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Introduction
In the 90’s, Witten taught us the following lessons:
I A 2d N = (2, 2) GLSM can flow to a NLSM with target space

X which is the Higgs branch of the theory (e.g. for U(Nc)
coupled with nf ⇤Nc we get X = Gr(Nc , nf )).

I To put the theory on a Riemann surface �g , one needs to
A-twist the theory. Focus on the twisted chiral ring
R2d = {Pµ}µœI .

I R2d
≥= (small)QH•

eq(X ):
I Pµ Ωæ [Êµ] œ H•(X ).
I ÈPµ1

Pµ2
· · · ÍP1 Ωæ GW0([Êµ1

], [Êµ2
], · · · ).
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For example, taking g = 0, we have the following data:
I The topological metric:

÷µ‹(P) =
K
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I The structure constants:

Cµ‹⁄(P) =
K
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From the correspondence, the ring relations of QH•
eq(X ) are given

as:
[Êµ] ı [Ê‹ ] = Cµ‹⁄(q2d,m,Ê)[Ê⁄] .

Here,
Cµ‹⁄ = ÷⁄flCµ‹fl , ÷µfl÷fl‹ = ”µ‹ .



In this talk, we are interested in the 3d (K-theoretic) uplift of this
set up. [Kapustin-Willet’13, Jockers-Mayer’18, · · · ].
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Doing a topological A-twist along �g , we get the twisted chiral
ring R3d = {Lµ}µœI . This consists of half-BPS line operators Lµ
wrapping the S1-fibres.

The Witten correspondence in this case becomes
I Lµ Ωæ [Oµ] œ Keq(X ).
I ÈLµ1

Lµ2
· · · ÍP1◊S1

—
Ωæ K-theoretic GWg=0([Oµ1

], [Oµ2
], · · · ).



For the g = 0 we compute the following data:
I The topological metric:

gµ‹(L) =
K
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I The structure constants:

Nµ‹⁄(L) =
K
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And the ring relations from QKeq(X ) are given by:

[Oµ] ı [O‹ ] = Nµ‹
⁄(q3d, y ,O)[O⁄]



We will focus on the case where the gauge group is U(Nc) and the
theory is coupled with nf multiplets in representation ⇤Nc .
I Recall that in 3d, we can have CS levels as an input of the

theory:

U(Nc)k,k+¸Nc
≥=

SU(Nc)k ◊ U(1)Nc(k+¸Nc)

ZNc
.

So, one question that we will discuss here is: how can we tune
the levels (k, ¸) such that we have a “3d GLSM”?

I A standard basis for K(Gr(Nc , nf )) is given by the Schubert
classes [Oµ] with Oµ being the structure sheaf of the
Schubert subvariety Xµ (the closure Schubert cell
Cµ ™ Gr(Nc , nf )). The index µ here is an Nc -partition:

nf ≠ Nc Ø µ1 Ø µ2 Ø · · · Ø µNc Ø 0 .

Another natural question is: what is the set of line operators
that flow to the elements of this basis?
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I 3d moduli space of vacua
I 3d A-model: lightning review
I Grothendieck lines
I 2d limit and Schubert lines
I Work to appear/in progress



3d moduli space of vacua
So, we have 3d N = 2 CS theory with gauge group U(Nc)k,k+¸Nc
coupled with nf chiral multiplets in fundamental representation.
Recall that:

V = (‡,Aµ,⁄,⁄,D) ,
� = („,Â,F ) .

Semi-classically [Intriligator-Seiberg’13], the SUSY vacua are
solutions to:

(‡a ≠m–)„a
– = 0 , a = 1, · · · ,Nc , – = 1, · · · , nf ,

nfÿ

–=1

„– †
a „b

– = ”b
a

2fiFa(‡,m) , a, b = 1, · · · ,Nc ,

up to U(Nc). Here

Fa(‡,m) = › + k‡a + ¸
Ncÿ

b=1

‡b + 1
2

nfÿ

–=1

|‡a ≠m–| .



Taking m– = 0 and › ”= 0, we have the following possible solutions
(depending on k and ¸ for fixed Nc and nf ) [Closset-OK’2305]:
I Higgs vacua: ‡a = 0 ,’a. For › > 0, the equations describe

Gr(Nc , nf ).
I Topological vacua: ‡a ”= 0 ,’a. The matter multiplets become

massive and we integrate them out leaving us with pure CS theory
with gauge group:

U(p)ke�
◊ U(Nc ≠ p¸ ˚˙ ˝

kmix

)k̃e�
.

I Hybrid vacua: ‡a = 0 , for some a. This is a hybrid of the above
two cases where the vacua are described by:

Gr(p, nf )◊ U(Nc ≠ p)ke�
.

I Strongly-coupled vacua: this the case where a non-compact
Coulomb branch opens up. Usually happens at k = ± nf

2
.



U(2)k,k+2¸ with 4 ⇤2

k\l ≠6 ≠5 ≠4 ≠3 ≠2 ≠1 0 1 2 3 4 5 6
0 11 10 9 8 7 6 6 6 7 8 9 10 11
1 15 13 11 9 7 6 6 6 7 9 11 13 15
2 18 15 12 9 6 6 6 9 12 15 18 21 24

3 20 16 12 8 6 6 10 14 18 22 26 30 34
4 21 16 11 6 6 10 15 20 25 30 35 40 45
5 21 15 9 6 10 15 21 27 33 39 45 51 57
6 20 13 6 10 14 21 28 35 42 49 56 63 70
7 18 10 10 14 20 28 36 44 52 60 68 76 84
8 15 10 14 18 27 36 45 54 63 72 81 90 99
9 15 14 18 25 35 45 55 65 75 85 95 105 115
10 14 18 22 33 44 55 66 77 88 99 110 121 132



U(2)k,k+2¸ with 4 ⇤2

(k, l) › > 0 phase › < 0 phase
(0, 10) Gr(2, 4)ü U(2)≠2,18 U(2)2,22 ü U(1)12 ◊ U(1¸ ˚˙ ˝

10

)8

(1, 3) Gr(2, 4)ü U(1)6 ◊ U(1¸ ˚˙ ˝
3

)2 U(2)3,9

(3,≠2) Gr(2, 4) CP3 ◊ U(1)≠1 ü U(2)5,1

(4, 7) Gr(2, 4)ü CP3 ◊ U(1)9 ü U(2)2,16 U(2)6,20

(5,≠6) Gr(2, 4)ü U(2)7,≠5 CP3 ◊ U(1)≠3 ü U(2)3,≠9

(6,≠4) Gr(2, 4) U(2)4,≠4

(7,≠9) Gr(2, 4)ü U(2)9,≠9 CP3 ◊ U(1)≠4 ü U(2)5,≠13

(8, 8) Gr(2, 4)ü CP3 ◊ U(1)14 ü U(2)6,22 U(2)10,26

(9, 10) Gr(2, 4)ü CP3 ◊ U(1)17 ü U(2)7,77 U(2)11,31

(10, 5) Gr(2, 4)ü CP3 ◊ U(1)13 ü U(2)8,18 U(2)12,22



3d A-model: lightning review
Let us now put this theory on �g ◊ S1

—. We do so by performing a
topological A-twist along �g . E�ectively, this is a 2d N = (2, 2)
theory on �g with massive KK modes on the fibres. The path
integral computes the twisted index [Nekrasov-Shatashvili’09,
Benini-Za�aroni’15, Closset-Kim’16]:

I3d(q, y) =
ÿ

dœZ
qdTrH�g ;d

A
(≠1)F

nfŸ

i=1

yQ–
f

–

B
,

where q ≥ e≠2fi—› and y– ≥ e≠2fi—m– .
Upon SUSY localization, the correlation function of a collection of
half-BPS line operators reduces to:

È
Ÿ

p
Lµp Í�g ◊S1

—
=
ÿ

x̂œSBE

Hg≠1(x̂)
Ÿ

p
Lµp (x̂) .

Where these ingredients are defined in terms of the e�ective twisted
superpotential W and the e�ective dilaton potential �.



W = 1
2fii

nfÿ

–=1

Ncÿ

a=1

Li2(xay≠1

– ) + ·
Ncÿ

a=1

ua +
k + nf

2

2

Ncÿ

a=1

ua(ua + 1)

+ ¸

2

Q

ca

Q

a
Ncÿ

a=1

ua

R

b
2

+
Ncÿ

a=1

ua

R

db ,

e2fii� =
NcŸ

a=1

nfŸ

i=1

(1≠ xay≠1

– )
Ÿ

a ”=b

3
1≠ xa

xb

4≠1

.

Here we introduced xa = e2fiiua ≥ e≠2fi—‡a .
In terms of these, the handle-gluing operator is given by: [Vafa’ 91,
Nekrasov-Shatashvili’ 14]

H(x) = e2fii�det
3

ˆ2W
ˆuaˆub

4



As for the sum, it is taken over the Bethe vacua [Hori-Tong’06,
Nekrasov-Shatashvili’09]:

SBE =
)

x̂ : e2fiiˆW |x̂ = 1 , x̂a ”= x̂b ,’a ”= b
*
/SNc

In our case, the BAE take the following form:

q(≠ det x)¸(≠xa)k+
nf
2

nfŸ

–=1

(1≠ xay≠1

– )≠1 = 1 , ’a = 1, · · · ,Nc .

Here det x =
rNc

b=1
xb.

For the case
k = Nc ≠

nf
2 , ¸ = ≠1 ,

we have the equivalence [Givental et al, Mihalcea et al]:

R3d
≥= QKeq(Gr(Nc , nf )) .



For example, in this ring, the equivariant Schubert classes [Oµ] are
represented by the double Grothendieck polynomials Gµ(x , y)
[Fulton-Lascoux’94, Ikeda-Naruse’13]

Gµ(x , y) =
det1Æa,bÆNc

1
xb≠1

a
rµb+Nc ≠b

–=1
(1≠ xay≠1

– )
2

r
1Æa<bÆNc

(xa ≠ xb) .

Therefore, assuming we know the half-BPS line operator Lµ
corresponding to [Oµ], we can compute the ring structure of
QKeq(Gr(Nc , nf )):

gµ‹(q, y) =
ÿ

x̂œSBE

H≠1(x̂)Gµ(x̂)G‹(x̂)

and,
Nµ‹⁄(q, y) =

ÿ

x̂œSBE

H≠1(x̂)Gµ(x̂)G‹(x̂)G⁄(x̂) .

Indeed one can perform these sums e�ciently using the Gröbner basis
techniques [Jiang-Zhang’17, Closset-OK’2301].



As an example, one can do this computation for CP2. In this case,
the topological metric has the following components:

gµ,‹ =

Y
__]

__[

1≠ y3

y1
+ q

1≠q , (µ, ‹) = (1, 2), (2, 1) ,1
1≠ y3

y1

2 1
1≠ y3

y2

2
+ q

1≠q , (µ, ‹) = (2, 2) ,
1

1≠q , otherwise .

Meanwhile, the ring structure of QKeq(CP2) is given by:

O1 ıO2 =
3

1≠ y2

y1

4
O1 + y2

y1

O2

O1 ıO2 =
3

1≠ y3

y2

4
O2 + y3

y2

q ,

O2 ıO2 =
3

1≠ y3

y1

43
1≠ y3

y2

4
O2 + y3

y1

qO1 +
3

1≠ y3

y2

4 y3

y1

q

These match the calculations of [Buch-Mihalcea’11].



Grothendieck lines
Now we come to answering the second question concerning the
construction of the lines Lµ that flow to [Oµ]. What are we
looking for exactly?

We are looking for is a 1d N = 2 theory that we can couple to our
3d theory such that:
I The insertion of these lines (1d theories) at a point z œ P1

should restrict the target space X to the support of [Oµ]
which is the Schubert cell Cµ:

„(z) œ Cµ .

I If we compute the index of this 1d theory, we need to get the
representative of [Oµ]:

I1d[Lµ] = Gµ(x , y) .



We propose that the 1d theory is the following
quiver:[Closset-OK’2309]
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Figure 1. Generic Grothendieck defect Lµ with n � Nc. The numbers of fermi multiplets, M�,
are given in terms of the partition µ as explained in the main text.

are given in terms of the (double) Grothendieck polynomials Gµ(x, y) that we in-
troduced in (17). From this point of view, the gauge parameters xa � e�2���a are
interpreted as the exponential of the roots of the tautological vector bundle over
Gr(Nc, nf ), as already mentioned. Meanwhile, the mass parameters y� � e�2��m�

are the weights associated with the action of the isometry group SU(nf ) of
Gr(Nc, nf ).

Grothendieck lines: constraining the form of the matter matrix. Now that
we have these properties of the Schubert classes at the back of our mind, let us
explain our definition of the UV line operators. For obvious reasons, we call them
the Grothendieck lines.

Let us consider a partition µ = [µ1, µ2, · · · , µn, 0, · · · , 0]. Starting with our 3d
GLSM, we couple it with a 1d N = 2 quiver gauge theory as shown in figure 1.
Each two consecutive nodes of the quiver are connected by a bifundamental chiral
multiplet. In addition, at each node U(�), we couple the 1d gauge theory with the
SU(nf ) 3d flavour symmetry via M� fermi multiplets �(�)

�(�) which are defined in
terms of the partition µ as follows:

M� = µ� � µ�+1 + 1 , � = 1, · · · , n � 1 ,

Mn = µn � n + Nc .
(30)

Moreover, for � = 1, · · · , n, we take the index �(�) of the fermi field �(�)
�(�) to be an

element of:

I� �
�

1 +
n�

k=�+1

Mk, 2 +
n�

k=�+1

Mk, · · · , M� +
n�

k=�+1

Mk

�
. (31)

The 1d quiver is connected with the 3d matter fields � via the 1d superpotential:

LJ =

�
d�

n�

�=1

�

�(�)�I�

J (�)
�(�)(�; �)�(�)

�(�) , (32)

The coupling to the 3d theory is established by introducing the 1d
J-potential:

J (l)
–(l) = Ïl+1

l · · · ·Ïn+1

n · „–(l) ,

by adding the following term to the Lagrangian:
⁄

d◊
nÿ

l=1

ÿ

–(l)œIl

J (l)
–(l)(Ï,„) �(l)

–(l)



Here �(l)
–(l) are 1d N = 2 Fermi multiplets. The number of these

multiplets coupled at each 1d gauge node is determined in terms of
the partition:

µ = [µ1, · · · , µn, 0, · · · , 0¸ ˚˙ ˝
Nc≠n

]

as follows:

Ml =
I
µl ≠ µl+1 + 1 , l = 1, · · · , n ≠ 1 ,

µn ≠ n + Nc , l = n .

In terms of these numbers, the SU(nf ) indices –(l) live in the index
set:

Il = {1 +
nÿ

q=l+1

Mq, 2 +
nÿ

q=l+1

Mq, · · · ,
nÿ

q=l
Mq}

Along with the 1d D-term equations, the insertion of J-potential
imposes the following constraints on „:

J (l)
–(l) = 0 .
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A
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4
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1

(12)

2

4

„ =
A
0 1 0 ı
0 0 1 ı

B21
Ï3

2Ï2
1

(2)
(1)

2

4

„ =
A
1 ı ı 0
0 0 0 1

B1
Ï2

1

(123)

2

4

„ =
A
0 1 ı 0
0 0 0 1

B21
Ï3

2Ï2
1

(23)
(1)

2

4

„ =
A
0 0 1 0
0 0 0 1

B21
Ï3

2Ï2
1

(3)
(12)

Figure 4. Generic Grothendieck defects L⁄ for Gr(2, 4). The index set Il = (–(l)) for the fermi
multiplets coupling to U(rl) is displayed next to each red dashed arrow. Note that the 1d quivers
for ⁄ = [1, 1] and for ⁄ = [2, 2] can be simplified by simply removing the U(1) node, as explained in
the main text.

figure 4. One can write down similar Hasse diagrams for any Grassmannian variety — the
example of Gr(3, 5) is worked out in appendix C, see figure 5.

Duality moves. In general, the generic Grothendieck line is not the most e�cient
presentation of the defect line L⁄. Indeed, it is clear from (3.59) that the most ‘e�cient’
1d quiver has n nodes where n is the number of distinct non-zero values for ⁄a. The quiver
simplification can be realised in terms of the following duality move. Whenever we have a
node such that:

rl = rl+1 ≠Ml , (3.64)

– 22 –
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5

„ =

Q
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R

db

1
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1
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5

„ =

Q

ca
1 ı 0 0 ı

0 0 1 0 ı

0 0 0 1 ı

R
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21
Ï3
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1

(3)
(12)

3

5

„ =

Q

ca
1 0 ı ı 0
0 1 ı ı 0
0 0 0 0 1

R

db

1
Ï2

1

(1234)

3

5

„ =

Q
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1 ı 0 ı 0
0 0 1 ı 0
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R

db

21
Ï3

2Ï2
1
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Q
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R
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Figure 5. The Hasse diagram associated with the Schubert subvarieties of Gr(3, 5). The defining
partitions are displayed at Young tableaux, and the ‘generic’ Grothendieck line defects are shown ex-
plicitly.
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Computing the 1d index
Following the localization analysis of [Hori-Kim-Yi’14], the index of
the 1d theory is given by:

Lµ(x , y) =
j

JK

S

U
nŸ

l=1

1
l!

rlŸ

il =1

≠dz(l)
il

2fiiz(l)
il

Ÿ

1Æil ”=jl Æl

Q

a1≠
z(l)

il
z(l)

jl

R

b

T

VZ1d
matter(z , x , y) ,

where,

Z1d
matter(z , x , y) ©

n≠1Ÿ

l=1

lŸ

il =1

r
–(l)œIl

A

1≠
z(l)

il
y

–(l)

B

rl+1

jl+1=1

A

1≠
z(l)

il
z(l+1)

jl+1

B
rnŸ

in=1

r
–(n)œIn

3
1≠ z(n)

in
y

–(n)

4

rNc
a=1

3
1≠ z(n)

in
xa

4 .

Taking the 1d FI parameters to be positive, the JK prescription
instructs us to only consider the poles coming from the matter
contribution. Doing so, indeed we get Lµ(x , y) = Gµ(x , y).



2d limit and QH•
eq(Gr(Nc , nf ))

To move back to the 2d theory, we look at the — æ 0 limit. We
recall that:

xa ≥ e≠2fi—‡a , y– ≥ e≠2fi—m– , q3d ≥ (≠2fi—)nf q2d .

In this limit,
Gµ(x , y) æ (2fi—)|µ|Sµ(‡,m) ,

where the double Schubert polynomials

Sµ(‡,m) =
det1Æa,bÆNc

1rµa+Nc≠b
–=1

(‡b ≠m–)
2

r
1Æa<bÆNc (‡a ≠ ‡b)

These polynomials are known to represent the equivariant Schubert
classes in QH•

eq(Gr(Nc , nf )).



We can consider a 0d-2d coupled system similar to the 1d-3d
above to construct the point defects Pµ that correspond to
Schubert classes [Êµ] œ H•(Gr(Nc , nf )).

The index of the gauged supersymmetric matrix model in this case
is given by:

Ê⁄(‡,m) =
nŸ

l=1

1
l!

j d ls(l)

(2fii)l �(l)(s) Z0d
matter(s,‡,m) ,

�(l)(s) =
Ÿ

il ”=jl

1
s(l)
il ≠ s(l)

jl

2
, (1)

and

Z0d
matter

(‡,m) =
n≠1Ÿ

l=1

Q

a
rlŸ

il =1

r
–(l)œIl

1
s(l)
il ≠m–(l)

2

rl+1

jl+1=1

1
s(l)
il ≠ s(l+1)

jl+1

2

R

b
rnŸ

in=1

r
–(n)œIn

1
s(n)

in ≠m–(n)

2

rNc
a=1

1
s(n)

in ≠ ‡a
2 .

Indeed, if we work out these integrals we end up with the double
Schubert polynomial Sµ(‡,m) defined above



Work to appear/in progress
I In this talk we have focused on only one choice of (k, ¸) from

the geometric window. In a work to appear with C. Closset
and H. Kim, we give an enumerative geometry interpretation
for the other possible (k, l) in terms of the level structure
construction of [Ruan-Zhang’19].

I In the same work, we will also give a physical realisation to
the moduli space of stable maps on which GW theory acts
[Bullimore-Ferrari-Kim’18].

I So far, we have been only focusing on the SQCD case. In a
work in progress, we are extending this line construction to
any partial flag variety.

Thank You!


