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The relativistic p-brane

Original idea due to Dirac: a (relativistic) membrane
model of the electron miraccise2)]

Nambu-Goto action for p-brane with X* = X/(7,0"):
= Tp\/— det ng(X) with LC]Z](X) = az_X,u@qunMV

or equivalently, Polyakov-type action:

L(9,X) = 5T/ =5 (40X ;X 0 — (0 1))

Simplifying feature. for string (p = 1) there exists a
gauge for which equations of motion become linear !

Equivalently: gauge away world volume metric by dif-
feomorphisms and conformal symmetry — gravitational
path integral reduced to finite-dimensional integral,
Gaussian theory for target space coordinates X*.

However, no such simplifications for p > 1!



Why Supermembranes?

Unique maximally supersymmetric supermembrane the-
ory in space-time dimension D = 11 (Bergshoets,sezgin, Tounsend (1987)]
is a candidate theory for non-perturbative formulation
of string theory. (Theories also exist for D =4,5,7.)

e can be obtained as the N — oo limit of maximally
supersymmetric SU(N) matrix theory raeiit,soppe,mioss)1.

Nevertheless progress has been slow because there re-
mains the main unsolved problem = quantization:

e There is no gauge which linearizes equations of motion =

e Determination of correlation functions can not be reduced to
free field theory computations, unlike for string theory

e = no membrane analog of the Veneziano formula

e In view of intrinsic non-linearities of membrane theory, co-
variant quantization a la Polyakov looks hopeless



Only realistically feasible approach (so far, at least)=
light-cone gauge quantization with flat (Minkowski)
background? But again there remain difficulties which
are mirrored in M theory matrix model:

e Existence and properties of N — oo limit? ©

e Quantum target space Lorentz invariance? ®
[see also: deWit,Marquard,HN(1990); Ezawa,Matsuo,Murakami(1997)]

e Is D=11 the critical dimension of supermembrane?
e Vertex operators and correlators? &

Present approach based on the fact that supermem-
brane theory = one-dimensional supersymmetric gauge
theory of area preserving diffeomorphisms (APDs)

— in principle would allow to skip SU(/N) approxima-
tion for N < oo and to deal directly with SU(co) theory!



Supermembrane basics
Target superspace coordinates {X#(£),0(¢)} withi, j, ... =
0,1,2 and &' = (7,0") (r,s = 1,2) — vielbein and metric:
E#=9,X"+01"0,0 = g;=E"E/"n,
With target space light-cone coordinates

1
Xt = (X" X", X% with X+ = E(Xlo + XY

and transverse coordinates { X“} =X — light-cone gauge
X (ryo)=X{+1 I 0(r,0) =0
= induced metric on membrane world volume

grs = grs — arX ) asX - (gmgst — 5{)
g00 — 2(9()X_ + ((9()}()2 + (9F_80(9
gor = U =0, X + X -0,X+60I_0.0



Metric determinant on world volume:
g =detg;; = —Ag
with g = detg,; and A = —gyy + u,g"°us; = Lagrangian
L= —Tg( ~VEA + €0, X° e‘r_raase)

Hence the membrane tension 13 is the only parameter
of the theory, of mass dimension three — render di-
mensionless by rescaling w.r.t. some reference mass.

For double dimensional reduction muss zove, nami,Stelle(1987)]
use T, = (;* = T3Ryy and g¢*> = T3R;, wittenio9s)] to obtain

Ty = T g7t = (of) 32!

S

— after reduction from D =11 to D = 10 this formula
ties together the two key parameters of string theory!

Or: perturbative expansion in 73 ‘entangles’ o/-expansion
with string loop expansion.



Canonical analysis for bosonic membrane: (coidstone,Hoppe(1982)]
Analogous analysis for supermembrane: (ssr,ami(i9ss)]

Pt = TM/% , SZ—TM/%F_QE—WQ

P = Tg\/% (00X — 1,80, X) = P*(8X — u,8°9,X)

= spatial diffeomorphism constraint
¢ =P-0,X + PO, X" + 50,0 ~ 0
Hamiltonian density: P, = — [ d?0c H (stable for T > 0)

P2 4 T25 ]
H — ; 38 _ T¢9,X°00_T,0,0

With P*(r,0) = P/"\/w(o) we obtain ‘(mass)” operator’

M? = 2PfPy —P; = / d2a([P2]’+T32g—2Tge”8TXa e‘r_raase)

(with rescaled fermionic variables 0 — /P 0).



Kinematics of zero modes

Supermembrane zero modes X/ and 6, decouple:

1Q5), Q) = (D4)as P2

with 44 © 84 bosonic and 128 fermionic states = mass-
less multiplet of D = 11 supergravity = groundstate

{D =11 SUGRA multiplet} ® ¥

— requires normalizable U obeying M?U = (.

For superstring: same zero mode kinematics, but now
U =10),®|0) s is infinite product of supersymmetric har-
monic oscillator groundstate wave functions, excited

states by applying raising operators (a!)" and d! , to V.

n

This accounts for the very simple structure of the
string spectrum and its factorization into left-moving
and right-moving states (modulo Ly = L, constraint).



Alas, life is not so simple with supermembranes!

For uncompactified supermembrane M? has continu-
ous spectrum starting at zero — no excited massive
one-particle excitations (aewit,Lischer,mN(1989) ;Snilga(1996)]

— not a first quantizable theory!

Different results (interpretation?) for compactified su-
permembrane With Winding [Boulton,Garcia del Moral,Restuccia(2003)]

Yet a different question concerns the existence of a
normalizable groundstate — VU is definitely not a fac-
torized state of bosons and fermions!

For N < oo matrix model there are numerous results:
[dWHN (1987) ; Hoppe (1997) ;Frohlich,Hoppe (1997); Halpern,Schwartz(1997); Hoppe,Yau(1997);Yi(1997);
Sethi,Stern(1998) ;Porrati,Rosenberg(1998); Moore,Nekrasov,Shatashvile(1998) ;Boulton,Garcia

del Moral,Restuccia(2011)&(2021) ]

but N = oo theory is much more difficult.



Interlude: Area Preserving Diffeomorphisms
Are generated by vector fields 6{" = 6" (o) which satisfy
O, (VOE) =0 = 68 = 70,(08)
with parameter §¢ = 0é(0) = scalar ¢ transforms as

0P = 6670, = €0,(6€) 0,0 = {6¢, D}
with APD bracket
{A, B}(o) :=€°0,A(c)0;B(0o)
— satisfies all properties of a Lie bracket

In addition there are APDs generated by harmonic
vector fields 0" for which 0¢ does not exist globally.

APD, for which /¢ exist globally form a normal sub-
group within the group of all APDs on the membrane.



APD Gauge Theory and Matrix Model
Partial gauge fixing u, = 0 — residual gauge invariance
b= € (aTP 0.X + are‘r_ase) ~ 0

generates APD, transformations — ¢ = 0 necessary to
solve for longitudinal coordinate 0, X (1,0) = ...

X (ro) =~ [ ' (0.0)(aX - 0.X(r.0') + IT_0,6(r. ")
Rewrite ‘potential’ in terms of APD bracket
g = det (,X-0.X} = ({X° X"})°
= M? can be equivalently obtained from Lagrangian
Lapp = %(DtX)Q +0I_D,6 — ig?{xa, X2 4 g0r_r,{X% 0}

with covariant derivative D,f = 0;f + {w, f}. Putting
back dimensions and rescaling we identify



Ty < g° (:> g X 85_3/29_1/2)

S

Small (large) tension limit of (super-)membrane =
weak (strong) coupling limit of APD gauge theory!

AppI‘OXimate APDO p— 1lmN_>oo SU(N) [Goldstone,Hoppe (1982)]

Xt o) = XO(t) + i XA)YA (o) ete
A=1

by truncating sum at dim SU(N) = N? — 1, such that
U5 = [ o vul@) o) {YP(0), Y¥lo)} = tim fES;

to end up with supermatrix model Lagrangian

1 1

. 1 o
Lsy) = 5(DXF) = i04D6" — 2°(fA7XPXE) = S fA70 907y X 70°

now with 16-component real SO(9) spinors #2(¢) and
16-by-16 ~-matrices {7, 7’} = 26%.



If supplemented with SU(N) gauge constraint (w” = 0)
o = fAPY(XJ0XT +0205) ~ 0

this is the very same Lagrangian that underlies the M-
theory proposal Of [Banks,Fischler,Shenker,Susskind (1996)] «

Their picture is based on assuming D0-branes as basic
M theory constituents. However: limiting theory for
N — oo (if it exists) ¢s nothing but the supermembrane!

Interpretation: supermembrane is not a first quanti-
zable (one-particle or N-particle for any V) theory, but
a fully non-perturbative description. (e g zeiling,mn:hep-th/9809103]

No massive excitations, but in double dimensional re-
duction get all string states from °‘spikes’ emanating
from membrane — supermembrane should contain mul-
tistring Fock space! Details to be worked out....



Non-perturbative superstring = supermembrane?

Picture from: T.Damour: ‘The entropy of black holes: a primer’, hep-th/0401160
As g, — oo, extra dimension opens up (Rjy — 00 itten] )
— discrete string states merge into a continuum

This agrees with fact that supermembrane Hamilto-
nian has continuous spectrum!



Setting up the Path Integral

Main goal is to evaluate correlators iiecntenteld,mi(2022)
(04,6 0,X,6) = / T DX.(t,0) Dha(t,0) Dult, o) DC(t, o) DL, o)
g

X Ol[X, 69] cee On[X, 9] eXp (Z Stot)
for physical ‘vertex operators’ O(X,0).
Action S;,; contains gauge fixing part (Lorenz gauge)
1 _
L= %(@w)z + Co,D,C

with Faddeev-Popov ghosts C(t,o),C(t,0), such that
limit  — 0 puts theory on gauge hypersurface.

Present formulation uses bosonic functional measure
obtained by integrating out all anti-commuting quanti-
ties — MSS determinant (Pfafﬁan) [Matthews,Salam(1954) ;Seiler(1975)]

1/2
AN — [det (0476450 (t1 — t2) + gK 27 (14, tg))}



with integral kernel

K23 (t1,ta) = e(ts — t2) fA9P2, X (L) ()
and fermion propagator
°dp ip
o(t) = /_ PP ——e(t) , 500

— well defined (Fredholm) determinant for N < oco.
For APD one must replace (x) by integral kernel

KﬁgD(tl,tg,a o) = e(ty —ta)V53€°0. Xu(t1,0)0(0,0')0, =

(K 0 ¢)af /ds/d2 'KL5P(t, 50,0 )¢s(s, o)

in order to deal with derivative interactions. However,
there is a subtlety: when computing log Ajy;55 by means
of “log det = Tr log” there appear divergent factors
involving (o, o) which make determinant ill-defined.

But before taking N — oo need to take into account
bosonic and fermionic contributions to path integral:



There exist a linearizing transformation 7, obeying
Sbos[’EJXa; ) = O] — Sbos[Xa; g] and [HN, 1981]

0T, X
det( (&gX ) = AMSS[W,X] App[w,X]

for which the N — oo limit exists [Lechtenfeld,HN:2109.00346 ]

ToXa(t) = Xalt) — %f /dsdu 2(t—s) e(s—u) { Xi(s) , {Xp(w), Xu(w)} }

n %94 /dsdudvdw £(t—s) e(s—u) e(u—v) e(v—w) [
6 {Xb(S), {Xe(w), {Xu(), {Xo(w }}}}
+ 2 {20060, {Xa(w), {Xig(0) {Xa]<w>,xc<w>}}}}
42 {Xa(s>—Xa(t>, {Xb(u), {Xe(v), {X(w }}}}]
L1y /ds dudv dw e(t—s) (s —u) (s—v) e(v—w) X

{{Xa(u),Xb(u)}, {Xc(v), {Xb(w),Xc(w)}}} + O(g%) .



— divergences of fermionic determinants are absorbed
by Jacobian to give a finite result for 7.

NB: divergent factor also appears in matrix model be-
cause SU(N) Cartan-Killing metric fA¢P fBCP = N§4B
likewise diverges in N — oo limit (and thus for APD).

Conclusion: for supermembrane and for finite N match-
ing divergent factors keep path integral measure well-
defined in the limit N — oo

= renormalizability of the supermembrane??

No such matching for the bosonic membrane = N — oo
limit probably does not exist for bosonic membrane.
This might settle an old question: is the bosonic mem-
brane non-renormalizable?

[Related difficulties were already pointed out by G. Savvidy(1990)]
Furthermore: evidence that expansion of 7, in g has
non-zero radius of convergence for |X|;1 < oco.



Physical Correlators?
(Classical analogs of) vertex operators for emission of
massless states from supermembrane masgupta,p1efka, (20007
Must satisfy stringent consistency requirements:
e world volume and target space gauge invariance
e linear and non-linear supersymmetry
e reduce to correct point particle limit [creen,cutperie,kwon(1999)]
e factorization under double dimensional reduction into type II
superstring vertex operators [Green,Schwarz(1982)]
For instance, for transverse graviton polarizations
Vi[X, 0] = hab[DtXaDtXb ~{XY XX XY — 40X, 0)
_ %DtX“ IOk, — %{Xa’XC} g0k, + %Q_fyace NN P S
where h,, is the transverse graviton polarization tensor,

and {k,} = k transverse components of the target-space
momentum. Also: set kt =0 to avoid e* X (to),



Idem for longitudinal graviton polarizations, gravitino
and 3-form ‘photon’ of D = 11 supergravity.

But: due to complexity of path integral and vertices
no concrete computations of amplitudes available.

For instance, 4-graviton correlator might provide per-
turbatively (in T « g) calculable supermembrane ana-
log of the Virasoro-Shapiro amplitude formula.

Furthermore: there do not appear to exist analogs of
massive superstring vertex operators = confirms that
supermembrane is not a first quantizable theory?

Many further questions:
e Should one sum over APD groups for all genera?
e How to recover notions of modularity for supermembrane?

e — if successful this might furnish further hints on how IITA
and IIB superstrings ‘embed’ into quantum supermembrane.



The one million dollar question

If the D = 11 supermembrane is really a candidate for
a mathematical formulation of M theory, where are all
the dualities known from supergravity and superstring
theory that are widely expected to play a key role?
This would seem to require much more, viz.

e 3-form A; <> M2-brane
e 6-form A; <> MbS-brane

e dual graviton Ag; < K K-monopole

. as well as an nfinite tower of M-theory extended
objects that can serve as sources for the fields (excita-
tions) appearing in various level expansions of Fjy.



Outlook

e Due to its uniqueness properties D = 11 supermem-
brane theory is a prime candidate for a (partial?)
non-perturbative unification and M theory.

e ... but much harder than string theory!

e N — oo limit unlikely to exist for quantized bosonic
matrix model, while there is evidence that quanti-
zation might work for the supermembrane < exis-
tence of supersymmetric SU(co) matrix model.

e Need to develop new computational tools to make
quantum supermembrane more computationally ac-
cessible, by concentrating on quantites for which
APD expressions remain well-defined.

THANK YOU



