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Dark energy: energy responsible for accelerated expansion observed: today
early universe (inflation)

Today:  well-described by cosmological constant A > 0
Inflation: scalar potential V> 0, very flat ! « 1, single scalar field slowly rolling-down Planck *18

Both described by 4d theory: [ d*z+/|g4| (MT§R4 — 190,05 04T — V)
minimally coupled scalar fields "
(most of the talk: M, =1,p" — ¢ )

— Reproduce dark energy as solutions:

Slow-roll single-field inflation: plateau V: A: de Sitter solution: critical point of V.
8,V =0,0p=0,V=Vo=A=1/4Ry >0
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+V >0 +rightshape of V ?

— This would provide an\grigin/nature of dark energy!
+ allpw to distinguish amQng various V that are ok with observatiops (e.g. inflation)

Answers:

Difficult
(in a controlled way)

Yes, natural from string compactification

inal
Very challenging! V is due to extra dimensions and physical content

. . . 02V ~ m? : solution stability / spectrum
» Classical de Sitter solutions ® & y/sp

— Massless Minkowski Conjecture: always a massless mode
» Potential slopes

— Mass bound in (susy) AdS: always a mode m?1? < —2
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KKLT, LVS: include (non)-perturbative contributions  Kachru, Kallosh, Linde, Trivedi *03, Conlon, Quevedo ’05
— debate on validity of approximations/regimes/control

Classical: 1. find solution in 10d supergravity: candidate solution
2. verify that solution obeys g, < 1, r > g, ...

Before 2020: only known dS solutions: Danielsson, Haque, Koerber, Shiu, Van Riet, Wrase '11
dS, x 6d group manifold

obtained in 10d type IIA supergravity, with Fy , with 4 sets of intersecting Os/Ds ( N =1 in 4d)

Why group manifold? Show that require Rg < 0
First difficulty: tough to find dS solutions! Require 6d curvature, fluxes, O, /D,

— many no-go theorems: if R¢g > 0 ,if F}. = 0, etc., then no dS.

— progress in identifying the required ingredients/where to find dS solutions —— new/all solutions
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Solution
class

Source
directions

Mink. sol.

AdS sol.

(2.7)

2.10)

4 main classes: Sgee6  Sss
Ms5577  M4e

new dS solutions with 2 O5, 1 D5

old (< 2020) dS solutions with 4 Og

new dS solutions with 104, 10g, 1 Dg

new dS solutions with 205, 20+




All de Sitter solutions only found with at least 3 (intersecting) sets of O /D,
Examples: sgges : Og along 123, 145, 256, (346)

S55 1 Ogalong 12, 34, D, along 56




All de Sitter solutions only found with at least 3 (intersecting) sets of O /D,
Examples: sgges : Og along 123, 145, 256, (346)

S55 1 Ogalong 12, 34, D, along 56

Previously: Conjecture 1: no de Sitter solution with 1 set (i.e. parallel O,/D,). Andriot *19

Here: Conjecture 4: no de Sitter solution with 2 (intersecting) sets of O,/D,.
+ T-duality argument: classes with 2 sets = T-dual” to a class with a no-go




All de Sitter solutions only found with at least 3 (intersecting) sets of O /D,
Examples: sgges : Og along 123, 145, 256, (346)

S55 1 Ogalong 12, 34, D, along 56

Previously: Conjecture 1: no de Sitter solution with 1 set (i.e. parallel O,/D,). Andriot *19

Here: Conjecture 4: no de Sitter solution with 2 (intersecting) sets of O,/D,.
+ T-duality argument: classes with 2 sets = T-dual” to a class with a no-go

Implication: A 4d effective theory of a classical string compactification,
with a de Sitter critical point, is at most AV = 1 supersymmetric.

In agreement with gauged supergravities de Sitter solutions
(see also Cribiori, Dall’Agata, Farakos *20, Dall’ Agata, Emelin, Farakos, Morittu *21)




All de Sitter solutions only found with at least 3 (intersecting) sets of O /D,
Examples: sgges : Og along 123, 145, 256, (346)

S55 1 Ogalong 12, 34, D, along 56

Previously: Conjecture 1: no de Sitter solution with 1 set (i.e. parallel O,/D,). Andriot *19

Here: Conjecture 4: no de Sitter solution with 2 (intersecting) sets of O,/D,.
+ T-duality argument: classes with 2 sets = T-dual” to a class with a no-go

Implication: A 4d effective theory of a classical string compactification,
with a de Sitter critical point, is at most AV = 1 supersymmetric.

In agreement with gauged supergravities de Sitter solutions

(see also Cribiori, Dall’Agata, Farakos *20, Dall’ Agata, Emelin, Farakos, Morittu *21)

Great news for phenomenology! N < 1 better for particle physics (chirality).
Here a common stringy framework for (viable) cosmology and particle physics naturally appears.

+ important role for dS,;, d >4 ( —— no solution?)
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Do solutions with dS;, 3 < d < 10, exist (in 10d type Il supergravities)?

— extend no-go theorems to d-dim., against dS

Results: —— No dS, solution for d > 8 Van Riet *11

— No dS; solution for d =7 in lIB
+ supersymmetry-preserving O,/ D,
— No dS; solution for d =7

Andriot, Horer ’22

— very constrained/unlikely dS, solution for d = 6, 5

Only O,/D,, configuration with 1 or 2 sets: e.g.
— conjectures 1 and 4: no dS !

(susy in d > 4 requires > 4 supercharges )

Summary: we know where to find dS solutions:

Sources

d = 6 spacetime

Os, (Dg)

&

(Os, Dg)

®

d = 4, need 3 or more sets of intersecting O,,/D,, (N = 1 in 4d), fluxes, 6d curvature




Second difficulty: (in)stability

All dS solutions found are perturbatively unstable:
at least one tachyonic field/maximum in 4d V
(g“"Vk 8j V)

— v <0 with py = M2

|




Second difficulty: (in)stability

All dS solutions found are perturbatively unstable:

at least one tachyonic field/maximum in 4d V

(gikvkaj V)
e

— 1y < 0 with nV:Mg s

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

Single-field slow-roll inflation: data: 7y ~ — 0.01 Planck ’18




Second difficulty: (in)stability

All dS solutions found are perturbatively unstable:
at least one tachyonic field/maximum in 4d V
— v <0 with 7y = M2 Sl Vv’“ajv)

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

V(o)

Single-field slow-roll inflation: data: 7y ~ — 0.01 Planck ’18
Problem here: too unstable: 7y < —1  Andriot, Marconnet, Rajaguru, Wrase *22

A

More dedicated searches of specific solutions? Andriot *21




Second difficulty: (in)stability

All dS solutions found are perturbatively unstable:
at least one tachyonic field/maximum in 4d V
SRS AT e Mg Mm(g VVk(?jV)

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

V(o)

Single-field slow-roll inflation: data: 7y ~ — 0.01 Planck ’18 A

Problem here: too unstable: 7y < —1  Andriot, Marconnet, Rajaguru, Wrase *22

More dedicated searches of specific solutions? Andriot *21

Third (and major) difficulty: (non)- classicality Roupec, Wrase *18, Junghans 18, Andriot, Marconnet, Wrase *20

Are 10d supergravity solutions classical string backgrounds?
g9s <1, r>1s, No. <16, fluxes quantized, compact group manifold (lattice quantization)




Second difficulty: (in)stability

All dS solutions found are perturbatively unstable:
at least one tachyonic field/maximum in 4d V
SRS AT e Mg Mm(g VVk(?jV)

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

V(o)

Single-field slow-roll inflation: data: 7y ~ — 0.01 Planck ’18 A

Problem here: too unstable: 7y < —1  Andriot, Marconnet, Rajaguru, Wrase *22

More dedicated searches of specific solutions? Andriot *21

Third (and major) difficulty: (non)- classicality Roupec, Wrase *18, Junghans 18, Andriot, Marconnet, Wrase *20

Are 10d supergravity solutions classical string backgrounds?
g9s <1, r>1s, No. <16, fluxes quantized, compact group manifold (lattice quantization)

> 2018 : no ! For sggee solutions and 2 ss5 solutions (difficult to check!)




Second difficulty: (in)stability

All dS solutions found are perturbatively unstable:

at least one tachyonic field/maximum in 4d V

(g““Vk 8j V)
%

e A 0 with nv :M}? weild

Is this bad for cosmology? No dS vacuum but ok with inflation or quintessence...

V(o)

Single-field slow-roll inflation: data: 7y ~ — 0.01 Planck ’18 A

Problem here: too unstable: 7y < —1  Andriot, Marconnet, Rajaguru, Wrase *22

More dedicated searches of specific solutions? Andriot *21

Third (and major) difficulty: (non)- classicality Roupec, Wrase *18, Junghans 18, Andriot, Marconnet, Wrase *20

Are 10d supergravity solutions classical string backgrounds?
g9s <1, r>1s, No. <16, fluxes quantized, compact group manifold (lattice quantization)

> 2018 : no ! For sggee solutions and 2 ss5 solutions (difficult to check!)

Key: no parametric control on classicality for dS — solutions: isolated points in field space (bulk)
— Numerically very challenging!




Side result 1:
Massless Minkowski Conjecture

If we allow for many fluxes, 6d curvature, O, /D, ,
can all fields be stabilized for a Minkowski solution?




Classification of Minkowski solutions
— diversity of solutions w.r.t. fluxes, 6d manifold, O,,/ D,

Spectrum computed thanks to V and mass matrix (¢*V9;V)

first for (p, 7, oy) , then for full consistent truncation
Andriot, Horer, Marconnet ’22, Andriot, Marconnet, Rajaguru, Wrase ’22
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Ra=0, Rs=—0.023897,
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Here: Massless Minkowski Conjecture:  Andriot, Horer, Marconnet 22

10d supergravity solutions compactified to 4d Minkowski always admit
a massless 4d scalar, among the fields (p, 7, 1)

2 important (new) points in claim:
- independent of A susy of theory or solution

- specification of field sector — useful for proof

— relation to dS tachyon?
(reminiscent of the Tadpole Conjecture Bena, Blaback, Grana, Lust *20 )

Beyond supergravity compactif.?  Becker, Gonzalo, Walcher, Wrase '22

In a quantum gravity effective theory, any correction beyond
supergravity could alter massless property...
Still interesting for phenomenology!
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If no de Sitter critical point: V >0, V' #0, 21 >0
Cosmology with potential slopes and rolling fields: inflation, quintessence

Can we get % <& 1:quasi de Sitter / almost flatV ? —— Very unlikely!

There must be a lower bound: % = ¢ :how much?

De Sitter swampland conjecture: ¢ ~ O(1) Obied, Ooguri, Spodyneiko, Vafa '18
— no way to realise slow-roll single-field inflation: reminder: ey ~ 0.001

Discussions, refinements: this cannot be true everywhere in field space
— only true in the asymptotics of field space: ¢ — o©

Trans-Planckian Censorship Conjecture Bedroya, Vafa ’19
(TCOC): o o0, Xl > /2082

Vv
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Bulk of field space:
dS solution or
slow-roll inflation
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V'] \/E = i 2
— = ~ 0.82 LAWY
¥ 00, ERNES 3 (d24 vV Z\/(d—l)(d—Q))
Asymptotics of field space ~ string classical regime
gs <1, r> 1,

Obstruction to dS in the asymptotics «—— difficulties with

classical dS
This link made precise with supergravity no-go theorems:

V']
T

« ind =4: 10 no-go theorems against classical dS, reformulated in the form

Result: ¢ > \/g Andriot, Cribiori, Erkinger '20

Impressive/surprising matching because TCC based on bottom-up/effective cosmology argument

V']

* ind>4: 7no-go theorems against classical dS, reformulated in the form =

. 2
Result: ¢ > N (CEVCE=Y

Many supergravity compactification potentials obey TCC asymptotic bound

e

Andriot, Horer '22
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Bulk of field space: problem of string regime/control/approximations. ..
—— Cosmology in the asymptotics of field space?
— We face the bounds: TCC: 'LV| > \/g ~ (.82

Possible exception: V| > /2 ~0.53 Calderon-Infante, Ruiz, Valenzuela '22
P 1% 7

(Multifield: Strong de Sitter conjecture: X > /2 Rudelius 21,22

Advantage of the asymptotics: V is naturally small — today dark energy? — quintessence model!

V ~ Ve ¥ Observational bounds on exponential rate A ?
A < 0.6 Agrawal, Obied, Steinhardt, Vafa *18

Asymptotic accelerated expansion: bound: X\ < /2 Halliwell '86, Copeland, Liddle, Wands '97
— Tight!

— More examples or more exotic scenarios. ..
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Negative scalar potentials from string theory: V < 0 : characterisation?

Proposed an Anti- Trans-Planckian Censorship Conjecture (ATCC) Andriot, Horer, Tringas °22
Bottom-up argument on contracting universe, Trans-Planckian modes, validity of EFT, etc.

, . . _K 2
— bound (V <0,V'>0): d>4: p— 00, —% > ()

Well-tested in compactification examples:

& V(pﬂ T? O-) 1
» AdS no-go theorems,
 DGKT 4d




Side result 2:
AdS mass bound




— New asymptotic boundon V"': - > Andriot, Horer, Tringas ’22
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— New asymptotichoundon V*: - >c2  (d>4) Andriot, Horer, Tringas *22

Extrapolate it to AdS solution (radius / ): m?* = V" < (d—1)4(d—2) V=-3%

— Mass bound: in AdS, (d > 4) , one scalar with mass: m?? < —2
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— New asymptotichoundon V*: - >c2  (d>4) Andriot, Horer, Tringas *22

Extrapolate it to AdS solution (radius / ): m?* = V" < (d—1)4(d—2) V = _z%

— Mass bound: in AdS, (d > 4) , one scalar with mass: m?? < —2

BF bound: d =4 : m?2l?2 > —2.25
d=5: ml? > —4 —— Perturbatively unstable AdS v with our bound
d=6: m?l®> —6.25
d="T: m2l?> -9
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m? 12
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Go
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[39, Tab. 4]
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—9/4
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—92.245
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Gia
SU(3) = U(1)
S0(3) x SO(3)

SU(3)
U(1)
@
U(1)

—2.24158
—20/9
—9/4
—20/9
—2.23969
~2.24943
224908

DGET, ITA
DGKT-like Branch A1-S1, TTA

[44, Tab. 2]

KELT, IIB
Lvs, IIB

[27,45]
[46, See. 2]

S-fold, IIB, with:
U(1)?
[_."|: 1 )2
SO(4)

[47]

AdSsx S5, 1IB, with:

SO(6)
SU(2) = U(1)

1
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Spectrum
reference

Scalar lowest
m? 12

AdSy, M-th., with:

S0(8)
SU(3) x U(1)
Gy
U(1) x U(1)
S0(3)

[39, Tab. 4]

[40]

—9/4
—2.222
—2.242
—2.95
—2.245

AdSy= S T1A. with:

Gia
SU(3) x U(1)
S0(3) x SO(3)
SU(3)
U(1)
@
U(1)

[11, App. B]
[42, App. A]

—2.24158
—20/9
—9/4
—20/9
—2.23060
—2.24043
~2.24008

DGKT, ITA
DGKT-like Branch A1-S1, TTA

[29,43]
[44, Tab. 2]

=
-2

KKLT, IIB
Lvs, IIB

[27,45]
[46, See. 2]

=0
=0

S-fold, IIB, with:
(1)
[_."|: 1 )2
.S'(.J{-i}

[47]

AdSsx %, IIB, with:

SO(6)
SU(2) = U(1)

1
[49, Tab. D.4]

AdS,x 83, IIA

[-r}l:']

Susy AdS, (stable): m?2I? < —2 in most examples

Except: KKLT, LVS, DGKT: already heavily debated in literature...

If valid string vacua, then V" / Min (¢**V+9;V')/ spectrum is highly
changed when moving in field space

Going from refined dS conj. to TCC: drop Min (¢°*V,9,;V) < -V
Here the same with ATCC: drop the debate on scale separation
Lust, Palti, Vafa ’19

Perturbatively stable non-susy AdS, : most examples: m?[* < —1
Spectrum less preserved when moving in field space?
+ non-perturbative instabilities...







Can we obtain (observed) dark energy from string theory?
2 3 ¥
— via4d theory: [ d*z/|g4] (%7&1 — 2i;0,p"0H I — V)

» Classical de Sitter solutions

» Potential slopes and rolling fields




Can we obtain (observed) dark energy from string theory?
2 3 ¥
— via4d theory: [ d*z/|g4] (%7&1 — 2i;0,p"0H I — V)

» Classical de Sitter solutions: no known example, only candidate solutions

If they exist: need at 3 intersecting sets of O,/D,, /| N <1 EFT, and d <4

Seem very unstable: 7y < —1
—— needs more searches

Potential slopes and rolling fields:




Can we obtain (observed) dark energy from string theory?
2 3 ¥
— via4d theory: [ d*z/|g4] (%7&1 — 2i;0,p"0H I — V)

» Classical de Sitter solutions: no known example, only candidate solutions

If they exist: need at 3 intersecting sets of O,/D,, /| N <1 EFT, and d <4

Seem very unstable: 7y < —1
—— needs more searches

Potential slopes and rolling fields:

Well-controlled field space regions are close to asymptotics

— conjectured + well-tested bounds (e.g. TCC): % > ¢ — tight w.r.t. observations
— explore more




Can we obtain (observed) dark energy from string theory?
2 . 5
— via4d theory: [ d*z/|g4] (%7&1 — 2i;0,p"0H I — V)

» Classical de Sitter solutions: no known example, only candidate solutions

If they exist: need at 3 intersecting sets of O,/D,, /| N <1 EFT, and d <4

Seem very unstable: 7y < —1
—— needs more searches

Potential slopes and rolling fields:

Well-controlled field space regions are close to asymptotics

— conjectured + well-tested bounds (e.g. TCC): % > ¢ — tight w.r.t. observations
— explore more

Massless Minkowski conjecture: always a massless scalar in supergravity compactif. to Mink.
Characterisation of negative potentials (ATCC), mass bound in (susy) AdS: m?1? < —2




Can we obtain (observed) dark energy from string theory?
2 . 5
— via4d theory: [ d*z/|g4] (%7&1 — 2i;0,p"0H I — V)

» Classical de Sitter solutions: no known example, only candidate solutions

If they exist: need at 3 intersecting sets of O,/D,, /| N <1 EFT, and d <4

Seem very unstable: 7y < —1
—— needs more searches

Potential slopes and rolling fields:

Well-controlled field space regions are close to asymptotics

— conjectured + well-tested bounds (e.g. TCC): % > ¢ — tight w.r.t. observations
— explore more

Massless Minkowski conjecture: always a massless scalar in supergravity compactif. to Mink.
Characterisation of negative potentials (ATCC), mass bound in (susy) AdS: m?1? < —2

Thank you for your attention!
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Solution Source ie y sol. | Mink. sol. | AdS sol.

class directions
(2.7)

(2.10)

(2.13)

(2.15)

(2.17)

(2.20)

(2.22)

(2.24)

(2.27)

(2.29)

)

)

)

)

)
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- dS Caviezel, Wrase, Zagermann ’09
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+ new solutions

- AdS

Caviezel, Koerber, Kors, Liist, Tsimpis, Zagermann 08
Petrini, Solard, Van Riet ’13
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Solution Source ie Mink. sol. | AdS sol.

class directions
2.7) 2 6 Sources Space dimensions
2.10) 5 3 4d 1 2 S

Os, (D5) X || X
Os, (Ds) & Q| ®
(Ds) &

o

=

2.1
2.2
2.2
2.2
2.2

-dS Andriot, Marconnet, Wrase ’20
Andriot ’21

[ 4]

—
| ]
[d=]

o —

+ new solutions

RN

- Mink Grafia, Minasian, Petrini, Tomasiello *06
Andriot, Marconnet, Wrase 20

) QE

- AdS: new solutions
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Solution Source Mink. sol. | AdS sol.

class directions
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T-dual D,/O,to s55 (but not nec. for fields)
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- dS: new solutions
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- AdS: new solutions
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Solution Source Mink. sol. | AdS sol.
class | directions 2 peculiar classes: Ss55 and M466

2.7
((-2.10}) 28] We prove no-gos for dS and AdS

— only Mink. solutions!

— we find examples.
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Scale separation in AdS solutions: only with compact manifold being Ricci flat or a nilmanifold?

— the case for solutions in Sesss and Mmss77
(see also Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase *21)

Arguments in favor of this: - group manifolds, not nilmanifold, can have curvature scales > KK scale
—— No scale separation with such solution

Andriot ’18
- Ricci flat and nilmanifolds: gap between curvature R and eigenmode

Laplacian Ag Andriot, Tsimpis *18
Andriot ’19

— circumvent constraints on scale separation
Gautason, Schillo, Van Riet, Williams ’15

Can we find AdS solutions in new classes s55 and mug on a Ricci flat or nilmanifold?
— no ! Prove no-gos about it —— probably no scale-separation in our new solutions
Related to having only D, along some internal dimensions. ..

— Is Sggee only class for (classical) scale sep.?
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Valid at critical point: 9,V =0, p=7 =1, but also beyond
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Reproduce it in d-dim. effective theory with V' (p, 7)

2 2(p—3) d+4—2
M?2 ( 5—2 Vo z(d—z)p'ra’rVerapV)
10—d—2q

&5 NS B X B 10—d
=t IR piet s S i B e g DR SRR a8 e ) R[S <)

Valid at critical point: 9,V =0, p=7 =1, but also beyond

. : IVV] 2(p—3) 2
swampland format: M, ‘5~ > V(@—2)(5d—1—dp—pd+p?) — /(d—1)(d—2)

—— o0bey and saturate the TCC bound on ¢




No-go: compactification with O,,/D,,, with p =7,8,9 ,0r p =4,5,6 with F5_, =0
N 7
23Ry = —[H? + (4 —p)[He2+ 39230 _o(8 —p—q)|Fy|* <0

Reproduce it in d-dim. effective theory with V' (p, 7)

2 2(p—3) d+4—2
2 (42 - 4542270,V + 0, V)
10—d—2q

&5 X B XS B 10—d
= dpt AIH G (A pied 8 pRti il @ La S of N iR ipReER (B i ) (& <)

Valid at critical point: 9,V =0, p=7 =1, but also beyond

S . VV| 2(p—3) 2 e
swampland format: M, —— > e > T (p=14)

—— o0bey and saturate the TCC bound on ¢

All other supergravity no-go theorems where tested with d > 4 : true!!
(d=4) Andriot, Cribiori, Erkinger 20




