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High energy hadron collisions
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effects.
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The core of the event is described by a hard scattering part: perturbative.
Higher orders - more accuracy (up to limits of non-perturbative physics).
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QFT: compute amplitudes as sum of Feynman diagrams (loop integrals).

Add up the answer.

OR:

[Parke, Taylor (86)]

Refinement: Use recursion relations, unitarity cuts to construct Integrand.

[Berends, Giele], [Britto, Cachazo, Feng, Witten],... [Bern, Dixon, Dunbar, Kosower], [Ossola, Papadopoulos, Pittau]...

Then integrate.



Amplitudes

Many techniques have been developed:
Tensor and i.b.p. reduction to basis of master integrals

Differential equations for master integrals [Kotikov], [Remiddi], [Gehrmann, Remiddi]...

dF'(e,s) = A(e,s)F (e, s)
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Amplitudes

Many techniques have been developed:
Tensor and i.b.p. reduction to basis of master integrals

Differential equations for master integrals [Kotikov], [Remiddi], [Gehrmann, Remiddi]...

e, ) = Ale _.

Factorised form: T

= (Polylogarithmic)
Iterated integrals

gives
le==—"

More generally - elliptic polylogarithms and beyond...

[Walden, Weinzierl], [Brodel, Duhr, Dulat, Tancredi], [Duhr, Tancredi],...



Amplitudes

Current frontier for QCD:
NNLO (2 loops) for 5-point (6-point) processes. [AbreuectAll..
NLO for higher multiplicity.

Some processes - e.g. Drell-Yan cross-sections at NNNLO...

[Anastaiou, Duhr, Dulat, Herzog, Mistelberger], [Chen, Gehrmann, Glover, Huss, Mistelberger, Pelloni], [Baglio, Duhr, Mistelberger, Szafron],...



Application - Gravitational Inspiral

Amplitudes can be used to
extract corrections to potential

[Bern, Cheung, Roiban, Shen, Solon, Zeng], ... T T
G*(1 + v* + v* + v® + v + 0% + o' 4+ )
G*(1 + v + v* + 0° + ® + 00 4+ 0?4 )
LG4(1 + 0¥ 4+ v+ 0% 4+ 0+ 00+ 0+ )
G°(1 + v* + v* + o + 0 + 0% + 0! 4 )
GO(1 4+ v® + v* + % + % + 0 4 2+ )
G'(1 + v® + v* + % + 0% + 0% + o!2 4 ..0)

Corrections to Newton potential (Fig: Snowmass report: 2204.0594)
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Important Simplifications

Large N limit ("t Hooft planar limit)

v X

This reduces and simplifies the kind of Feynman integrals which appear.

Simplify the theory: QCD — N=4 Super Yang-Mills theory
Often simplifies the analytic complexity of the final result.
Removes the complication of UV divergences.

Opens up connections to CFT techniques and relation to AdS/CFT

Both: Integrability and new symmetries - e.g. dual conformal symmetry



Amplitudes

QFT: compute amplitudes as sum of Feynman diagrams (loop integrals).

Add up the answer.

OR: (i5)"
[Parke, Taylor (86)] <12> i <n1>

Refinement: Use recursion relations, unitarity cuts to construct Integrand.

[Berends, Giele], [Britto, Cachazo, Feng, Witten],... [Bern, Dixon, Dunbar, Kosower], [Ossola, Papadopoulos, Pittau]...

Then integrate.

OR: Understand geometry of amplitudes!
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Massless planar scattering kinematics

The middle picture corresponds to a light-like Wilson loop in planar N=4 SYM.

[Alday, Maldacena], [JMD, Korchemsky, Sokatchev], [Brandhuber, Heslop, Travaglini], [[MD, Henn, Korchemsky, Sokatchev],

[Bern, Dixon, Kosower, Roiban, Spradlin,Vergu,Volovich], [Berkovits, Maldacena], [Beisert, Ricci, Tseytlin, Wolf],
[Del Duca, Duhr, Smirnov],...



Massless planar scattering kinematics

Amplitude depends on (7,771 7Z;) = (ijkl) and (N A;) = (ij)
Planar N=4 SYM: dual conformal symmetry: (7,7 7. Z;) = (ijkl) only



Planar N=4 SYM: Grassmannian Gr(4,n)

Arrange the twistors into a (4 x n) matrix: (Z;Ll) /; € P’
Dual conformal symmetry: mod out by sl4  (4-planes in n dimensions)

Grassmannian: dimension = (3n — 15)



Planar N=4 SYM: Grassmannian Gr(4,n)

Arrange the twistors into a (4 x n) matrix: (ZZA) /; € P’
Dual conformal symmetry: mod out by sl4  (4-planes in n dimensions)

Grassmannian: dimension = (31 — 15) (4-pt and 5-pt fixed!)

Amplitudes are functions on this space as well as of the coupling
AN Z) =) NAW(Z)
[

Low orders, multiplicities: AW is a sum of iterated integrals of weight 2/



Hexagons: perturbative expressions

One loop (weight 2):
g(l) ul,ug,u;g ZLIQ 1—1/UZ

Two loops (weight 4):
[Goncharov, Spradlin,Vergu,Volovich]

£ (a1, w3) = D [Lala7) = FLia(1 = 1/ug] = 57 + 3G+ 563

()



Iterated Integrals

[Chen], [Goncharov], [Brown], ...

Classical polylogarithms: Lip(z / _Lln 1(¢), Lii(z) = —log(l — z)
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Iterated Integrals

[Chen], [Goncharov], [Brown], ...
Classical polylogarithms: Lin (z / _Lln 1(¢), Lii(z)=—log(l—=z)

Many variables: gtd =5 fq(f_l)dlog¢, fO =3 "ryloge
@ @

The ‘letters’ ¢ run over a finite set of rational functions (later algebraic).

Symbol: S = ZS f(l~€ V®¢= ZC 91 ® ... ® P
Integrability: Z C3 D1 ®... 0P 1R P12 R ... ¢r|dlogd; Adlogp;r1 =0
Differential properties: A1 ® ... ¢p] = [01 @ ... ® ¢pr_1]dlog ¢y

Discontinuities: discy,=0|P1 ® ... ® Pi] = (27) (P2 ® ... ® P



Six-point case:

(1234)

N

Cluster Algebras

(1235) —

(1236)

N

(1245) —

(1256)

N

(1345) —>

(1456)

N

(2345)

(3456)

[Golden, Goncharov, Spradlin,Vergu,Volovich] using results of [Caron-Huot]

(1235)

(1245)

(2456)

Mutation generates all |15 four-brackets (arranged in Stasheff polytope).

Nine homogeneous combinations (letters):

U1 =

(1236)(3456)

(1346)(2356) ’

1—U1:

(1356)(2346) (1345)(2456) (1236)

(1346)(2356) *  “' ~ (1235)(3456)(1246)

(2356)

& cyc.



Heptagons Gr(4,7)

[JMD, Papathanasiou, Spradlin], [Dixon, JMD, Harrington, Mcleod, Papathanasiou, Spradlin]

Mutation generates all 35 four-brackets and 14 quadratics.

Arranged in a six-dimensional polytope with 833 clusters (hard to draw!).



Heptagons Gr(4,7)

[JMD, Papathanasiou, Spradlin], [Dixon, JMD, Harrington, Mcleod, Papathanasiou, Spradlin]

Mutation generates all 35 four-brackets and 14 quadratics.

Arranged in a six-dimensional polytope with 833 clusters (hard to draw!).
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Heptagons Gr(4,7)

[JMD, Papathanasiou, Spradlin], [Dixon, JMD, Harrington, Mcleod, Papathanasiou, Spradlin]

Mutation generates all 35 four-brackets and 14 quadratics.

Arranged in a six-dimensional polytope with 833 clusters (hard to draw!).

For heptagons we generate the following 42 homogeneous letters

- (1234)(1567)(2367) (2457)(3456)
ML= 1937)(1267)(3456) 41T 19345V (4567)
o {1234)(2567) o 11(23)(45)(67))
2L (1267)(2345) LT (1234)(1567)
o {1567)(2347) o {1(34)(56)(72))
> (1237)(4567) oL (1234)(1567)

and those obtained by cyclic rotation of the labels.

(a(be)(de)(fg)) = (abde)(acfg) — (abfg)(acde)



Cluster Adjacency

. . (1235)
Steinmann relations - cannot have:

(1245) ® (2356) @ ...

(1245) (2356)

(2456)



Cluster Adjacency

. . (1235)
Steinmann relations - cannot have:

(1245) ® (2356) @ ...

By inspection we find also cannot have:

(1245) (2356)

(1245) ® (1356) @ . ..

(1345) ® (2456) @ . ..

True everywhere in symbol.

(2456)
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(1245) (2356)
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True everywhere in symbol.

(2456)

Cluster Adjacency Principle: [JMD, Foster, Giirdogan]

Consecutive discontinuities around unfrozen nodes labelling separated faces forbidden.



Cluster Adjacency

(1235)

Steinmann relations - cannot have:

(1245) ® (2356) @ ...

By inspection we find also cannot have:

(1245) (2356)

(1245) ® (1356) @ . ..

(1345) ® (2456) @ . ..

True everywhere in symbol. (2456)

Cluster Adjacency Principle: [JMD, Foster, Gurdogan]

Consecutive discontinuities around unfrozen nodes labelling separated faces forbidden.

Algebraic and geometric picture behind the analytic structure of amplitudes.



Bootstrap programme

Build integrable words in the symbol alphabet

Initial entries constrained by physical branch cuts, final entries by supersymmetry
Steinmann/cluster adjacency

Well behaved in collinear limits

Fixes e.g. heptagon (and hence hexagon symbols) up to four loops

[Dixon, JMD, Henn],

[Dixon, JMD, von Hippel, Pennington],

[Dixon, JMD, Duhr, Pennington],

[Dixon, von Hippel]

[JMD, Papathanasiou, Spradlin],

[Dixon, von Hippel, McLeod],

[Caron-Huot, Dixon, von Hippel, McLeod],

[Dixon, JMD, Harrington, Mcleod, Papathanasiou, Spradlin],
[Caron-Huot, Dixon, Dulat, von Hippel, McLeod],

[JMD, Foster, Glirdogan, Papathanasiou], .
[Dixon, Giirdogan, McLeod, Wilhelm],... The approach generalises to form factors.
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A Puzzle

9 letters 42 letters Infinitely many?



Grassmannian Gr(4,n)

Plicker coordinates (7,7, 7y 7Z;) = (ijkl)
obey relations: (17k|) (mnpq|) = 0
(i7kl) (mnplq) = 0
We can define the Grassmannian through these relations

(25kl) — Dijki



Tropical Grassmannian speyer Sturmiel]

Plucker relations: Diik[iPmapg] — Y

PijklPmnplq = 0 (Plucker ideal)
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Plucker relations: Diik[iPmapg] — Y
DiikiPmnplg— 9 (Pliicker ideal)
Tropicalise: multiplication —— addition
addition — minimum

example: Y + wz” + 2uv — min(z + y, w + 2z, u + )
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Tropical polynomials divide the space into regions of piecewise linearity

Regions separated by tropical hypersurfaces



Tropical Grassmannian speyer Sturmiel]

Plucker relations: Diik[iPmapg] — Y
DiikiPmnplg— 9 (Pliicker ideal)
Tropicalise: multiplication —— addition
addition — minimum

example: Y + wz” + 2uv — min(z + y, w + 2z, u + )

Tropical polynomials divide the space into regions of piecewise linearity

Regions separated by tropical hypersurfaces

Tropical space captures many features of the original



[Speyer, Williams]

Positive Tropical Grassmannian Tr(4,6)

x1

(1,0,0)

)

(0,1,0) (1,0,—1)

(0,1,—1)

Tropical Grassmannian captures many features of the cluster algebra.



Positive Tropical Grassmannians Tr(4,8)

For n=8 we have infinite cluster algebra
|) Need a way to select a finite number of A-coords

2) We know: some letters are not rational functions so cannot be A-coords



Positive Tropical Grassmannians Tr(4,8)

For n=8 we have infinite (affine) cluster algebra
|) Need a way to select a finite number of A-coords

2) We know: some letters are not rational functions so cannot be A-coords

Four-mass box already present at one loop for 8-point amplitudes.



Positive Tropical Grassmannians Tr(4,8)

For n=8 we have infinite (affine) cluster algebra
|) Need a way to select a finite number of A-coords

2) We know: some letters are not rational functions so cannot be A-coords

| st problem solved by picking a tropical fan

S g-vector rays extra rays
{(te+1554+1), i —1ii+175)} 272 2
{(ijkl& 356 4
{(igkl), (ijkl)} 544 4



Positive Tropical Grassmannians Tr(4,8)

For n=8 we have infinite (affine) cluster algebra
|) Need a way to select a finite number of A-coords

2) We know: some letters are not rational functions so cannot be A-coords

| st problem solved by picking a tropical fan

S g-vector rays extra rays
{(te+1554+1), i —1ii+175)} 272 2
{(ijkl& 356 4
{(igkl), (ijkl)} 544 4

square root letters
Match |8 letters of 2-loop NMHYV octagon! i

|
using results of [He, Li, Zhang] an PrObIem also SOIVECI.



Back to generic massless planar theory

Much of the structure survives without dual conformal symmetry

Many results still expressed as iterated integrals over an alphabet of letters

{
Four-points - 2 letters: {z,1+ 2} T — ;

Harmonic polylogarithms [Gehrmann,Remiddi]

Five-points - 26 letters:

Pentagon functions [Gehrmann, Henn, Lo Presti]

a+\/Z}
a—vVA

{s12, 812 + S23, S12 — S45, S12 + S23 — S45, A = |S;5], & cyc

Rational functions of momentum twistor variables.

Six-points - !



Relations to geometry!?

Some things are known

Four-point, one-mass topology related to a folding of dual conformal

hexagon case: A4, — (O, | |
[Henn, Papathanasiou] (gives six-letter alphabet)

This case is also related to a form factor:
[Dixon, McLeod, Wilhelm], [Dixon, Gurdogan, McLeod, Wilhelm]

Can also drop the requirement of planarity.

Full pentagon alphabet obtained by permutations of planar one.
[Chicherin, Henn, Mitev]



Summary

Grassmannian describes the kinematics of planar massless scattering
Cluster algebras provide sets of singularities and relations between them
Positive Tropical Grassmannian directly connected to cluster algebras
We have choices of fans associated to positive tropical Grassmannian
For each fan we have a natural class of tropically adjacenct polylogarithms

Tropical fan and cluster algebra combine to provide algebraic letters

Hints that relations of amplitudes to geometry of kinematics go much deeper!



Outlook

Adjacency rules in the presence of algebraic singularities?

Beyond octagon we have wild cases (not affine)

Elliptic functions!?

Can tropical geometry play a role for general massless scattering?
What plays the role of the cluster algebra!?

Bases for cluster (tropically) adjacent polylogarithms



