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The	Fractional	Quantum	Hall	Effect	(FQHE)	is	a	fascinating	manifestation	of	collective	
quantum	phenomena.	Elementary	excitations	are	quasiparticles	with	fractional	charge	[1]	
and	statistics	(anyons)	[2].	Both	can	be	revealed	through	various	methods	based	on	non-
equilibrium	current	correlations	through	a	Quantum	Point	Contact	(QPC)	created	in	a	Hall	
bar,	where	quasiparticles	tunnel	between	opposite	edge	states.	The	determination	of	their	
fractional	charge	q	has	been	conclusive	only	for	Laughlin	states,	thus	at	simple	fractional	
Killing	factors	 		for	which	 ,	and	has	been	based	on	zero-frequency	poissonnian	shot	
noise	[1].	Nonetheless,	this	determination	is	crucial	to	understand	states	for	other	values	of	
	,	such	as	the	Jain	series,	and	for	which	the	underlying	microscopic	models	are	still	under	
debates.		

We	have	developed	a	unifying	perturbative	approach	for	non-equilibrium	transport	[3,4,5]	
which	offers	more	robust	and	advantageous	methods.	It	doesn’t	require	the	knowledge	of	
such	microscopic	models	nor	initial	thermal	states,	but	only	few	conditions.	These	methods	
rely	on	universal	non-equilibrium	Kluctuation	relations	from	which	the	Josephson-type	
frequency	 	can	be	extracted.	We	will	present	Kirst	those	based	on	high-frequency	
noise	[5],	which	have	been	implemented	by	Gwendal	Fève’s	group	(coll.)	to	determine		

	at	 	[6].	Secondly,	we	will	address	those	based	on	the	photo-assisted	noise	
under	an	ac	voltage,	and	implemented	by	D.	C.	Glattli’s	group	to	determine	 	at		

	[7].		We	will	Kinally	revisit	the	implementation	and	the	charge	of	minimal	
excitations	[8]	under	lorentzian	pulses	[3,4].			
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