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Overview

Calabi–Yau metrics and hermitian Yang–Mills connections are crucial for
string phenomenology

Numerical methods are the only way to access this data

Machine learning and neural networks provide a powerful set of tools to
tackle geometric problems
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Physics from geometry



Motivation from physics

Does string theory describe our universe? Many semi-realistic MSSM-like
string models from M-theory / F-theory / heterotic […; Cole et al. ‘21; Abel et

al. ‘21; Loges, Shiu ‘21, ‘22;…]

• Focus on models from heterotic string on Calabi–Yau

Coarse details: correct gauge group, matter spectrum, etc.

• Topological – do not need details of geometry

How many of these string vacua are physically reasonable?

• Predicted masses and couplings depend intricately on underlying
geometry, i.e. metric and gauge connection

• No analytically known (non-trivial) Calabi–Yau metrics or connections!
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Calabi–Yau compactifications

Minimal supersymmetry on R1,3 × X with E8 × E8 bundle V [Candelas et

al. ‘85]

• No H flux ⇒ X equipped with Calabi–Yau metric g
• V admits hermitian Yang–Mills connection A
• Bianchi identity: p1(X) = p1(V)

Particle spectrum of low-energy theory determined by X and V

• e.g. standard embedding: SU(3) bundle gives E6 GUT gauge group in
4d with 1

2χ(X) particle generations
• Most interesting MSSM examples from non-standard embedding, but

not so simple... […;Donagi et al. ‘98; Braun et al. ‘05; Anderson et al. ‘11;…]
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Low-energy physics

Compactification on X leads to 4d N = 1 effective theory with gauge +
chiral multiplets.

• Chiral multiplets split into moduli fields and matter fields

Particle content comes from topology of X and V, e.g.

• SU(3) bundle V gives E6 GUT group in 4d

E8 → E6 × SU(3)

248 →
⊕
r,R

(r,R) = (78,1)⊕ (1,8)⊕ (27,3)⊕ (27,3)

• 4d multiplets transforming in r come from H0,1(X,R), e.g. matter fields
from CI ∈ H0,1(X,3)
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Yukawa couplings

Yukawa terms in Standard Model include LSM ⊃ LYuk = Yd
ij HQidj + . . .

4d N = 1 theory → superpotential and Kähler potential with moduli ϕ

W = λIJK(ϕ)CICJCK + . . . K = GIJ(ϕ)CIC̄J + . . .

• Perturbative superpotential from triple overlap of modes on X

λIJK =

∫
X
Ω ∧ tr(CI ∧ CJ ∧ CK)

• Matter field Kähler potential gives normalisation where CI are
harmonic

GIJ =

∫
X
CI ∧ ⋆̄VCJ
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A string model wish list

MSSM spectrum, three families, etc. 3

• Reduces to topology / algebraic methods

Superpotential couplings λIJK 3

• Holomorphic – can use algebraic / differential methods

Harmonic modes and Kähler metric GIJ on field space 7

• Numerical methods

Supersymmetry breaking, moduli stabilisation, etc. 7

• Soft masses and couplings c.f. N = 1 Kähler potential and normalised
zero modes [Kaplunovsky, Louis ‘93; Blumenhagen et al. ‘09; ...]
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The missing ingredients

How do we calculate Calabi–Yau metrics or hermitian
Yang–Mills connections?
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Calabi–Yau metrics



Calabi–Yau geometry

Calabi–Yau manifolds are Kähler and admit Ricci-flat metrics

• Existence but no explicit constructions
• Kähler + c1(X) = 0 ⇒ there exists a Ricci-flat metric [Yau ‘77]

Kähler ⇒ Kähler potential K gives metric g and closed two-form J = ∂∂̄K

volg ≡ J ∧ J ∧ J

c1(X) = 0 ⇒ nowhere-vanishing holomorphic (3,0)-form Ω

volΩ ≡ iΩ ∧ Ω̄
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Example: Fermat quintic

Calabi–Yau threefold is quintic hypersurface X in P4

Q(Z) ≡ Z5
0 + Z5

1 + Z5
2 + Z5

3 + Z5
4 = 0

(3,0)-form Ω determined by Q, e.g. in Z0 = 1 patch

Ω =
dZ2 ∧ dZ3 ∧ dZ4

∂Q/∂Z1

Metric g and Kähler form J determined by Kähler potential

gīj(Z, Z̄) = ∂i∂̄̄jK(Z, Z̄)
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How do we measure accuracy?

The Ricci-flat metric is given by a K that satisfies (c.f. Monge–Ampère)

volg
volΩ

∣∣∣∣
p
= 1 ⇒ Rīj = 0

Define a functional of K [Douglas et al. ‘06]

σ(K) =
∫
X

∣∣∣∣1− volg
volΩ

∣∣∣∣ volΩ
The exact CY metric has σ(K) = 0
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How to fix K?

Finding the “best” approximation to the Ricci-flat metric amounts to
finding a K(z, z̄) that minimises σ

Three approaches:

• “Balanced metric” – iterative procedure [Donaldson ‘05; Douglas ‘06;

Braun ‘07]

• Minimise σ given “algebraic metric” ansatz [Headrick, Nassar ‘09; Anderson

et al. ‘20]

• Find K or gīj directly by treating σ as a loss function for a neural
network [Headrick, Wiseman ‘05; Douglas et al. 20; Anderson et al. ‘20; Jejjala et

al. ‘20; Larfors et al. ‘21, ‘22]

In all cases, numerical integrals carried out by Monte Carlo [Shiffman,

Zelditch ‘98]
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Hermitian Yang–Mills connections



Hermitian Yang–Mills

A hermitian metric G on fibers of vector bundle V defines a connection and
curvature

Ai = G−1∂iG, Aī = 0 ⇒ Fij = F̄īj = 0, Fīj = ∂̄j(G−1∂iG)

We say A is hermitian Yang–Mills if

gījFīj = µ(V) Id

G is then known as a Hermite–Einstein metric on V

• Nonlinear PDE for G with no closed-form solutions when X is
Calabi–Yau

• HYM implies Yang–Mills: d ⋆ F = 0
• Supersymmetry in 10d requires HYM with µ(V) = 0 14



Existence and stability

Existence of HYM solutions [Donaldson ‘85; Uhlenbeck, Yau ‘86]

A holomorphic vector bundle V over a compact Kähler manifold (X,g) admits a
Hermite–Einstein metric iff V is slope polystable

Slope of V
µ(V) ≡

∫
X
c1(V) ∧ Jn−1

V is stable if µ(F) < µ(V) for all F ⊂ V (or polystable if sum of stable
bundles with same slope)

• Algebraic condition (like c1(X) = 0), but not constructive!
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How do we measure accuracy?

Defining Fg ≡ gījFīj, the HYM equation is Fg = µ(V) Id

The average over the the Calabi–Yau is defined using the exact CY
measure volΩ, e.g.

〈tr Fg〉 ≡
∫
X
volΩ tr Fg

Suitable choice of accuracy measure is

E[F,g] = 〈tr F2
g〉 −

1
rankV

〈tr Fg〉2

E[F,g] is positive semi-definite and vanishes on HYM solutions

F solves HYM ⇔ E[F,g] = 0
16



The goal

There is an iterative method to compute HYM connections, but slow,
computationally intensive and relatively inaccurate [Wang ‘05; Douglas et

al. ‘06; Anderson et al. ‘10]

Train a neural network to find solutions to the hermitian
Yang–Mills equation
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Machine learning and neural
networks



Overview

New era of big data in string theory

• Vacuum selection problem, huge number of CYs, even larger number
of flux vacua [Denef, Douglas ‘04; Taylor, Wang ‘15;…]

Many different types of machine learning

• Supervised – known inputs and outputs, e.g. recognise images,
predict Hodge numbers [He ‘17; Bull et al. ‘18; Erbin, Finotello ‘20;…]

• Unsupervised – known inputs, e.g. looking for patterns or generate
images

• Self-supervised – known inputs, output minimises a loss function,
e.g. QM ground states, Ricci-flat metrics, HYM connections
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Neural networks

Neural networks (NN) convert inputs to outputs: x⃗ 7→ f(⃗x, w⃗)

• Network built from connected nodes called neurons
• Weights w⃗ are parameters in network (strength of connections)
• Non-linear activation functions
• Training attempts to minimise a loss function computed from NN

Why does this work? Universal approximation theorem for NNs
[Cybenko ‘89]

NN gives a variational ansatz for some function you want to find,
e.g. Hermite–Einstein metric G that solves HYM equation
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Line bundles on CY manifolds

Line bundles crucial in many string models [Anderson, Gray, Lukas, Palti ‘11;…]

Holomorphic line bundle L determined by c1(L). Given a basis of divisors
DI on X, denote by OX(mI) the line bundle with c1(L) = mIDI

Line bundles are automatically stable, so always admit a solution to HYM,
gījFīj = µ(L)

We need the functional form of G to calculate harmonic representatives
and the matter field Kähler metric
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Bihomogenous networks on X ⊂ P2 [Douglas et al. ‘20]

C3 Bihom Square Log R
R9 R12

C3 → R9

Zi 7→ (reZjZ̄k, imZjZ̄k)

R9 → R12

x⃗ 7→ (W1x⃗)2
R12 → R

y⃗ 7→ log(W2y⃗)

Parameters in W1 and W2 are weights, collectively denoted by w⃗

First implemented for CY metrics in TensorFlow [Douglas et al. ‘20]
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A loss function

Network output is treated as logG−1, which defines F [AA, Deen, He,

Ovrut ‘20]

• Together with approximate CY metric g, this gives Fg[w⃗] as a function
of the network weights w⃗

Loss function is

Loss[F,g] = E[F,g] ≡ 〈tr F2
g〉 −

1
rankV

〈tr Fg〉2

After training, the network gives a NN-based representation of the HYM
connection

• Effectively the functional form of G (plus A or F as can take
derivatives, etc.)
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General strategy

Points (and patch data) from
CY n-fold [Z0 : · · · : ZN+1]

Network of depth
D, layer widths
W(1) . . .W(D)

Hermitian metric logG−1,
parametrised by weights w⃗

Calculate Fīj using
complex Hessian

Use pre-trained
network for Kähler
potential to give gīj

Calculate loss and
update weights
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OX(4) on elliptic curve

Line bundle O(4) over elliptic curve defined by

Q(Z) ≡ Z3
1 − Z2

0Z1 − Z0Z2
2 + Z3

0 = 0 ⊂ P2

• Solution to HYM should give gījFīj = 4 pointwise

Evolution of loss, pdf of gījFīj and values of gījFīj on elliptic curve
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OX(m) on quintic threefold

Dwork quintic defined by

Q(Z) ≡ Z5
0 + · · ·+ Z5

4 +
1
2Z0Z1Z2Z3Z4 = 0 ⊂ P4

Approximate CY metric computed with σ = 0.001

Neural networks of depth D = 2,3,4 with intermediate W = 100 layers

• Histogram of values of gījFīj – should be constant over X

1.8 1.9 2.0 2.1 2.2
gijFij

0

400

800
train = 2.000 ±0.053
test = 1.999 ±0.052

Train set
Test set

3.8 3.9 4.0 4.1 4.2
gijFij

0

400

800
train = 4.000 ±0.056
test = 4.000 ±0.055

Train set
Test set

7.8 7.9 8.0 8.1 8.2
gijFij

0

500

1000

1500
train = 7.989 ±0.038
test = 7.989 ±0.038

Train set
Test set
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OX(1) on quintic threefold

D = 2,3,4 networks give connections on OX(2), OX(4) and OX(8) –
untwist to give connections on V = OX(1)

0.96 0.98 1.00 1.02 1.04
gijFij

0

1000

2000 O(2)
O(4)
O(8)

Loss curves show that D = 2 network is underparametrised, but all still
within 5% of expected result gījFīj = 1
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Applications



Applications
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Matter fields and harmonic modes

Matter fields CI are bundle-valued (0,1)-forms, harmonic wrt the
Dolbeault Laplacian

∆∂̄V
= ∂̄†V∂̄V + ∂̄V∂̄

†
V, ∆∂̄V

CI = 0

• ∂̄V : Ω
p,q(V) → Ωp,q+1(V) is Dolbeault operator

• λn are real and non-negative and can appear with multiplicity
(continuous or finite symmetries)

• ∆∂̄V
requires knowledge of both CY metric on manifold and HYM

connection on bundle

Focus on case of hypersurface X ⊂ PN with abelian bundle V = O(m) for
m ∈ Z
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Dolbeault Laplacian [Braun et al. ‘08; AA ‘20; AA, He, Heyes, Ovrut ‘23]

Want both the spectrum {λn} and the eigenmodes {ϕn}

∆∂̄V
ϕn = λnϕn

QM of charged particle in monopole background […; Tejero Prieto ‘06; …; Bykov,

Smilga ‘23]

Given a basis of modes {αA}, expand eigenmode as

ϕ =
∑
A

〈αA, ϕ〉αA =
∑
A

ϕA αA, A = 1, . . . ,∞

to give an eigenvalue problem for λ and ϕA

∆ABϕB = λOABϕB where OAB ≡ 〈αA, αB〉 =
∫
X
⋆̄VαA ∧ αB
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Approximate basis [Braun et al. ‘08; AA ‘20; AA, He, Heyes, Ovrut ‘23]

Basis {αA} is infinite dimensional – truncate to a finite approximate basis
at degree kϕ in ZI. For example,

{αA} = F0,0
kϕ (m) =

(degree kϕ +m in Z)(degree kϕ in Z̄)
(ZIZ̄I)kϕ

gives finite set of OPN(m)-valued scalars

• F0,0
0 (m) ⊂ F0,0

1 (m) ⊂ · · · ⊂ Ω0,0(OPN(m))

• Larger values of kϕ better approximate the space – c.f. first kϕ-th
eigenspaces on PN

• Can construct similar sets of modes for m < 0 and (0,1)-forms, etc.
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Strategy

1. Specify the CY hypersurface by Q = 0 and compute metric numerically
2. Specify the bundle V = O(m) and compute the HYM connection

numerically
3. Compute matrices ∆AB and OAB numerically at degree kϕ for

O(m)-valued (0,1)-forms
4. Compute eigenvalues and eigenvectors to find harmonic modes
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Warm-up: a torus as a Calabi–Yau one-fold

Two-dimensional flat tori are Calabi–Yau and their spectrum can be
computed explicitly [Milnor ‘63, Tejero Prieto ‘06]

• Parametrised by τ ≡ a+ ibwhere lattice generated by (1,0) and (a,b)

O(m)-valued scalar eigenvalues

{λ}0,0m =


6πmn

b m > 0,n ≥ 0
4π2

b

[
(n2

1 + n2
2)m2 − 2a n1n2 + n2

2
]

m = 0,ni ∈ Z
6π|m|(n+1)

b m < 0,n ≥ 0

• No zero-modes for m < 0
• Serre duality implies {λ}0,1−m = {λ}0,0m
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Warm-up: a torus as a Calabi–Yau one-fold

The equilateral torus defined by τ = eiπ/3 – (1,0) and (a,b) generate a
hexagonal lattice (Z3 symmetries) 

Equivalent to the Fermat cubic – curve in P2 defined by

Q ≡ Z3
0 + Z3

1 + Z3
2 = 0

• Can check numerics against known results
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Warm-up: a torus as a Calabi–Yau one-fold

Assume we don’t have the CY metric or HYM connecion

1. Specify the CY by Q = 0 and compute metric numerically
2. Specify the bundle O(m) and compute connection numerically
3. Pick a finite basis for O(m)-valued (0,0)- and (0,1)-forms at some

degree kϕ
4. Solve numerically for eigenvalues and eigenmodes of ∆∂̄V

using
Monte Carlo to evaluate integrals

Compute these using

• 106 points for metric, connection and Laplacian
• kϕ = 3 and m ∈ {−3, . . . ,3}
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Scalars and (0,1)-forms on Fermat cubic
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{λ}0,0m = {λ}0,1−m as expected 3

Multiplicities match dimensions of irreps of (S3 × Z2)o (Z3 × Z3) [Ahmed, Ruehle

‘23] 3

35



Example: Fermat quintic

Recall the quintic hypersurface Q ⊂ P4

Q(z) ≡ Z5
0 + Z5

1 + Z5
2 + Z5

3 + Z5
4 = 0

Metric not known, no analytic results for spectrum other than counts of
zero-modes

• CY metric computed using energy functional method with σ ≈ 10−4

• Monte Carlo integration over 5× 106 points
• Spectra computed at kϕ = 3
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Spectrum of scalars and (0,1)-forms on Fermat quintic
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(4+m

m
)
for 0 < m < 5 3

{λ}m0,1 is union of {λ}m0,0 and (half) of {λ}−m
0,1 3

• e.g. λ1
0,1 = 25.2 come from λ1

0,0 = 21.8,24,3; λ1
0,1 = 31.7 come from

λ−1
0,1 = 28.8 37



The superpotential

Consider
E8 → E7 × U(1)

where U(1) bundle V = O(m) gives E7 GUT group in 4d

248 → 1330 ⊕ 561 ⊕ 56−1 ⊕ 12 ⊕ 11 ⊕ 1−1

4d matter comes from CI ∈ H0,1(X,O(m))

• Numerics (or Kodaira vanishing + Serre duality) imply
H0,1(X,O(m)) = {0}

• No superpotential matter couplings for this example – need
non-abelian bundle or extend to CICY
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Summary and outlook

Calabi–Yau metrics and HYM connections are accessible with numerical
methods and machine learning

Ongoing work: bundle-valued harmonic modes for CICYs, non-abelian
bundles

• Compute Yukawa couplings, etc., at chosen point in moduli space

Future work

• SYZ conjecture? Non-Kähler metrics? G2 metrics? Flux backgrounds?
Neural networks as general PDE solvers?

• 2d CFTs? [Afkhami-Jeddi, AA, Córdova ‘21] Input for conformal bootstrap?
[Lin et al. ‘15; Lin et al. ‘16;…]
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