Machine learning for geometry and string compactifications

Anthony Ashmore
LPTHE, Sorbonne Université
Rencontres théoriciennes, 21 September 2023

Collaborators

Overview

Calabi-Yau metrics and hermitian Yang-Mills connections are crucial for string phenomenology

Numerical methods are the only way to access this data
Machine learning and neural networks provide a powerful set of tools to tackle geometric problems

Outline

Physics from geometry

Calabi-Yau metrics

Hermitian Yang-Mills connections

Machine learning and neural networks

Applications

Physics from geometry

Motivation from physics

Does string theory describe our universe? Many semi-realistic MSSM-like string models from M-theory / F-theory / heterotic [...; Cole et al. '21; Abel et al. '21; Loges, Shiu '21, '22;...]

- Focus on models from heterotic string on Calabi-Yau

Coarse details: correct gauge group, matter spectrum, etc.

- Topological - do not need details of geometry

How many of these string vacua are physically reasonable?

- Predicted masses and couplings depend intricately on underlying geometry, i.e. metric and gauge connection
- No analytically known (non-trivial) Calabi-Yau metrics or connections!

Calabi-Yau compactifications

Minimal supersymmetry on $\mathbb{R}^{1,3} \times X$ with $E_{8} \times E_{8}$ bundle V [Candelas et al. '85]

- No H flux \Rightarrow X equipped with Calabi-Yau metric g
- Vadmits hermitian Yang-Mills connection A
- Bianchi identity: $p_{1}(X)=p_{1}(V)$

Particle spectrum of low-energy theory determined by X and V

- e.g. standard embedding: $\operatorname{SU}(3)$ bundle gives E_{6} GUT gauge group in 4 d with $\frac{1}{2} \chi(X)$ particle generations
- Most interesting MSSM examples from non-standard embedding, but not so simple... [...;Donagi et al. ‘98; Braun et al. ‘05; Anderson et al. ‘11;...]

Compactification on X leads to $4 d N=1$ effective theory with gauge + chiral multiplets.

- Chiral multiplets split into moduli fields and matter fields

Particle content comes from topology of X and V, e.g.

- $\operatorname{SU}(3)$ bundle V gives E_{6} GUT group in $4 d$

$$
\begin{aligned}
\mathrm{E}_{8} & \rightarrow \mathrm{E}_{6} \times \mathrm{SU}(3) \\
\underline{248} & \rightarrow \bigoplus_{r, \underline{R}}(\underline{r}, \underline{R})=(\underline{78}, \underline{1}) \oplus(\underline{1}, \underline{8}) \oplus(\underline{27}, \underline{3}) \oplus(\underline{\overline{27}}, \underline{\overline{3}})
\end{aligned}
$$

- 4d multiplets transforming in \underline{r} come from $H^{0,1}(X, \underline{R})$, e.g. matter fields from $C^{\prime} \in H^{0,1}(X, \underline{3})$

Yukawa couplings

Yukawa terms in Standard Model include $\mathcal{L}_{S M} \supset \mathcal{L}_{\text {Yuk }}=Y_{i j}^{d} H Q^{i} d^{j}+\ldots$
$4 \mathrm{~d} N=1$ theory \rightarrow superpotential and Kähler potential with moduli ϕ

$$
W=\lambda_{J K}(\phi) C^{\prime} C^{J} C^{K}+\ldots \quad K=G_{J J}(\phi) C^{\prime} \bar{C}^{J}+\ldots
$$

- Perturbative superpotential from triple overlap of modes on X

$$
\lambda_{J K}=\int_{X} \Omega \wedge \operatorname{tr}\left(C^{\prime} \wedge C^{J} \wedge C^{K}\right)
$$

- Matter field Kähler potential gives normalisation where C^{\prime} are harmonic

$$
G_{J}=\int_{X} C^{\prime} \wedge \bar{\star} C^{\prime}
$$

A string model wish list

MSSM spectrum, three families, etc. \checkmark

- Reduces to topology / algebraic methods

Superpotential couplings $\lambda_{I J K} \checkmark$

- Holomorphic - can use algebraic / differential methods

Harmonic modes and Kähler metric $G_{/ J}$ on field space χ

- Numerical methods

Supersymmetry breaking, moduli stabilisation, etc. X

- Soft masses and couplings c.f. $N=1$ Kähler potential and normalised zero modes [Kaplunovsky, Louis ‘93; Blumenhagen et al. '09; ...]

The missing ingredients

How do we calculate Calabi-Yau metrics or hermitian Yang-Mills connections?

Calabi-Yau metrics

Calabi-Yau geometry

Calabi-Yau manifolds are Kähler and admit Ricci-flat metrics

- Existence but no explicit constructions
- Kähler $+c_{1}(X)=0 \Rightarrow$ there exists a Ricci-flat metric [Yau '77]

Kähler \Rightarrow Kähler potential K gives metric g and closed two-form $J=\partial \bar{\partial} K$

$$
\operatorname{vol}_{g} \equiv J \wedge J \wedge J
$$

$c_{1}(X)=0 \Rightarrow$ nowhere-vanishing holomorphic (3,0)-form Ω

$$
\operatorname{vol}_{\Omega} \equiv i \Omega \wedge \bar{\Omega}
$$

Example: Fermat quintic

Calabi-Yau threefold is quintic hypersurface X in \mathbb{P}^{4}

$$
Q(Z) \equiv Z_{0}^{5}+Z_{1}^{5}+Z_{2}^{5}+Z_{3}^{5}+Z_{4}^{5}=0
$$

$(3,0)$-form Ω determined by Q, e.g. in $Z_{0}=1$ patch

$$
\Omega=\frac{d Z_{2} \wedge d Z_{3} \wedge d Z_{4}}{\partial Q / \partial Z_{1}}
$$

Metric \boldsymbol{g} and Kähler form J determined by Kähler potential

$$
g_{\bar{j}}(Z, \bar{Z})=\partial_{i} \bar{\partial}_{\mathrm{j}} K(Z, \bar{Z})
$$

How do we measure accuracy?

The Ricci-flat metric is given by a K that satisfies (c.f. Monge-Ampère)

$$
\left.\frac{\operatorname{vol}_{g}}{\operatorname{vol}_{\Omega}}\right|_{p}=1 \Rightarrow R_{\overline{i j}}=0
$$

Define a functional of K [Douglas et al. '06]

$$
\sigma(K)=\int_{X}\left|1-\frac{\operatorname{vol}_{g}}{\operatorname{vol}_{\Omega}}\right| \operatorname{vol}_{\Omega}
$$

The exact CY metric has $\sigma(K)=0$

How to fix K?

Finding the "best" approximation to the Ricci-flat metric amounts to finding a $K(z, \bar{z})$ that minimises σ

Three approaches:

- "Balanced metric" - iterative procedure [Donaldson '05; Douglas '06; Braun "07]
- Minimise σ given "algebraic metric" ansatz [Headrick, Nassar ‘09; Anderson et al. '20]
- Find K or $g_{i j}$ directly by treating σ as a loss function for a neural network [Headrick, Wiseman ‘05; Douglas et al. 20; Anderson et al. '20; Jejjala et al. '20; Larfors et al. '21, '22]

In all cases, numerical integrals carried out by Monte Carlo [Shiffman, Zelditch ‘98]

Hermitian Yang-Mills connections

Hermitian Yang-Mills

A hermitian metric G on fibers of vector bundle V defines a connection and curvature

$$
A_{i}=G^{-1} \partial_{i} G, \quad A_{i}=0 \quad \Rightarrow \quad F_{i j}=F_{i j}=0, \quad F_{\bar{i} j}=\partial_{j}\left(G^{-1} \partial_{i} G\right)
$$

We say A is hermitian Yang-Mills if

$$
g^{\bar{j}} F_{\overline{i j}}=\mu(V) \mid \mathrm{ld}
$$

G is then known as a Hermite-Einstein metric on V

- Nonlinear PDE for G with no closed-form solutions when X is Calabi-Yau
- HYM implies Yang-Mills: $d \star F=0$
- Supersymmetry in 10 d requires HYM with $\mu(V)=0$

Existence and stability

Existence of HYM solutions [Donaldson '85; Uhlenbeck, Yau '86]

A holomorphic vector bundle V over a compact Kähler manifold (X, g) admits a Hermite-Einstein metric iff V is slope polystable

Slope of V

$$
\mu(V) \equiv \int_{X} c_{1}(V) \wedge J^{n-1}
$$

V is stable if $\mu(\mathcal{F})<\mu(\mathrm{V})$ for all $\mathcal{F} \subset V$ (or polystable if sum of stable bundles with same slope)

- Algebraic condition (like $c_{1}(X)=0$), but not constructive!

How do we measure accuracy?

Defining $F_{g} \equiv g^{\bar{j}} F_{\bar{j}}$, the HYM equation is $F_{g}=\mu(V)$ Id
The average over the the Calabi-Yau is defined using the exact CY measure vol ${ }_{\Omega}$, e.g.

$$
\left\langle\operatorname{tr} F_{g}\right\rangle \equiv \int_{X} \operatorname{vol}_{\Omega} \operatorname{tr} F_{g}
$$

Suitable choice of accuracy measure is

$$
E[F, g]=\left\langle\operatorname{tr} F_{g}^{2}\right\rangle-\frac{1}{\operatorname{rank} V}\left\langle\operatorname{tr} F_{g}\right\rangle^{2}
$$

$E[F, g]$ is positive semi-definite and vanishes on HYM solutions

$$
\text { F solves HYM } \Leftrightarrow E[F, g]=0
$$

The goal

There is an iterative method to compute HYM connections, but slow, computationally intensive and relatively inaccurate [Wang '05; Douglas et al. '06; Anderson et al. '10]

Train a neural network to find solutions to the hermitian Yang-Mills equation

Machine learning and neural networks

Overview

New era of big data in string theory

- Vacuum selection problem, huge number of CYs, even larger number of flux vacua [Denef, Douglas '04; Taylor, Wang '15;...]

Many different types of machine learning

- Supervised - known inputs and outputs, e.g. recognise images, predict Hodge numbers [He '17; Bull et al. '18; Erbin, Finotello '20;...]
- Unsupervised - known inputs, e.g. looking for patterns or generate images
- Self-supervised - known inputs, output minimises a loss function, e.g. QM ground states, Ricci-flat metrics, HYM connections

Neural networks

Neural networks (NN) convert inputs to outputs: $\vec{x} \mapsto f(\vec{x}, \vec{w})$

- Network built from connected nodes called neurons
- Weights \vec{W} are parameters in network (strength of connections)
- Non-linear activation functions
- Training attempts to minimise a loss function computed from NN

Why does this work? Universal approximation theorem for NNs [Cybenko '89]

NN gives a variational ansatz for some function you want to find, e.g. Hermite-Einstein metric G that solves HYM equation

Line bundles on CY manifolds

Line bundles crucial in many string models [Anderson, Gray, Lukas, Palti ‘11;...]

Holomorphic line bundle L determined by $c_{1}(L)$. Given a basis of divisors $\mathcal{D}_{\text {I }}$ on X, denote by $\mathcal{O}_{X}\left(m^{\prime}\right)$ the line bundle with $c_{1}(L)=m^{\prime} \mathcal{D}_{1}$

Line bundles are automatically stable, so always admit a solution to HYM, $g^{\bar{j}} F_{i j}=\mu(L)$

We need the functional form of G to calculate harmonic representatives and the matter field Kähler metric

Bihomogenous networks on $X \subset \mathbb{P}^{2}$ [Douglas et al. '20]

$$
\begin{aligned}
\mathbb{C}^{3} & \rightarrow \mathbb{R}^{9} & \mathbb{R}^{9} & \rightarrow \mathbb{R}^{12} \\
z_{i} & \mapsto\left(\text { re } z_{j} \bar{z}_{k}, \operatorname{im} z_{j} \bar{z}_{k}\right) & \vec{x} & \mapsto\left(W_{1} \vec{x}\right)^{2}
\end{aligned} \quad \vec{y} \mapsto \log \left(W_{2} \vec{y}\right)
$$

Parameters in W_{1} and W_{2} are weights, collectively denoted by \vec{w}
First implemented for CY metrics in TensorFlow [Douglas et al. '20]

A loss function

Network output is treated as $\log \mathrm{G}^{-1}$, which defines F [AA, Deen, He,
Ovrut '20]

- Together with approximate CY metric g, this gives $F_{g}[\vec{w}]$ as a function of the network weights \vec{w}

Loss function is

$$
\operatorname{Loss}[F, g]=E[F, g] \equiv\left\langle\operatorname{tr} F_{g}^{2}\right\rangle-\frac{1}{\operatorname{rank} V}\left\langle\operatorname{tr} F_{g}\right\rangle^{2}
$$

After training, the network gives a NN-based representation of the HYM connection

- Effectively the functional form of G (plus A or F as can take derivatives, etc.)

General strategy

$\mathcal{O}_{x}(4)$ on elliptic curve

Line bundle $\mathcal{O}(4)$ over elliptic curve defined by

$$
Q(Z) \equiv Z_{1}^{3}-Z_{0}^{2} Z_{1}-Z_{0} Z_{2}^{2}+Z_{0}^{3}=0 \quad \subset \mathbb{P}^{2}
$$

- Solution to HYM should give $g^{{ }^{i}} F_{i j}=4$ pointwise

Evolution of loss, pdf of $g^{\bar{j}} F_{\overline{i j}}$ and values of $g^{\bar{j}} F_{\bar{j}}$ on elliptic curve

$\mathcal{O}_{x}(4)$ on elliptic curve

Line bundle $\mathcal{O}(4)$ over elliptic curve defined by

$$
Q(Z) \equiv Z_{1}^{3}-Z_{0}^{2} Z_{1}-Z_{0} Z_{2}^{2}+Z_{0}^{3}=0 \quad \subset \mathbb{P}^{2}
$$

- Solution to HYM should give $g^{{ }^{i}} F_{i j}=4$ pointwise

Evolution of loss, pdf of $g^{\bar{j}} F_{\overline{i j}}$ and values of $g^{\bar{j}} F_{\bar{j}}$ on elliptic curve

$\mathcal{O}_{x}(m)$ on quintic threefold

Dwork quintic defined by

$$
Q(Z) \equiv Z_{0}^{5}+\cdots+Z_{4}^{5}+\frac{1}{2} Z_{0} Z_{1} Z_{2} Z_{3} Z_{4}=0 \quad \subset \mathbb{P}^{4}
$$

Approximate CY metric computed with $\sigma=0.001$
Neural networks of depth $D=2,3,4$ with intermediate $W=100$ layers

- Histogram of values of $g^{\bar{j}} F_{i \bar{j}}$ - should be constant over X

$\mathcal{O}_{x}(1)$ on quintic threefold

$D=2,3,4$ networks give connections on $\mathcal{O}_{X}(2), \mathcal{O}_{X}(4)$ and $\mathcal{O}_{X}(8)-$ untwist to give connections on $V=\mathcal{O}_{X}(1)$

Loss curves show that $D=2$ network is underparametrised, but all still within 5% of expected result $g^{{ }^{\bar{j}}} F_{\overline{i j}}=1$

Applications

Applications

Swampland distance conjecture

Laplacian spectra

CFT data and random matrices

Matter fields and harmonic modes

Matter fields C^{\prime} are bundle-valued (0,1)-forms, harmonic wrt the Dolbeault Laplacian

$$
\Delta_{\bar{\partial}_{V}}=\bar{\partial}_{V}^{\dagger} \bar{\partial}_{V}+\bar{\partial}_{V} \bar{\partial}_{V}^{\dagger}, \quad \Delta_{\bar{\partial}_{V}} C_{1}=0
$$

- $\bar{\partial}_{V}: \Omega^{p, q}(V) \rightarrow \Omega^{p, q+1}(V)$ is Dolbeault operator
- λ_{n} are real and non-negative and can appear with multiplicity (continuous or finite symmetries)
- $\Delta_{\bar{\partial}_{V}}$ requires knowledge of both CY metric on manifold and HYM connection on bundle

Focus on case of hypersurface $X \subset \mathbb{P}^{N}$ with abelian bundle $V=\mathcal{O}(m)$ for $m \in \mathbb{Z}$

Dolbeault Laplacian [Braun et al. '08; AA '20; AA, He, Heyes, Ovrut '23]

Want both the spectrum $\left\{\lambda_{n}\right\}$ and the eigenmodes $\left\{\phi_{n}\right\}$

$$
\Delta_{\bar{\partial}_{v}} \phi_{n}=\lambda_{n} \phi_{n}
$$

QM of charged particle in monopole background [...; Tejero Prieto '06; ...; Bykov, Smilga '23]

Given a basis of modes $\left\{\alpha_{A}\right\}$, expand eigenmode as

$$
\phi=\sum_{A}\left\langle\alpha_{A}, \phi\right\rangle \alpha_{A}=\sum_{A} \phi_{A} \alpha_{A}, \quad A=1, \ldots, \infty
$$

to give an eigenvalue problem for λ and ϕ_{A}

$$
\Delta_{A B} \phi_{B}=\lambda O_{A B} \phi_{B} \quad \text { where } O_{A B} \equiv\left\langle\alpha_{A}, \alpha_{B}\right\rangle=\int_{X} \bar{\star} V \alpha_{A} \wedge \alpha_{B}
$$

Approximate basis [Braun et al. '08; AA '20; AA, He, Heyes, Ovrut '23]

Basis $\left\{\alpha_{A}\right\}$ is infinite dimensional - truncate to a finite approximate basis at degree k_{ϕ} in Z^{\prime}. For example,

$$
\left\{\alpha_{A}\right\}=\mathcal{F}_{k_{\phi}}^{0,0}(m)=\frac{\left(\text { degree } k_{\phi}+m \text { in } Z\right)\left(\text { degree } k_{\phi} \text { in } \bar{Z}\right)}{\left(Z \bar{Z}_{\bar{\prime}}\right)^{k_{\phi}}}
$$

gives finite set of $\mathcal{O}_{\mathbb{P}^{N}}(m)$-valued scalars

- $\mathcal{F}_{0}^{0,0}(m) \subset \mathcal{F}_{1}^{0,0}(m) \subset \cdots \subset \Omega^{0,0}\left(\mathcal{O}_{\mathbb{P}^{N}}(m)\right)$
- Larger values of k_{ϕ} better approximate the space - c.f. first k_{ϕ}-th eigenspaces on \mathbb{P}^{N}
- Can construct similar sets of modes for $m<0$ and (0,1)-forms, etc.

Strategy

1. Specify the CY hypersurface by $Q=0$ and compute metric numerically
2. Specify the bundle $V=\mathcal{O}(m)$ and compute the HYM connection numerically
3. Compute matrices $\Delta_{A B}$ and $O_{A B}$ numerically at degree k_{ϕ} for $\mathcal{O}(m)$-valued (0,1)-forms
4. Compute eigenvalues and eigenvectors to find harmonic modes

Warm-up: a torus as a Calabi-Yau one-fold

Two-dimensional flat tori are Calabi-Yau and their spectrum can be computed explicitly [Milnor '63, Tejero Prieto ‘06]

- Parametrised by $\tau \equiv a+i b$ where lattice generated by $(1,0)$ and (a, b) $\mathcal{O}(m)$-valued scalar eigenvalues

$$
\{\lambda\}_{m}^{0,0}= \begin{cases}\frac{6 \pi m n}{b} & m>0, n \geq 0 \\ \frac{4 \pi^{2}}{b}\left[\left(n_{1}^{2}+n_{2}^{2}\right) m^{2}-2 a n_{1} n_{2}+n_{2}^{2}\right] & m=0, n_{i} \in \mathbb{Z} \\ \frac{6 \pi|m|(n+1)}{b} & m<0, n \geq 0\end{cases}
$$

- No zero-modes for $m<0$
- Serre duality implies $\{\lambda\}_{-m}^{0,1}=\{\lambda\}_{m}^{0,0}$

Warm-up: a torus as a Calabi-Yau one-fold

The equilateral torus defined by $\tau=\mathrm{e}^{\mathrm{i} \pi / 3}-(1,0)$ and (a, b) generate a hexagonal lattice (\mathbb{Z}_{3} symmetries)

Equivalent to the Fermat cubic - curve in \mathbb{P}^{2} defined by

$$
Q \equiv Z_{0}^{3}+Z_{1}^{3}+Z_{2}^{3}=0
$$

- Can check numerics against known results

Warm-up: a torus as a Calabi-Yau one-fold

Assume we don't have the CY metric or HYM connecion

1. Specify the CY by $\mathrm{Q}=0$ and compute metric numerically
2. Specify the bundle $\mathcal{O}(m)$ and compute connection numerically
3. Pick a finite basis for $\mathcal{O}(m)$-valued $(0,0)$ - and (0,1)-forms at some degree k_{ϕ}
4. Solve numerically for eigenvalues and eigenmodes of $\Delta_{\bar{\partial}_{v}}$ using Monte Carlo to evaluate integrals

Compute these using

- 10^{6} points for metric, connection and Laplacian
- $k_{\phi}=3$ and $m \in\{-3, \ldots, 3\}$

Scalars and (0, 1)-forms on Fermat cubic

$\{\lambda\}_{m}^{0,0}=\{\lambda\}_{-m}^{0,1}$ as expected \checkmark
Multiplicities match dimensions of irreps of $\left(S_{3} \times \mathbb{Z}_{2}\right) \rtimes\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$ [Ahmed, Ruehle '23]

Example: Fermat quintic

Recall the quintic hypersurface $Q \subset \mathbb{P}^{4}$

$$
Q(z) \equiv Z_{0}^{5}+Z_{1}^{5}+Z_{2}^{5}+Z_{3}^{5}+Z_{4}^{5}=0
$$

Metric not known, no analytic results for spectrum other than counts of zero-modes

- CY metric computed using energy functional method with $\sigma \approx 10^{-4}$
- Monte Carlo integration over 5×10^{6} points
- Spectra computed at $k_{\phi}=3$

Spectrum of scalars and (0,1)-forms on Fermat quintic

Zero-modes counted by $h^{0}(\mathcal{O}(m))=\binom{4+m}{m}$ for $0<m<5 \checkmark$
$\{\lambda\}_{0,1}^{m}$ is union of $\{\lambda\}_{0,0}^{m}$ and (half) of $\{\lambda\}_{0,1}^{-m}$

- e.g. $\lambda_{0,1}^{1}=25.2$ come from $\lambda_{0,0}^{1}=21.8,24,3 ; \lambda_{0,1}^{1}=31.7$ come from $\lambda_{0,1}^{-1}=28.8$

The superpotential

Consider

$$
\mathrm{E}_{8} \rightarrow \mathrm{E}_{7} \times \mathrm{U}(1)
$$

where $\mathrm{U}(1)$ bundle $V=\mathcal{O}(m)$ gives E_{7} GUT group in 4 d

$$
\underline{248} \rightarrow{\underline{133_{0}}}_{0} \oplus \underline{56}_{1} \oplus \underline{56}_{-1} \oplus \underline{1}_{2} \oplus \underline{1}_{1} \oplus \underline{1}_{-1}
$$

4d matter comes from $C^{\prime} \in H^{0,1}(X, \mathcal{O}(m))$

- Numerics (or Kodaira vanishing + Serre duality) imply $H^{0,1}(X, \mathcal{O}(m))=\{0\}$
- No superpotential matter couplings for this example - need non-abelian bundle or extend to CICY

Summary and outlook

Calabi-Yau metrics and HYM connections are accessible with numerical methods and machine learning

Ongoing work: bundle-valued harmonic modes for CICYs, non-abelian bundles

- Compute Yukawa couplings, etc., at chosen point in moduli space

Future work

- SYZ conjecture? Non-Kähler metrics? G_{2} metrics? Flux backgrounds? Neural networks as general PDE solvers?
- 2d CFTs? [Afkhami-Jeddi, AA, Córdova '21] Input for conformal bootstrap? [Lin et al. '15; Lin et al. '16;...]

