}{2}} \left(8-p-q\right) |F_q|^2 \leq 0$ Valid at critical point: $\partial_\varphi V = 0, \ \rho = \tau = 1$, but also beyond \longrightarrow swampland format: $M_p \frac{|\nabla V|}{V} \geq \frac{2(p-3)}{\sqrt{(d-2)(5d-1-4p-pd+p^2)}} \geq \frac{2}{\sqrt{(d-1)(d-2)}} \quad (p=4)$
 - \longrightarrow obey and saturate the **TCC bound** on c

No-go: compactification with
$$O_p/D_p$$
, with $p = 7, 8, 9$, or $p = 4, 5, 6$ with $F_{6-p} = 0$
$$\frac{2(p-3)}{d}\mathcal{R}_d = -|H|^2 + (4-p)|H_7|^2 + \frac{1}{2}g_s^2 \sum_{q=0}^7 (8-p-q)|F_q|^2 \leq 0$$

 $\frac{2}{M_p^2} \left(\frac{2(p-3)}{d-2} V - \frac{d+4-2p}{2(d-2)} \tau \partial_\tau V + \rho \partial_\rho V \right)$ = $-\tau^{-2} \rho^{-3} |H|^2 + (4-p) \tau^{2-2d} \rho^{3-d} |H_7|^2 + \tau^{-d} \frac{1}{2} g_s^2 \sum_{q=0}^{10-d} \rho^{\frac{10-d-2q}{2}} (8-p-q) |F_q|^2 \leq 0$ Valid at critical point: $\partial_\varphi V = 0, \ \rho = \tau = 1$, but also beyond \longrightarrow swampland format: $M_p \frac{|\nabla V|}{V} \geq \frac{2(p-3)}{\sqrt{(d-2)(5d-1-4p-pd+p^2)}} \geq \frac{2}{\sqrt{(d-1)(d-2)}} \quad (p=4)$

 \rightarrow obey and saturate the **TCC bound** on c

All other supergravity no-go theorems where tested with $d \ge 4$: true!!

(d = 4) Andriot, Cribiori, Erkinger '20