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The relativistic p-brane

Original idea due to Dirac: a (relativistic) membrane
model of the electron [Dirac(1962)]

Nambu-Goto action for p-brane with Xµ ≡ Xµ(τ, σr):

L(X) = Tp

√

− det gij(X) with gij(X) ≡ ∂iX
µ∂jX

νηµν

or equivalently, Polyakov-type action:

L(g,X) =
1

2
Tp

√−g
(

gij∂iX
µ∂jX

νηµν − (p− 1)
)

Simplifying feature: for string (p = 1) there exists a
gauge for which equations of motion become linear !

Equivalently: gauge away world volume metric by dif-
feomorphisms and conformal symmetry → gravitational
path integral reduced to finite-dimensional integral,
Gaussian theory for target space coordinates Xµ.

However, no such simplifications for p > 1!



Why Supermembranes?

Uniquemaximally supersymmetric supermembrane the-
ory in space-time dimension D = 11 [Bergshoeff,Sezgin,Townsend(1987)]

is a candidate theory for non-perturbative formulation
of string theory. (Theories also exist for D = 4, 5, 7.)

• can be obtained as the N → ∞ limit of maximally
supersymmetric SU (N)matrix theory [deWit,Hoppe,HN(1988)].

Nevertheless progress has been slow because there re-
mains the main unsolved problem = quantization:

• There is no gauge which linearizes equations of motion ⇒
• Determination of correlation functions can not be reduced to

free field theory computations, unlike for string theory

• ⇒ no membrane analog of the Veneziano formula

• In view of intrinsic non-linearities of membrane theory, co-

variant quantization à la Polyakov looks hopeless



Only realistically feasible approach (so far, at least)=
light-cone gauge quantization with flat (Minkowski)
background? But again there remain difficulties which
are mirrored in M theory matrix model:

• Existence and properties of N → ∞ limit? ,

• Quantum target space Lorentz invariance? /

[see also: deWit,Marquard,HN(1990); Ezawa,Matsuo,Murakami(1997)]

• Is D=11 the critical dimension of supermembrane?

• Vertex operators and correlators? /

Present approach based on the fact that supermem-
brane theory ≡ one-dimensional supersymmetric gauge
theory of area preserving diffeomorphisms (APDs)

→ in principle would allow to skip SU (N) approxima-
tion for N < ∞ and to deal directly with SU (∞) theory!



Supermembrane basics

Target superspace coordinates
{

Xµ(ξi), θ(ξi)
}

with i, j, ... =
0, 1, 2 and ξi = (τ, σr) (r, s = 1, 2) → vielbein and metric:

Ei
µ = ∂iX

µ + θ̄Γµ∂iθ ⇒ gij = Ei
µEj

νηµν

With target space light-cone coordinates

Xµ = (X+, X−, Xa) with X± =
1√
2
(X10 ±X0)

and transverse coordinates {Xa}≡X → light-cone gauge

X+(τ,σ) = X+
0 + τ , Γ+θ(τ,σ) = 0

⇒ induced metric on membrane world volume

grs ≡ ḡrs = ∂rX · ∂sX (ḡrsḡst = δrt )

g00 = 2∂0X
− + (∂0X)2 + θ̄Γ−∂0θ

g0r ≡ ur = ∂rX
− + ∂0X · ∂rX + θ̄Γ−∂rθ



Metric determinant on world volume:

g ≡ det gij = −∆ḡ

with ḡ ≡ det ḡrs and ∆ ≡ −g00 + urḡ
rsus ⇒ Lagrangian

L = −T3

(

−
√

ḡ∆ + ǫrs∂rX
a θ̄Γ−Γa∂sθ

)

Hence the membrane tension T3 is the only parameter
of the theory, of mass dimension three → render di-
mensionless by rescaling w.r.t. some reference mass.

For double dimensional reduction [Duff,Howe,Inami,Stelle(1987)]

use Ts ≡ ℓ−2
s = T3R10 and g2s = T3R

3
10 [Witten(1995)] to obtain

T3 = T
3/2
s g−1

s ≡ (α′)−3/2g−1
s

→ after reduction from D = 11 to D = 10 this formula
ties together the two key parameters of string theory!

Or: perturbative expansion in T3 ‘entangles’ α
′-expansion

with string loop expansion.



Canonical analysis for bosonic membrane: [Goldstone,Hoppe(1982)]

Analogous analysis for supermembrane: [BST,dWHN(1988)]

P+ = T3

√

ḡ

∆
, S = −T3

√

ḡ

∆
Γ−θ ≡ −P+θ

P = T3

√

ḡ

∆

(

∂0X− urḡ
rs∂sX

)

≡ P+
(

∂0X− urḡ
rs∂sX

)

⇒ spatial diffeomorphism constraint

φr = P · ∂rX + P+∂rX
− + S̄∂rθ ≈ 0

Hamiltonian density: P−
0 ≡ −

∫

d2σH (stable for T > 0)

H =
P2 + T 2

3 ḡ

P+
− T3ǫ

rs∂rX
a θ̄Γ−Γa∂sθ

With P+(τ,σ) = P+
0

√

w(σ) we obtain ‘(mass)2 operator’

M2 = −2P+
0 P

−
0 −P2

0 =

∫

d2σ
(

[P2]′+T 2
3 ḡ−2T3ǫ

rs∂rX
a θ̄Γ−Γa∂sθ

)

(with rescaled fermionic variables θ →
√

P+
0 θ).



Kinematics of zero modes

Supermembrane zero modes Xµ
0 and θ0 decouple:

{

Q
(+)
0α , Q

(+)
0β

}

= (Γ+)αβ P
2
0

with 44 ⊕ 84 bosonic and 128 fermionic states = mass-
less multiplet of D = 11 supergravity ⇒ groundstate

{D = 11 SUGRA multiplet} ⊗ Ψ

→ requires normalizable Ψ obeying M2Ψ = 0.

For superstring: same zero mode kinematics, but now
Ψ = |0〉b⊗|0〉f is infinite product of supersymmetric har-
monic oscillator groundstate wave functions, excited
states by applying raising operators (ain)

† and d†nα to Ψ.

This accounts for the very simple structure of the
string spectrum and its factorization into left-moving
and right-moving states (modulo L0 = L̄0 constraint).



Alas, life is not so simple with supermembranes!

For uncompactified supermembrane M2 has continu-
ous spectrum starting at zero → no excited massive
one-particle excitations [deWit,Lüscher,HN(1989);Smilga(1996)]

→ not a first quantizable theory!

Different results (interpretation?) for compactified su-
permembrane with winding [Boulton,Garcia del Moral,Restuccia(2003)]

Yet a different question concerns the existence of a
normalizable groundstate → Ψ is definitely not a fac-
torized state of bosons and fermions!

For N < ∞ matrix model there are numerous results:
[dWHN(1987);Hoppe(1997);Fröhlich,Hoppe(1997); Halpern,Schwartz(1997); Hoppe,Yau(1997);Yi(1997);

Sethi,Stern(1998);Porrati,Rosenberg(1998); Moore,Nekrasov,Shatashvile(1998);Boulton,Garcia

del Moral,Restuccia(2011)&(2021) ]

but N = ∞ theory is much more difficult.



Interlude: Area Preserving Diffeomorphisms

Are generated by vector fields δξr ≡ δξr(σ) which satisfy

∂r
(√

w δξr
)

= 0 ⇒ δξr = ǫrs∂s(δξ)

with parameter δξ ≡ δξ(σ) ⇒ scalar Φ transforms as

δΦ = δξr∂rΦ = ǫrs∂r(δξ) ∂sΦ ≡
{

δξ , Φ
}

with APD bracket
{

A , B
}

(σ) := ǫrs ∂rA(σ) ∂sB(σ)

→ satisfies all properties of a Lie bracket

In addition there are APDs generated by harmonic
vector fields δξr for which δξ does not exist globally.

APD0 for which δξ exist globally form a normal sub-
group within the group of all APDs on the membrane.



APD Gauge Theory and Matrix Model

Partial gauge fixing ur = 0 → residual gauge invariance

φ = ǫrs
(

∂rP · ∂sX + ∂rθ̄Γ−∂sθ
)

≈ 0

generates APD0 transformations → φ = 0 necessary to
solve for longitudinal coordinate ∂rX

−(τ,σ) = ...

X−(τ,σ) = −
∫

d2σ′Gr(σ,σ′)
(

∂0X · ∂rX(τ,σ′) + θ̄Γ−∂rθ(τ,σ
′)
)

Rewrite ‘potential’ in terms of APD bracket

ḡ = det
(

∂rX · ∂sX
}

≡
(

{Xa, Xb}
)2

⇒ M2 can be equivalently obtained from Lagrangian

LAPD =
1

2
(DtX)2 + Θ̄Γ−DtΘ− 1

4
g2{Xa, Xb}2 + gΘ̄Γ−Γa{Xa,Θ}

with covariant derivative Dtf := ∂tf + {ω, f}. Putting
back dimensions and rescaling we identify



T3 ∝ g2
(

⇒ g ∝ ℓ−3/2
s g−1/2

s

)

Small (large) tension limit of (super-)membrane ≡
weak (strong) coupling limit of APD gauge theory!

Approximate APD0 = limN→∞ SU (N) [Goldstone,Hoppe(1982)]

Xa(t,σ) = X (0)
a (t) +

∞
∑

A=1

XA
a (t)Y

A(σ) etc.

by truncating sum at dim SU (N) = N 2 − 1, such that

fABC
APD ≡

∫

d2σ
√

w(σ) Y A(σ)
{

Y B(σ), Y C(σ)
}

= lim
N→∞

fABC
SU(N)

to end up with supermatrix model Lagrangian

LSU(N) =
1

2
(DtX

A
a )

2 − iθ̄ADtθ
A − 1

4
g2(fABCXB

b X
C
c )

2 − 1

2
fABCgθAγaXB

a θ
C

now with 16-component real SO(9) spinors θAα (t) and
16-by-16 γ-matrices {γa, γb} = 2δab.



If supplemented with SU (N) gauge constraint (ωA = 0)

φA = fABC
(

XB
a ∂tX

C
a + θBα θ

C
α

)

≈ 0

this is the very same Lagrangian that underlies the M-
theory proposal of [Banks,Fischler,Shenker,Susskind(1996)].

Their picture is based on assuming D0-branes as basic
M theory constituents. However: limiting theory for
N→∞ (if it exists) is nothing but the supermembrane!

Interpretation: supermembrane is not a first quanti-
zable (one-particle or N-particle for any N) theory, but
a fully non-perturbative description. [e.g.Helling,HN:hep-th/9809103]

No massive excitations, but in double dimensional re-
duction get all string states from ‘spikes’ emanating
from membrane → supermembrane should containmul-
tistring Fock space! Details to be worked out....



Non-perturbative superstring ≡ supermembrane?

Picture from: T.Damour: ‘The entropy of black holes: a primer’, hep-th/0401160

As gs → ∞, extra dimension opens up (R10 → ∞ [Witten])

→ discrete string states merge into a continuum

This agrees with fact that supermembrane Hamilto-
nian has continuous spectrum!



Setting up the Path Integral

Main goal is to evaluate correlators [Lechtenfeld,HN(2022)]

〈

O1[X, θ] · · · On[X, θ]
〉

g
=

∫

∏

DXa(t, σ)Dθα(t, σ)Dω(t, σ)DC(t, σ)DC̄(t, σ)

× O1[X, θ] · · · On[X, θ] exp
(

i Stot
)

for physical ‘vertex operators’ O(X, θ).

Action Stot contains gauge fixing part (Lorenz gauge)

L′ =
1

2α
(∂tω)

2 + C̄∂tDtC

with Faddeev-Popov ghosts C(t,σ), C̄(t,σ), such that
limit α → 0 puts theory on gauge hypersurface.

Present formulation uses bosonic functional measure
obtained by integrating out all anti-commuting quanti-
ties →MSS determinant (Pfaffian) [Matthews,Salam(1954);Seiler(1975)]

∆MSS =
[

det
(

δABδαβδ(t1 − t2) + gKAB
αβ (t1, t2)

)

]1/2



with integral kernel

KAB
αβ (t1, t2) := ε(t1 − t2)f

ACBγaαβX
C
a (t2) (∗)

and fermion propagator

ε(t) :=

∫ ∞

−∞

dp

2π

ip

p2 − iǫ
e−ipt = −ε(−t) , ε(0) = 0

→ well defined (Fredholm) determinant for N < ∞.

For APD one must replace (∗) by integral kernel

KAPD
αβ (t1, t2;σ,σ

′) = ε(t1 − t2)γ
a
αβǫ

rs∂rXa(t1,σ)δ(σ,σ
′)∂′

s ⇒

(K ◦ φ)α(t,σ) =

∫

ds

∫

d2σ′KAPD
αβ (t, s;σ,σ′)φβ(s,σ

′)

in order to deal with derivative interactions. However,
there is a subtlety: when computing log∆MSS by means
of “log det = Tr log” there appear divergent factors
involving δ(σ,σ) which make determinant ill-defined.

But before taking N → ∞ need to take into account
bosonic and fermionic contributions to path integral:



There exist a linearizing transformation Tg obeying

Sbos[TgXa; g = 0] = Sbos[Xa; g] and [HN,1981]

det

(

δTgX
δX

)

= ∆MSS[ω,X] ∆FP[ω,X]

for which the N → ∞ limit exists [Lechtenfeld,HN:2109.00346 ]

TgXa(t) = Xa(t) − 1

2
g2

∫

ds du ε(t−s) ε(s−u)
{

Xb(s) ,
{

Xb(u), Xa(u)
}

}

+
1

8
g4

∫

ds du dv dw ε(t−s) ε(s−u) ε(u−v) ε(v−w)

[

6

{

Xb(s) ,
{

Xc(u) ,
{

X[a(v) , {Xb(w), Xc](w)}
}

}

}

+ 2

{

Xb(s) ,
{

X[b(u) ,
{

X|c|(v) , {Xa](w), Xc(w)}
}

}

}

+ 2

{

Xa(s)−Xa(t) ,
{

Xb(u) ,
{

Xc(v) , {Xb(w), Xc(w)}
}

}

}

]

+ 1
8
g4

∫

ds du dv dw ε(t−s) ε(s−u) ε(s−v) ε(v−w)×
{

{

Xa(u), Xb(u)
}

,
{

Xc(v) ,
{

Xb(w), Xc(w)
}

}

}

+ O(g6) .



→ divergences of fermionic determinants are absorbed
by Jacobian to give a finite result for Tg .
NB: divergent factor also appears in matrix model be-
cause SU (N) Cartan-Killing metric fACDfBCD = NδAB

likewise diverges in N → ∞ limit (and thus for APD).

Conclusion: for supermembrane and for finite N match-
ing divergent factors keep path integral measure well-
defined in the limit N → ∞
⇒ renormalizability of the supermembrane??

No such matching for the bosonic membrane ⇒ N → ∞
limit probably does not exist for bosonic membrane.
This might settle an old question: is the bosonic mem-
brane non-renormalizable?
[Related difficulties were already pointed out by G. Savvidy(1990)]

Furthermore: evidence that expansion of Tg in g has
non-zero radius of convergence for ||XA

a ||L1 < ∞.



Physical Correlators?

(Classical analogs of) vertex operators for emission of
massless states from supermembrane [Dasgupta,Plefka,HN(2000)]

Must satisfy stringent consistency requirements:

• world volume and target space gauge invariance

• linear and non-linear supersymmetry

• reduce to correct point particle limit [Green,Gutperle,Kwon(1999)]

• factorization under double dimensional reduction into type II

superstring vertex operators [Green,Schwarz(1982)]

For instance, for transverse graviton polarizations

Vh[X, θ] = hab

[

DtX
aDtX

b − {Xa, Xc}{Xb, Xc} − iθ̄ γa{Xb, θ}

− 1

2
DtX

a θ̄γbcθ kc − 1

2
{Xa, Xc} θ̄γbcdθ kc +

1

2
θ̄γacθ θ̄γbdθ kckd

]

e−ik·X+ik−t

where hab is the transverse graviton polarization tensor,
and {ka} = k transverse components of the target-space
momentum. Also: set k+ = 0 to avoid eik

+X−(t,σ).



Idem for longitudinal graviton polarizations, gravitino
and 3-form ‘photon’ of D = 11 supergravity.

But: due to complexity of path integral and vertices
no concrete computations of amplitudes available.

For instance, 4-graviton correlator might provide per-
turbatively (in T ∝ g) calculable supermembrane ana-
log of the Virasoro-Shapiro amplitude formula.

Furthermore: there do not appear to exist analogs of
massive superstring vertex operators ⇒ confirms that
supermembrane is not a first quantizable theory?

Many further questions:

• Should one sum over APD groups for all genera?

• How to recover notions of modularity for supermembrane?

• → if successful this might furnish further hints on how IIA

and IIB superstrings ‘embed’ into quantum supermembrane.



The one million dollar question

If the D = 11 supermembrane is really a candidate for
a mathematical formulation of M theory, where are all
the dualities known from supergravity and superstring
theory that are widely expected to play a key role?
This would seem to require much more, viz.

• 3-form A3 ↔ M2-brane

• 6-form A6 ↔ M5-brane

• dual graviton A8,1 ↔ KK-monopole

... as well as an infinite tower of M-theory extended
objects that can serve as sources for the fields (excita-
tions) appearing in various level expansions of E10.



Outlook

• Due to its uniqueness properties D = 11 supermem-
brane theory is a prime candidate for a (partial?)
non-perturbative unification and M theory.

• ... but much harder than string theory!

• N → ∞ limit unlikely to exist for quantized bosonic
matrix model, while there is evidence that quanti-
zation might work for the supermembrane ↔ exis-
tence of supersymmetric SU (∞) matrix model.

• Need to develop new computational tools to make
quantum supermembrane more computationally ac-
cessible, by concentrating on quantites for which
APD expressions remain well-defined.

THANK YOU


