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Introduction and Background

• Two-dimensional Conformal Field Theory has been
intensely studied since the mid 1980’s
[Belavin-Polyakov-Zamolodchikov 1984, Knizhnik-Zamolodchikov 1985].

• Physics motivations:

• Critical systems in statistical physics

• World-sheet of relativistic strings

• Quantum/stringy version of AdS3/CFT2

• Anyons and the fractional quantum Hall effect

• Topological quantum computing

• Mathematical motivations:

• Vertex operator algebras (VOA)

• Modular tensor categories (MTC)

• Vector-valued modular forms (VVMF)

• Moonshine modules for sporadic groups
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• 2d CFTs always have an infinite-dimensional symmetry
algebra, the Virasoro algebra, generated by Ln.

• They often have additional infinite-dimensional symmetries
beyond Virasoro, such as Kac-Moody algebras associated
to a Lie algebra, or W -algebras etc.

• The full symmetry algebra is called the chiral algebra.
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• Let us label the chiral algebra generators of a given theory
by {Aαn} = {Ln, Jan, · · · }.

• Then the Hilbert space decomposes into towers (modules)
over highest-weight states |φi〉 called primaries satisfying:

Aαn|φi〉 = Āαn|φi〉 = 0, n > 0, all α

• The negative modes Aα−n, n > 0 generate descendants.
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• If the number n of primaries |φi〉 is finite then we have a
Rational Conformal Field Theory (RCFT).

• This is equivalent to the statement that c, hi are rational
numbers [Anderson-Moore 1988].

• It is thought that Rational 2d CFT are classified, at least
in principle.

• In fact the integrable representations of specific chiral
algebras are classified [Belavin-Polyakov-Zamolodchikov 1984,

Knizhnik-Zamolodchikov 1985].

• Additionally, if V1,V2 are two chiral algebras with V2 ⊂ V1,
one can take the coset V1/V2 of the corresponding CFTs
[Goddard-Kent-Olive 1985] to generate new ones.
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• However this does not help us answer simple questions, for
example:

• What are all RCFTs that have just one primary 1?

= (1)CFT = no critical exponents = meromorphic vertex
operator algebras

• What are all RCFTs that have exactly p primaries
1,Φ1,Φ2, · · · ,Φp−1?

= (p)CFT = p− 1 critical exponents = vertex operator
algebras with p simple modules
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• There is no complete solution to these questions.

• However there was progress on them during 1984− 1992:

• Meromorphic CFT [Goddard-Olive 1984, Goddard 1988,

Schellekens 1992]

• Classification of CFT via Modular Linear Differential
Equations [Mathur-Mukhi-Sen 1988-89, Naculich 1989].

• These two developments appeared independent, but
eventually converged [Gaberdiel-Hampapura-Mukhi 2016].

• In the last decade there has been fresh progress on both
questions, and here I will present some recent results.
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• I will present the complete classification of unitary CFT
with c < 25 and two primaries 1, Φ [Mukhi-Rayhaun 2022,

Comm. Math. Phys, in press].

• In mathematical terminology, this is the classification of
strongly regular VOAs with central charge c < 25 and two
simple modules.

• The result is a set of 123 theories.

• I will also briefly present:

• The complete classification of three-character CFT with
vanishing Wronskian index [Das-Gowdigere-Mukhi 2022b].

• A new method to construct meromorphic CFTs with c ≥ 32
[Das-Gowdigere-Mukhi 2022a].
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Meromorphic CFT

• Meromorphic CFT have just the identity primary 1.

• Their partition function has the form:

Z(τ, τ̄) = |χ(τ)|2

where χ(τ), the character, counts the degeneracies under
the holomorphic the chiral algebra.

• The partition function must be modular invariant:

Z
(
aτ+b
cτ+d ,

aτ̄+b
cτ̄+d

)
= Z(τ, τ̄),

(
a b
c d

)
∈ SL(2,Z)

• It follows that χ(τ) must be modular invariant upto a
phase, and hence is a function of the Klein j-invariant:

j(q) = q−1 + 744 + 196884q + 21493760q2 + · · ·
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• Meromorphic CFT can only exist for c a multiple of 8.

• Some examples:

c = 8 : χ(τ) = j(τ)
1
3 E8,1 (unique)

c = 16 : χ(τ) = j(τ)
2
3 E8,1 × E8,1, D

+
16,1

c = 24 : χ(τ) = j(τ) +N Niemeier lattices

c = 32 : χ(τ) = j(τ)
1
3

(
j(τ) +N

)
Even unimodular 32d lattices

where Xr,k = Kac-Moody algebra X of rank r and level k.

• These examples correspond to “lattice theories”: c free
bosons compactified on a torus Rc/Γ, where Γ is an even,
unimodular lattice.

• Starting from c ≥ 24, there are more general (non-lattice)
possibilities.
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• The most general allowed character at c = 24 is:

χ(τ) = j(τ) +N

where N is any integer ≥ −744, but there are just 71
CFT’s [Schellekens 1992].

• These include 24 lattice theories and a finite number of
generalisations involving orbifolding etc.

• Examples:

• Schellekens #59: A11,1D7,1E6,1(lattice theory)

• Schellekens #34: A3,1D7,3G2,1(non-lattice theory)

• These are special modular invariant combinations
(“extensions”) of characters for the given non-simple KM
algebras.
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• 70 of the 71 Schellekens theories are meromorphic
extensions of non-simple KM algebras.

• This means we treat some primaries of integer dimension
as chiral generators of higher spin, which then organises
the theory into a smaller number of primaries.

• The 71st Schellekens theory is also a meromorphic
extension, not of KM algebras, but of (Ising model)48.

• This extension is called the Monster CFT.

• At c = 32 there are around ∼ 109 even, unimodular lattices
(and an unknown number of non-lattice theories), so
complete classification seems very difficult.
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The MLDE approach

• Let us now try to classify CFT by the number of primaries.

• For this we define the character:

χi(q) = tri q
L0− c

24 , q ≡ e2πiτ

where the trace runs over only holomorphic descendants.

• Multiple primaries can have the same character, e.g. if Φ is
complex then χΦ = χΦ̄. Thus, number n of independent
characters ≤ number p of independent primaries.

• The partition function is then:

Z(q, q̄) =

n−1∑
i=0

Mi χi(q) χ̄ī(q̄)

where Mi is the multiplicity of the character.
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• Modular invariance of Z ⇐⇒ characters go into linear
combinations of themselves under SL(2,Z):

χi

(
aτ+b
cτ+d

)
=

n−1∑
j=0

%ij

(
a b
c d

)
χj(τ), %†% = 1

• Thus they are vector-valued modular functions or VVMF
(of weight 0).

• % is an n-dimensional representation of SL(2,Z), the
modular representation of the characters.
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• A holomorphic modular bootstrap method was originally
proposed in [Mathur-Mukhi-Sen (1988)] to find candidate
VVMFs.

• These should have an expansion in q ≡ e2πiτ :

χi(q) = qαi
(
a

(i)
0 + a

(i)
1 q + a

(i)
2 q2 + · · ·

)
, i = 0, 1, · · · , n− 1

with non-negative integer coefficients a
(i)
m , the degeneracies

of descendants.

• Generic VVMFs do not have positive or integral
coefficients. So one needs to isolate the admissible ones, for
which:

a(i)
m ∈ Z≥0 (potentially giving degeneracies)

a
(0)
0 = 1 (non-degenerate vacuum state)
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• Then one has to verify which of these admissible characters
correspond to actual CFT.

• Thus the classification of RCFT involves two steps:

I. Classify admissible characters.

II. Within this set, search for actual CFT.

• There has been some kind of folklore that most often,
I ≡ II, i.e. each set of admissible characters describes a
unique CFT.

• As we will see, this is wrong in two ways:

• Most admissible characters do not describe any CFT,

• Some admissible characters describe multiple CFT.
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• The starting point is that every VVMF χi(q) can be
written as the n independent solutions of a Modular
Invariant Linear Differential Equation (MLDE) in τ .

• So we write the most general MLDE and scan it for
admissible solutions. For n = 2:(

D2
τ + φ2(τ)Dτ + φ4(τ)

)
χ(τ) = 0

where:

Dτ ≡ 1
2πi

∂
∂τ −

k
12E2(τ) : Mk →Mk+2

is the Ramanujan-Serre derivative, k is the weight of the
modular form on which it acts, and E2(τ) is an Eisenstein
series.

• The equation will be modular invariant iff φ2(τ), φ4(τ) are
modular of weight 2, 4 respectively.
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• Suppose we are given a VVMF χ0, χ1. A general linear
combination of them, χ, satisfies the following equation:∣∣∣∣∣∣

χ0 χ1 χ

Dτχ0 Dτχ1 Dτχ

D2
τχ0 D2

τχ1 D2
τχ

∣∣∣∣∣∣ = 0

• Expanding by the last column, we get:∣∣∣∣ χ0 χ1

Dτχ0 Dτχ1

∣∣∣∣D2
τχ−

∣∣∣∣ χ0 χ1

D2
τχ0 D2

τχ1

∣∣∣∣Dτχ+

∣∣∣∣Dτχ0 Dτχ1

D2
τχ0 D2

τχ1

∣∣∣∣χ = 0

• Hence:

φ2 = −

∣∣∣∣ χ0 χ1

D2
τχ0 D2

τχ1

∣∣∣∣∣∣∣∣ χ0 χ1

Dτχ0 Dτχ1

∣∣∣∣ , φ4 =

∣∣∣∣Dτχ0 Dτχ1

D2
τχ0 D2

τχ1

∣∣∣∣∣∣∣∣ χ0 χ1

Dτχ0 Dτχ1

∣∣∣∣
• Both φ2, φ4 can have poles wherever the denominator,

which we call the Wronskian W , has zeroes.
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• The number of such poles in the interior of moduli space is
denoted `

6 , where ` = 0, 2, 3, 4 · · · .

• The factor of 1
6 arises because moduli space has special

points ρ ≡ e
2πi
3 , i.

• ` is called the Wronskian index.

• With two characters it can be shown that ` is even:
` = 0, 2, 4, · · · [Naculich 1989].

• For any given ` there is a finite basis of functions of E4, E6

from which φ2, φ4 are built. Thus the MLDE has a finite
number of parameters that grows with `.
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• Now we fix ` to various small values and scan the
parameter space to look for solutions that are admissible
characters.

• In order of simplicity we start with ` = 0. Then φ2 = 0 and
φ4(τ) = µE4(τ), where E4 is an Eisenstein series and µ is a
real parameter.

• This leads to the “MMS equation”:(
D2
τ + µE4(τ)

)
χ = 0

• The parameter µ completely determines the solutions up to
overall normalisations.
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• The leading terms in the solutions are denoted qα0 , qα1

where α0, α1 are the critical indices or exponents.

• We write:
α0 = − c

24 , α1 = − c
24 + h

If the solutions describe a CFT then (c, h) will have the
usual meaning.

• Next we solve the MLDE recursively by the Frobenius
method, order by order in q.

• Let’s look at two examples.
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• MMS equation with µ = − 119
3600 gives admissible characters:

χ0(q) = q−7/60(1 + 14q + 42q2 + 140q3 + 350q4 + 850q5

+ 1827q6 + 3858q7 + 7637q8 + 14756q9 + · · · )
χ1(q) = q17/60(1 + 34

7 q + 17q2 + 46q3 + 117q4 + 266q5

+ 575q6 + 1174q7 + 2311q8 + 4380q9 + · · · )

c = 14
5 , h = 2

5 . Normalising second character by 7, it
becomes admissible. These characters can be identified
with the CFT G2,1.

• MMS equation with µ = − 143
4800 gives non-admissible

characters:

χ0(q) = q−13/120(1 + 455
37 q + 121784

3589 q2 + 60836763
563473 q3 + 4525367613

17467663 q4

+ 2893074116179
4838542651 q5 + 2046920234847579

1630588873387 q6 + · · · )
χ1(q) = q11/40(1 + 363

83 q + 15849
1079 q

2 + 90512
2407 q

3 + 58528917
633041 q4

+ 128150964
633041 q5 + 102972265445

242454703 q6 + · · · )

Formally c = 13
5 , h = 23

60 , but clearly this is not a CFT.
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• We found a finite and very interesting set of admissible
characters, all with 0 < c < 8, and guessed their
identification with various known RCFT:

• This brings together several distinct level-1 KM characters,
and a few curious entries that have negative fusion rules.
Today I will ignore those (they are now called Intermediate
Vertex Operator Algebras or IVOA).
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• From now on we will restrict to unitary CFT with exactly
two primaries.

• Thus we must discard:

• One primary: E8,1

• More than two primaries: A2,1,D4,1,E6,1. For example A2,1

has three primaries 1, 3 and 3̄ but the latter two have the
same character.

• This leaves just four theories with (p, `) = (2, 0), which we
identified with the affine theories:

A1,1,G2,1,F4,1,E7,1 “MMS set”

with:
c = 1, 14

5 ,
26
5 , 7 respectively.

• Recently this identification was shown to be unique
[Mason-Nagatomo-Sakai 2018].
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Meromorphic cosets and classification

• Now that ` = 0 is classified, we move to the next case,
` = 2. Historically, this case provided the insights for the
more general classification.

• The MLDE is:(
D2
τ + E6

3E4
Dτ + µE4(τ)

)
χ = 0

and we see that φ2 has a pole where E4 vanishes.

• This MLDE was solved in [Naculich 1989, Hampapura-Mukhi 2015]

and four admissible two-primary VVMF’s were found, with
central charges:

17, 94
5 ,

106
5 , 23

• These solutions have central charges 24− c and conformal
dimensions 2− h relative to the MMS set.
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• These solutions were not identified as CFTs for nearly
three decades! This was finally achieved in
[Gaberdiel-Hampapura-Mukhi 2016].

• We used the coset construction of RCFT’s [Goddard-Kent-Olive

1984,1985] where one embeds a chiral algebra V2 ⊂ V1 to
define V1V2 .

• One has ccoset = cV1 − cV2 .

• Most examples in the physics literature take V1,V2 to be
WZW theories, then embed the KM algebra of the
denominator in that of the numerator.
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• However the cosets we need are actually simpler. They are
cosets of a meromorphic theory A by an affine theory
V ⊂ A leading to V ′ = A

V . [Moore-Seiberg 1988, Schellekens et al

1990, Frenkel-Zhu 1991, Fröhlich et al 2006].

• Such cosets can sometimes be defined by embedding KM
algebras, but they exist in greater generality.

• Since A is meromorphic, the denominator V and the coset
V ′ are both (p)CFTs for the same p and their characters
satisfy a holomorphic bilinear relation:

p−1∑
i=0

χVi (q)χV
′

i (q) = χA(q)
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• Let’s clarify this by an example. Recall #34 in Schellekens’
list with KM algebra A3,1D7,3G2,1.

• We can now take the quotient:

S#34

G2,1

by deleting G2,1 from the numerator. This leads to a
(2)CFT with algebra A3,1D7,3 and c = 24− 14

5 = 106
5 .

• Such quotients can be shown to have Wronskian index
` = 2.

• There are 15 such (2)CFT, with c = 17, 94
5 ,

106
5 , 23,

corresponding to cosets of entries in the Schellekens list by
the four MMS solutions.
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• Generalising this method to other cosets of meromorphic
theories by MMS theories generates many CFTs with
various values of the Wronskian index `.

• Remarkably this procedure is exhaustive: every theory
with two primaries arises by taking cosets of meromorphic
theories by the MMS set!

• This result [Mukhi-Rayhaun 2022] makes use of two previous
results:

1 All admissible modular representations % of rank 2 arise
from the MMS set by conjugation and/or multiplication by
the phase ω = e2πi/3.

2 With two primaries, the modular representation completely
determines the modular tensor category.
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• All modular representations are generated by two MMS
CFTs, which we can take to be: %A for A1,1 and %G for G2,1.

• From these we can make a total of 12 modular
representations:

%A , %G, ω%A, ω%G, ω2%A, ω2%G

%†A, %†G, ω%†A, ω%†G, ω2%†A, ω2%†G

Here ω%†A, ω%
†
G correspond to E7,1 and F4,1 respectively.

• If now we pair any representation with one containing its
conjugate, e.g %A and ωn%†A then the result is a pure phase
ωn and we get a bilinear relation to a meromorphic theory
in dimension 8n mod 24.
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• But the converse is also true – any CFT in one of these
representations must pair up with its conjugate to a
meromorphic theory.

• The reason is that the Modular Tensor Category (MTC)
associated to the CFT is uniquely specified by the modular
representation – but only for rank 2, 3.

• Thus all (2)CFT can be found by taking cosets of
meromorphic CFT by A1,1,G2,1,F4,1,E7,1 – the MMS set.
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• However, the classification of “all meromorphic CFTs of
central charge c” exists only up to c = 24, and beyond that
it is impractical.

• So the best we can do is classify all (2)CFT with c < 24.
We take all meromorphic theories up to c = 24 and
quotient in all possible ways by the MMS set.

• The possible central charges we will get in this way are:

c = cM − 1, cM − 14
5 , cM −

26
5 , cM − 7

with cM = 8, 16, 24. The maximum value is 23.
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• A small trick allows us to stretch this range a little bit.

• The minimum and maximum central charges of the MMS
set are 1, 7.

• So meromorphic theories at cM = 24, 32 gives
maximum/minimum central charges of 23, 25 respectively.

• Hence there is no (2)CFT with 23 < c < 25. So we can
push our upper limit to 25.
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• From the Riemann-Roch theorem:

` = c
2 − 6h+ 1

unitary theories with 0 < c < 25 can only have Wronskian
index 0, 2, 4, 6, 8, 10, 12.

• We already classified ` = 0, 2 to get 4 + 15 theories.

• From the allowed modular representations one can show
there are no admissible characters in this range for
` = 6, 10, 12.

• That only leaves ` = 4, 8. These arise from embeddings of
the MMS set in meromorphic theories of c = 16, 24
respectively.
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• Finally one computes all possible such embeddings.

• This is a complicated exercise involving Dynkin and
embedding indices, so I will skip the details.

• The result is a set of 6 + 98 theories at ` = 4, 8 respectively.

• As an example, for the Schellekens theory with chiral
algebra A3,1 D7,3 G2,1, we can embed A1,1 in two ways:

A1,1 ↪→ A3,1, A1,1 ↪→ G2,1

• We cannot embed A1,1 into D7,3 because the level of the
embedding algebra has to be ≥ the level of the numerator.
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• In total we found 123 CFT’s with two primaries and
c < 25, and 100 of these are new.

• Some features of the final table:

• Wronskian indices ` = 0, 2, 4, 8 arise.

• Some theories have complete KM algebras and others have
incomplete ones together with minimal models, the latter
being one of c = 7

10 ,
4
5 ,

1
2 ⊕

7
10 (not the case in Schellekens

theories).

• Some theories have both non-Abelian and Abelian factors
(not the case in Schellekens list).

• There are theories with the same c but different conformal
dimension h, and also multiple theories with the same
(c, h). For example we find:

2 theories with (c, h) =
(
106
5 , 85

)
27 theories with (c, h) =

(
106
5 , 35

)
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• Some subtleties we encountered:

(i) Possible inequivalence of embeddings into different copies of
the same factor.

• The problem arises when there are multiple copies of one
factor. For example many Schellekens theories have factors
of Am1,1 for m ≥ 2. When taking a coset by A1,1, does it
matter which of the numerator factors we delete?

• This was resolved in [Betsumiya-Lam-Shimakura 2022] and
private communication with the authors. One example is:

D6,5A1,1A
′
1,1

A1,1
6=

D6,5A1,1A
′
1,1

A′1,1

• However this happens in just two cases. In the remaining
ones, the multiple copies are permuted by outer
automorphisms of the algebra and in this case the two
embeddings are equivalent.
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(ii) Linear equivalence vs equivalence of embeddings.

• We computed linearly inequivalent embeddings using
suitable software. However in some specific cases, linear
equivalence does not imply equivalence.

• The complete set of conditions when this can happen were
described in [Minchenko 2006]. We were able to check that for
all our cases, linear equivalence corresponds to equivalence
of embeddings.
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A close-up of a few entries:
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Three character case, in brief

• The three-character case has been studied for vanishing
Wronskian index (` = 0) in several papers [Mathur-Mukhi-Sen

1989, Hampapura-Mukhi 2015, Gaberdiel-Hampapura-Mukhi 2016,

Franc-Mason 2020, Mukhi-Poddar-Singh 2020].

• Recently three groups independently completed the
classification of admissible characters for this case
[Kaidi-Lin-Parra-Martinez 2021, Das-Gowdigere-Santara 2021,

Bae-Duan-Lee-Lee-Sarkis 2021].

• Then in [Das-Gowdigere-Mukhi 2022b] we were finally able to
identify all the actual CFT within this set and rule out the
rest.

• This completes the classification of three-character CFT
with vanishing Wronskian index (no restriction on central
charge), 33 years after it was first attempted!
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• We also found a nice trick that produces new non-lattice
meromorphic theories at c ≥ 32 [Das-Gowdigere-Mukhi 2022a].
This uses the uniqueness of rank-3 MTCs together with
transitivity.

• The idea is as follows. Take a Schellekens theory at c = 24
and coset by a known theory V. Call the result V ′ = S/V.

• Now take a known CFT V ′′ whose modular representation
is conjugate to V ′ such that:

cV ′ + cV ′′ = 32

• From the previous argument, it follows that there must be
a meromorphic theory at c = 32.

• In this way we wrote down entire families of new
(non-lattice) meromorphic CFT at c = 8N for arbitrarily
large N .
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Discussion

• With two primaries, can we go beyond the c < 25 bound?

• Most of the work in this field has been done for ` < 6
because in this case the poles of the Wronskian arise at
known points. It has been thought that ` ≥ 6 is
intractable. However, [Das-Gowdigere-Mukhi-Santara, in progress]

we have recently found arguments to show that the MLDE
for Wronskian index ` ≥ 6 is quite tractable.

• Beyond two primaries: there is a recent follow-up paper by
my collaborator [Rayhaun: “Bosonic Rational Conformal Field

Theories in Small Genera ...”] that addresses the case of 3 and 4
primaries.
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• There is a construction based on generalised Hecke
operators [Harvey-Wu 2018] that provides an alternate way to
find admissible characters. It would be useful to compare it
with our construction.

• Relation to penumbral moonshine – relation between
VVMF’s and certain types of finite groups
[Duncan-Harvey-Rayhaun 2021].

47 / 47



Thank you
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