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Overview

Calabi-Yau metrics and hermitian Yang—Mills connections are crucial for
string phenomenology

Numerical methods are the only way to access this data

Machine learning and neural networks provide a powerful set of tools to
tackle geometric problems
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Physics from geometry



Motivation from physics

Does string theory describe our universe? Many semi-realistic MSSM-like
string models from M-theory / F-theory / heterotic [..; Cole et al. ‘21; Abel et
al. ‘21; Loges, Shiu 21, ‘22;...]

e Focus on models from heterotic string on Calabi-Yau

Coarse details: correct gauge group, matter spectrum, etc.

e [opological —do not need details of geometry

How many of these string vacua are physically reasonable?

e Predicted masses and couplings depend intricately on underlying
geometry, i.e. metric and gauge connection
e No analytically known (non-trivial) Calabi-Yau metrics or connections!



Calabi-Yau compactifications

Minimal supersymmetry on R*3 x X with Eg x Eg bundle V [Candelas et
al. ‘85

e No H flux = X equipped with Calabi-Yau metric g
e V admits hermitian Yang—Mills connection A
e Bianchi identity: p;(X) = p1(V)

Particle spectrum of low-energy theory determined by X and V

e e.g. standard embedding: SU(3) bundle gives Eg GUT gauge group in
4d with 2x(X) particle generations

e Most interesting MSSM examples from non-standard embedding, but
not so simple... [..;Donagi et al. ‘98; Braun et al. ‘05; Anderson et al. ‘11;..]]



Low-energy physics

Compactification on X leads to 4d N = 1 effective theory with gauge +
chiral multiplets.

e Chiral multiplets split into moduli fields and matter fields
Particle content comes from topology of X and V, e.g.

e SU(3) bundle V gives E¢ GUT group in 4d

E8 — E6 X SU(3)
248 - (P(r.R) = (78,1) @ (1,8) @ (27,3) & (27,
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e 4d multiplets transforming in r come from H%1(X, R), e.g. matter fields
from C' € H%'(X, 3)



Yukawa couplings

Yukawa terms in Standard Model include Lsy D Lyu = Y§ HQ'd + ...
4d N = 1 theory — superpotential and Kahler potential with moduli ¢
W = \ik(¢)C'CCK+ ... K=Gy(p)C'C +...
e Perturbative superpotential from triple overlap of modes on X
Ak = /XQ Ar(C'AC A CK)

e Matter field Kahler potential gives normalisation where C' are
harmonic

Gy = /C’ Ay C
X



A string model wish list

MSSM spectrum, three families, etc. v/

e Reduces to topology / algebraic methods
Superpotential couplings \yx v

e Holomorphic — can use algebraic / differential methods
Harmonic modes and Kahler metric G;, on field space X

e Numerical methods
Supersymmetry breaking, moduli stabilisation, etc. X

e Soft masses and couplings c.f. N = 1 Kahler potential and normalised
zero modes [Kaplunovsky, Louis ‘93; Blumenhagen et al. ‘09; ...]



The missing ingredients

How do we calculate Calabi—Yau metrics or hermitian
Yang—Mills connections?



Calabi—-Yau metrics



Calabi—-Yau geometry

Calabi-Yau manifolds are Kahler and admit Ricci-flat metrics

e Existence but no explicit constructions

e Kahler + c1(X) = 0 = there exists a Ricci-flat metric [Yau ‘77]

Kahler = Kahler potential K gives metric g and closed two-form J = 99K

volg =JAJNJ

c1(X) = 0 = nowhere-vanishing holomorphic (3,0)-form

volo =iQAQ
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Example: Fermat quintic

Calabi-Yau threefold is quintic hypersurface X in P*
Q)=+ +Z3+Z3+2;=0

(3,0)-form 2 determined by Q, e.g. in Zy = 1 patch

o _ 922/ dZ; A dZ,
- 0Q/9zy

Metric g and Kahler form J determined by Kahler potential

95(Z, 2) = 0i0K(Z, Z)
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How do we measure accuracy?

The Ricci-flat metric is given by a K that satisfies (c.f. Monge-Ampére)

volg
volg

—1 = R;=0
p

Define a functional of K [Douglas et al. ‘06]

o(K) = /X

The exact CY metric has o(K) = 0

1. volg

volg
volg
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Finding the “best” approximation to the Ricci-flat metric amounts to
finding a K(z, Z) that minimises o

Three approaches:

e “Balanced metric” — iterative procedure [Donaldson ‘05; Douglas ‘06;
Braun ‘07]

e Minimise o given “algebraic metric” ansatz [Headrick, Nassar ‘09; Anderson
et al. ‘20]

e Find K or g; directly by treating o as a loss function for a neural
network [Headrick, Wiseman ‘05; Douglas et al. 20; Anderson et al. ‘20; Jejjala et
al. ‘20; Larfors et al. ‘21, ‘22]

In all cases, numerical integrals carried out by Monte Carlo [Shiffman,

Zelditch ‘98]
13



Hermitian Yang—Mills connections




Hermitian Yang—Mills

A hermitian metric G on fibers of vector bundle V defines a connection and
curvature

Ai=G19G, A=0 = F=F=0, F;=3aG'9G)

U} J
We say A is hermitian Yang—Mills if
g'Fy = u(V)Id

G is then known as a Hermite—Einstein metric on V

e Nonlinear PDE for G with no closed-form solutions when Xis
Calabi-Yau
e HYM implies Yang—Mills: d x F =0
e Supersymmetry in 10d requires HYM with p(V) =0 14



Existence and stability

Existence of HYM solutions [Donaldson ‘85; Uhlenbeck, Yau ‘86]

A holomorphic vector bundle V over a compact Kahler manifold (X, g) admits a
Hermite—Einstein metric iff V' is slope polystable

Slope of V
(V) E/Cl(V)/\J”l
X

Vis stable if u(F) < p(V) forall F C V (or polystable if sum of stable
bundles with same slope)

e Algebraic condition (like c1(X) = 0), but not constructive!
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How do we measure accuracy?

Defining Fy = g'F-, the HYM equation is Fy = (V) Id

ij?

The average over the the Calabi—Yau is defined using the exact CY
measure volg, e.g.

(trFy) = /voLQtng
X

Suitable choice of accuracy measure is

(tr Fy)?

1
E[F>g] - <trF§> - rank V

E[F, 9] is positive semi-definite and vanishes on HYM solutions

\Fsotves HYM < E[F,g]:o\

16



The goal

There is an iterative method to compute HYM connections, but slow,
computationally intensive and relatively inaccurate [Wang ‘05; Douglas et
al. ‘06; Anderson et al. ‘10]

Train a neural network to find solutions to the hermitian
Yang—Mills equation

17



Machine learning and neural
networks




Overview

New era of big data in string theory

e Vacuum selection problem, huge number of CYs, even larger number
of flux vacua [Denef, Douglas ‘04; Taylor, Wang ‘15;..]]

Many different types of machine learning

e Supervised — known inputs and outputs, e.g. recognise images,
predict Hodge numbers [He ‘17; Bull et al. ‘18; Erbin, Finotello ‘20;...]

e Unsupervised —known inputs, e.g. looking for patterns or generate
images

e Self-supervised — known inputs, output minimises a loss function,
e.g. QM ground states, Ricci-flat metrics, HYM connections

18



Neural networks

Neural networks (NN) convert inputs to outputs: X — f(X, w)

e Network built from connected nodes called neurons
e \Weights w are parameters in network (strength of connections)
e Non-linear activation functions

e Training attempts to minimise a loss function computed from NN

Why does this work? Universal approximation theorem for NNs
[Cybenko ‘89]

NN gives a variational ansatz for some function you want to find,
e.g. Hermite—Einstein metric G that solves HYM equation

19



Line bundles on CY manifolds

Line bundles crucial in many string models [Anderson, Gray, Lukas, Palti ‘11;..]

Holomorphic line bundle L determined by c;(L). Given a basis of divisors
D on X, denote by Ox(m') the line bundle with c;(L) = m'D,

Line bundles are automatically stable, so always admit a solution to HYM,
9'F; = (L)

We need the functional form of G to calculate harmonic representatives
and the matter field Kahler metric

20



Bihomogenous networks on X C P?

9 12
C3 5 R® R® — RY? R? 5 R
Zi s (reZZy,im ZiZy) X = (W1X)? y — log(W,y)

Parameters in W, and W, are weights, collectively denoted by w

First implemented for CY metrics in TensorFlow [Douglas et al. ‘20]

21



A loss function

Network output is treated as log G, which defines F [AA, Deen, He,
Ovrut ‘20]

e Together with approximate CY metric g, this gives F,[w] as a function
of the network weights w

Loss function is

1
Loss|F,g] = E[F.g] = (trF2) — m(tr Fy)?

After training, the network gives a NN-based representation of the HYM
connection

e Effectively the functional form of G (plus A or F as can take

derivatives, etc.)
22



General strategy

Points (and patch data) from
CY n-fold [Zo : -+ : Zny1]

!

Network of depth
D, layer widths

w - wi(P)
]
Hermitian metric log G2, Calculate Fj using
parametrised by weights w complex Hessian

l

Calculate loss and
update weights

Use pre-trained
network for Kahler
potential to give g;

23



Ox(4) on elliptic curve

Line bundle O(4) over elliptic curve defined by

Q2)=Z-232, - 2025+ 23 =0 CP?

e Solution to HYM should give g’jF,-j- = 4 pointwise

Evolution of loss, pdf of g’f_'F,j—» and values of g’fF,] on elliptic curve

2.0
1 15

0.100 2
2 T 10 SIF,
5 0.010

0.001 0.5

g 0.0 mﬂﬁﬂwﬂﬂ\\‘Mﬂﬂﬂ\ﬂmnm
20 40 60 80 100 0 2 4 6 3
Epoch &7F;;
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Ox(4) on elliptic curve
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Ox(m) on quintic threefold

Dwork quintic defined by
Q=+ -+2;+1202,2,72,2, =0 cCP*

Approximate CY metric computed with o = 0.001
Neural networks of depth D = 2, 3, 4 with intermediate W = 100 layers

e Histogram of values of g"f-'F,j — should be constant over X

800 | 1500

005 Htrain = 2.000 +0.053 ] | Train set Htrain = 4.000 +0.056 | . w R Train set —7.989 £0.038 B Train set
) 4 Hirain = 7.989 £0.
Htest = 1.999 %0.052 Test set Hrest =4.000 £0.055 ‘ Test set 27,089 £0.038 [l Test set
| 1000 4 - 1
400 - 400 4
500 -
0- - T [ - 0-
1.8 1.9 2.0 2.1 2.2 3.8 3.9 4.0 4.1 4.2 7.8 7.9 8.0 8.1 8.2
g'Fj g'Fi g'Fi
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Ox(1) on quintic threefold

D = 2,3, 4 networks give connections on Ox(2), Ox(4) and Ox(8) -
untwist to give connections on V = Ox(1)

2000 £ 0@)
0o(4)
—1 0O(8)
1000 -
0 '—‘/‘/ T

096 098 1.00 102 104
gijFif

Loss curves show that D = 2 network is underparametrised, but all still

within 5% of expected result g’/F- =1 6



Applications




Applications
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Matter fields and harmonic modes

Matter fields C' are bundle-valued (0, 1)-forms, harmonic wrt the
Dolbeault Laplacian

Agv = 5\35\/ + 5\/5\];, AgVC/ =0

o Jy: QPI(V) — QP9+L(V) is Dolbeault operator

e )\, are real and non-negative and can appear with multiplicity
(continuous or finite symmetries)

e A5, requires knowledge of both CY metric on manifold and HYM
connection on bundle

Focus on case of hypersurface X C PN with abelian bundle V = O(m) for
m e Z

28



Dolbeault Laplacian

Want both the spectrum {\,} and the eigenmodes {¢,}

A5V¢n = An®n

QM of charged particle in monopole background [..; Tejero Prieto ‘06; ...; Bykov,
Smilga ‘23]

Given a basis of modes {aa}, expand eigenmode as
6= (aad)aa=) daaa, A=1...,00
A A
to give an eigenvalue problem for A and ¢4

Aapdg = A Oapos where Opg = (aa, ap) = /;VQ/A A ag

X 29



Approximate basis

Basis {aa} is infinite dimensional — truncate to a finite approximate basis
at degree k, in Z'. For example,

_ (degree k4 + m in Z)(degree ky in 2)
B (Z’Z)k¢

{aa} = F2°(m)

gives finite set of Opv(m)-valued scalars

o FoO(m) C FLO(m) C -+ C Q%%(Opn(m))

e Larger values of k4 better approximate the space — c.f. first k,-th
eigenspaces on PV

e Can construct similar sets of modes for m < 0 and (0, 1)-forms, etc.

30



Strategy

1. Specify the CY hypersurface by Q = 0 and compute metric numerically

2. Specify the bundle V = O(m) and compute the HYM connection
numerically

3. Compute matrices Aag and O numerically at degree kg for
O(m)-valued (0, 1)-forms

4. Compute eigenvalues and eigenvectors to find harmonic modes

31



Warm-up: a torus as a Calabi—-Yau one-fold

Two-dimensional flat tori are Calabi—Yau and their spectrum can be
computed explicitly [Milnor ‘63, Tejero Prieto ‘06]

e Parametrised by 7 = a + ib where lattice generated by (1,0) and (a, b)

O(m)-valued scalar eigenvalues

brmn m>0,n>0
{A}00 — 4—g2[(n§+n§)m2 —2anin;+n3] m=0,n€Z
6x|m|(n+1) m<07n20

b

e No zero-modes form < O
e Serre duality implies {\}%% = {\}2°

32



Warm-up: a torus as a Calabi—-Yau one-fold

The equilateral torus defined by 7 = e™/3 - (1,0) and (a, b) generate a
hexagonal lattice (Z3 symmetries)

(a,b) (1+a,b)

(0,0) (1,0)
Equivalent to the Fermat cubic — curve in P? defined by

Q=Z+Z+22=0

e Can check numerics against known results
33



Warm-up: a torus as a Calabi—-Yau one-fold

Assume we don’t have the CY metric or HYM connecion

1. Specify the CY by Q = 0 and compute metric numerically
2. Specify the bundle O(m) and compute connection numerically

3. Pick a finite basis for O(m)-valued (0, 0)- and (0, 1)-forms at some
degree k,

4. Solve numerically for eigenvalues and eigenmodes of A using
Monte Carlo to evaluate integrals

Compute these using

e 10° points for metric, connection and Laplacian
o ky=3andme {-3,...,3}

34



Scalars and (0, 1)-forms on Fermat cubic

A A
D =l ======d=====- A== = SRR SR . D=l ======fj====== o L+ oSN S
o+ o+ 4+ + o+ 4+
R e + s
I I I - I I I I I I —-— I I I
150 4 - T T e
i i -+ i -+ i i i i -+ i -+ i
e S S S + 4+ o+ o+
L U R L e s e S
AN A A S A AN AR N S A
e T S R~ S =S = SRR S R = A
IR S’ S R S RS S’ S R S
o+ T+ ‘ o+ T+
0 1 1 ‘ + + + 0l + + ¢ 1 | |
03 0(=2) O-1) 00) 01 0@ 0@F) 0(=3) 0(-2) O(-1) 0@0) 0Q1) 0@ 0@

(%0 = (A}%1 as expected v/

Multiplicities match dimensions of irreps of (S3 x Z;) x (Z3 x Z3) [Ahmed, Ruehle
231V
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Example: Fermat quintic

Recall the quintic hypersurface Q C P*

Q)=+ +255+25+23=0
Metric not known, no analytic results for spectrum other than counts of
zero-modes

e CY metric computed using energy functional method with o ~ 10~*
e Monte Carlo integration over 5 x 10° points

e Spectra computed at k; = 3

36



Spectrum of scalars and (0, 1)-forms on Fermat quintic

A A
' b : H I i ¥ * +
S GRS T ' H ‘
80" - N Leceee | RS R O < T Bececef Jo-
‘ R T + P i :
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Zero-modes counted by h®(O(m)) = (*™) for0 < m < 5/
{A}§ is union of {A}{y and (half) of {A};T v/

* eg. \j; = 25.2 come from \j , = 21.8,24,3; A\ ; = 31.7 come from
Aot =288 37



The superpotential

Consider
E8 — E7 X U(l)

where U(1) bundle V = O(m) gives E; GUT group in 4d

248 - 133,56, ®56_ @1, 1, @1 4

4d matter comes from C' € H%(X, O(m))

e Numerics (or Kodaira vanishing + Serre duality) imply
H%1(X,0(m)) = {0}

e No superpotential matter couplings for this example — need
non-abelian bundle or extend to CICY

38



Summary and outlook

Calabi-Yau metrics and HYM connections are accessible with numerical
methods and machine learning

Ongoing work: bundle-valued harmonic modes for CICYs, non-abelian
bundles

e Compute Yukawa couplings, etc., at chosen point in moduli space
Future work

e SYZ conjecture? Non-Kahler metrics? G, metrics? Flux backgrounds?
Neural networks as general PDE solvers?

e 2d CFTs? [Afkhami-Jeddi, AA, Cérdova ‘21] Input for conformal bootstrap?
[Linetal. ‘15; Lin et al. ‘16;..]]
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