Grothendieck lines in 3d SQCD and the quantum K-theory of the Grassmannian

Osama Khlaif University of Birmingham

Rencontre théoriciennes Institut Henri Poincaré, Paris March 14 2024

Based on 2301.10753, 2305.00534, 2309.06980 with Cyril Closset (see also 2312.05076 for a review)

Introduction

In the 90's, Witten taught us the following lessons:

- A 2d N = (2,2) GLSM can flow to a NLSM with target space X which is the Higgs branch of the theory (e.g. for U(N_c) coupled with n_f □_{N_c} we get X = Gr(N_c, n_f)).
- To put the theory on a Riemann surface Σ_g, one needs to A-twist the theory. Focus on the twisted chiral ring R_{2d} = {P_μ}_{μ∈I}.
- ▶ $\mathcal{R}_{2d} \cong (\text{small}) QH^{\bullet}_{eq}(X)$:
 - $\begin{array}{l} \blacktriangleright \quad \mathcal{P}_{\mu} \longleftrightarrow [\omega_{\mu}] \in \mathrm{H}^{\bullet}(X). \\ \flat \quad \langle \mathcal{P}_{\mu_{1}} \mathcal{P}_{\mu_{2}} \cdots \rangle_{\mathbb{P}^{1}} \longleftrightarrow \mathrm{GW}_{0}([\omega_{\mu_{1}}], [\omega_{\mu_{2}}], \cdots). \end{array}$

For example, taking g = 0, we have the following data:

► The topological metric:

$$\eta_{\mu\nu}(\mathcal{P}) = \left\langle \underbrace{\overset{\mathfrak{P}}{\overbrace{}}_{\mathfrak{R}}}_{\mathfrak{R}} \right\rangle$$

The structure constants:

$$\mathcal{C}_{\mu
u\lambda}(\mathcal{P}) = \left\langle \overbrace{, \mathfrak{r}, }^{\mathfrak{r}, \mathfrak{r}} \right\rangle$$

From the correspondence, the ring relations of $QH_{eq}^{\bullet}(X)$ are given as:

$$[\omega_{\mu}] \star [\omega_{\nu}] = \mathcal{C}_{\mu\nu}{}^{\lambda}(q_{2d}, m, \omega)[\omega_{\lambda}] .$$

Here,

$$\mathcal{C}_{\mu\nu}{}^{\lambda} = \eta^{\lambda\rho}\mathcal{C}_{\mu\nu\rho} , \qquad \eta^{\mu\rho}\eta_{\rho\nu} = \delta^{\mu}_{\nu} .$$

In this talk, we are interested in the 3d (K-theoretic) uplift of this set up. [Kapustin-Willet'13, Jockers-Mayer'18, \cdots].

Doing a topological A-twist along Σ_g , we get the twisted chiral ring $\mathcal{R}_{3d} = \{\mathcal{L}_\mu\}_{\mu \in I}$. This consists of half-BPS line operators \mathcal{L}_μ wrapping the S^1 -fibres.

The Witten correspondence in this case becomes

For the g = 0 we compute the following data:

► The topological metric:

$$g_{\mu
u}(\mathcal{L}) = \left\langle \overbrace{\overset{x}{\overbrace{\overset{x}{\overbrace{}}}}}^{\circ} \right\rangle$$

The structure constants:

$$\mathcal{N}_{\mu
u\lambda}(\mathcal{L}) = \left\langle \overbrace{\overset{x}{\overbrace{x_{\star}}}}^{\circ} \overbrace{x_{\star}}^{\circ} \right\rangle$$

And the ring relations from $QK_{eq}(X)$ are given by:

$$[\mathcal{O}_{\mu}]\star[\mathcal{O}_{
u}]=\mathcal{N}_{\mu
u}{}^{\lambda}(q_{\mathsf{3d}},y,\mathcal{O})[\mathcal{O}_{\lambda}]$$

We will focus on the case where the gauge group is $U(N_c)$ and the theory is coupled with n_f multiplets in representation \Box_{N_c} .

Recall that in 3d, we can have CS levels as an input of the theory:

$$U(N_c)_{k,k+\ell N_c} \cong rac{SU(N_c)_k imes U(1)_{N_c(k+\ell N_c)}}{\mathbb{Z}_{N_c}}$$

So, one question that we will discuss here is: how can we tune the levels (k, ℓ) such that we have a "3d GLSM"?

A standard basis for K(Gr(N_c, n_f)) is given by the Schubert classes [O_μ] with O_μ being the structure sheaf of the Schubert subvariety X_μ (the closure Schubert cell C_μ ⊆ Gr(N_c, n_f)). The index μ here is an N_c-partition:

$$n_f - N_c \geq \mu_1 \geq \mu_2 \geq \cdots \geq \mu_{N_c} \geq 0$$
.

Another natural question is: what is the set of line operators that flow to the elements of this basis?

Outline

- 3d moduli space of vacua
- 3d A-model: lightning review
- Grothendieck lines
- 2d limit and Schubert lines
- ► Work to appear/in progress

3d moduli space of vacua

So, we have 3d $\mathcal{N} = 2$ CS theory with gauge group $U(N_c)_{k,k+\ell N_c}$ coupled with n_f chiral multiplets in fundamental representation. Recall that:

$$\mathcal{V} = (\sigma, A_{\mu}, \lambda, \overline{\lambda}, D) ,$$

 $\Phi = (\phi, \psi, F) .$

Semi-classically [Intriligator-Seiberg'13], the SUSY vacua are solutions to:

$$(\sigma_{a} - m_{\alpha})\phi_{\alpha}^{a} = 0 , \quad a = 1, \cdots, N_{c} , \quad \alpha = 1, \cdots, n_{f} ,$$

$$\sum_{\alpha=1}^{n_{f}} \phi_{a}^{\alpha} \dagger \phi_{\alpha}^{b} = \frac{\delta_{a}^{b}}{2\pi} F_{a}(\sigma, m) , \quad a, b = 1, \cdots, N_{c} ,$$

up to $U(N_c)$. Here

$$F_{a}(\sigma,m) = \xi + k\sigma_{a} + \ell \sum_{b=1}^{N_{c}} \sigma_{b} + \frac{1}{2} \sum_{\alpha=1}^{n_{f}} |\sigma_{a} - m_{\alpha}| .$$

Taking $m_{\alpha} = 0$ and $\xi \neq 0$, we have the following possible solutions (depending on k and ℓ for fixed N_c and n_f) [Closset-OK'2305]:

- ► **Higgs vacua:** $\sigma_a = 0$, $\forall a$. For $\xi > 0$, the equations describe $Gr(N_c, n_f)$.
- ► Topological vacua: σ_a ≠ 0, ∀a. The matter multiplets become massive and we integrate them out leaving us with pure CS theory with gauge group:

$$U(\underbrace{p)_{k_{\rm eff}} \times U(N_c - p}_{k_{\rm mix}})_{\widetilde{k}_{\rm eff}}$$

• Hybrid vacua: $\sigma_a = 0$, for some *a*. This is a hybrid of the above two cases where the vacua are described by:

$$\operatorname{Gr}(p, n_f) imes U(N_c - p)_{k_{\operatorname{eff}}}$$
 .

Strongly-coupled vacua: this the case where a non-compact Coulomb branch opens up. Usually happens at $k = \pm \frac{n_f}{2}$.

 $U(2)_{k,k+2\ell}$ with 4 \square_2

$k \setminus I$	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
0	11	10	9	8	7	6	6	6	7	8	9	10	11
1	15	13	11	9	7	6	6	6	7	9	11	13	15
2	18	15	12	9	6	6	6	9	12	15	18	21	24
3	20	16	12	8	6	6	10	14	18	22	26	30	34
4	21	16	11	6	6	10	15	20	25	30	35	40	45
5	21	15	9	6	10	15	21	27	33	39	45	51	57
6	20	13	6	10	14	21	28	35	42	49	56	63	70
7	18	10	10	14	20	28	36	44	52	60	68	76	84
8	15	10	14	18	27	36	45	54	63	72	81	90	99
9	15	14	18	25	35	45	55	65	75	85	95	105	115
10	14	18	22	33	44	55	66	77	88	99	110	121	132

 $U(2)_{k,k+2\ell}$ with 4 \square_2

(k, l)	$\xi > 0$ phase	$\xi < 0$ phase
(0,10)	$Gr(2,4) \oplus U(2)_{-2,18}$	$U(2)_{2,22} \oplus U(1)_{12} imes U(1)_8$
		10
(1,3)	$Gr(2,4)\oplus U(1)_6 imes U(1)_2$	U(2) _{3,9}
	3	
(3, -2)	Gr(2,4)	$\mathbb{CP}^3 imes U(1)_{-1}\oplus U(2)_{5,1}$
(4,7)	$Gr(2,4)\oplus \mathbb{CP}^3\times U(1)_9\oplus U(2)_{2,16}$	$U(2)_{6,20}$
(5, -6)	$Gr(2,4)\oplus U(2)_{7,-5}$	$\mathbb{CP}^3 imes U(1)_{-3}\oplus U(2)_{3,-9}$
(6, -4)	Gr(2,4)	$U(2)_{4,-4}$
(7, -9)	$Gr(2,4)\oplus U(2)_{9,-9}$	$\mathbb{CP}^3 imes U(1)_{-4}\oplus U(2)_{5,-13}$
(8,8)	$Gr(2,4)\oplus\mathbb{CP}^3 imes U(1)_{14}\oplus U(2)_{6,22}$	U(2) _{10,26}
(9,10)	$Gr(2,4)\oplus\mathbb{CP}^3 imes U(1)_{17}\oplus U(2)_{7,77}$	U(2) _{11,31}
(10, 5)	$Gr(2,4)\oplus \mathbb{CP}^3\times U(1)_{13}\oplus U(2)_{8,18}$	U(2) _{12,22}

3d A-model: lightning review

Let us now put this theory on $\Sigma_g \times S_{\beta}^1$. We do so by performing a topological A-twist along Σ_g . Effectively, this is a 2d $\mathcal{N} = (2,2)$ theory on Σ_g with massive KK modes on the fibres. The path integral computes the twisted index [Nekrasov-Shatashvili'09, Benini-Zaffaroni'15, Closset-Kim'16]:

$$\mathcal{I}_{\mathsf{3d}}(q,y) = \sum_{d \in \mathbb{Z}} q^d \mathsf{Tr}_{\mathcal{H}_{\Sigma_g;d}} \left((-1)^{\mathsf{F}} \prod_{i=1}^{n_f} y_{\alpha}^{Q_f^{lpha}}
ight) \,,$$

where $q \sim e^{-2\pi\beta\xi}$ and $y_{lpha} \sim e^{-2\pi\beta m_{lpha}}.$

Upon SUSY localization, the correlation function of a collection of half-BPS line operators reduces to:

$$\langle \prod_{p} \mathcal{L}_{\mu_{p}}
angle_{\Sigma_{g} imes S_{\beta}^{1}} = \sum_{\hat{x} \in \mathcal{S}_{\mathsf{BE}}} \mathcal{H}^{g-1}(\hat{x}) \prod_{p} \mathcal{L}_{\mu_{p}}(\hat{x}) \; .$$

Where these ingredients are defined in terms of the effective twisted superpotential \mathcal{W} and the effective dilaton potential Ω .

$$\begin{split} \mathcal{W} &= \frac{1}{2\pi i} \sum_{\alpha=1}^{n_f} \sum_{a=1}^{N_c} \operatorname{Li}_2(x_a y_\alpha^{-1}) + \tau \sum_{a=1}^{N_c} u_a + \frac{k + \frac{n_f}{2}}{2} \sum_{a=1}^{N_c} u_a(u_a + 1) \\ &+ \frac{\ell}{2} \left(\left(\sum_{a=1}^{N_c} u_a \right)^2 + \sum_{a=1}^{N_c} u_a \right), \\ e^{2\pi i \Omega} &= \prod_{a=1}^{N_c} \prod_{i=1}^{n_f} (1 - x_a y_\alpha^{-1}) \prod_{a \neq b} \left(1 - \frac{x_a}{x_b} \right)^{-1} . \end{split}$$

Here we introduced $x_a = e^{2\pi i u_a} \sim e^{-2\pi\beta\sigma_a}$. In terms of these, the handle-gluing operator is given by: [Vafa' 91, Nekrasov-Shatashvili' 14]

$$\mathcal{H}(x) = e^{2\pi i \Omega} \mathsf{det} \left(rac{\partial^2 \mathcal{W}}{\partial u_a \partial u_b}
ight)$$

As for the sum, it is taken over the *Bethe vacua* [Hori-Tong'06, Nekrasov-Shatashvili'09]:

$$\mathcal{S}_{\mathsf{BE}} = \left\{ \hat{x} : e^{2\pi i \partial \mathcal{W}} \mid_{\hat{x}} = 1 \ , \quad \hat{x}_{\mathsf{a}} \neq \hat{x}_{\mathsf{b}} \ , \forall \mathsf{a} \neq \mathsf{b} \right\} / S_{\mathsf{N}_{\mathsf{c}}}$$

In our case, the BAE take the following form:

$$q(-\det x)^{\ell}(-x_a)^{k+rac{n_f}{2}}\prod_{lpha=1}^{n_f}(1-x_ay_{lpha}^{-1})^{-1}=1\;,\qquad orall a=1,\cdots,N_c\;.$$

Here det $x = \prod_{b=1}^{N_c} x_b$.

For the case

$$k=N_c-rac{n_f}{2}\;,\qquad \ell=-1\;,$$

we have the equivalence [Givental et al, Mihalcea et al]:

 $\mathcal{R}_{3d} \cong \mathsf{QK}_{\mathsf{eq}}(\mathsf{Gr}(N_c, n_f))$.

For example, in this ring, the equivariant Schubert classes $[\mathcal{O}_{\mu}]$ are represented by the double Grothendieck polynomials $\mathfrak{G}_{\mu}(x, y)$ [Fulton-Lascoux'94, Ikeda-Naruse'13]

$$\mathfrak{G}_{\mu}(x,y) = \frac{\det_{1 \le a,b \le N_c} \left(x_a^{b-1} \prod_{\alpha=1}^{\mu_b+N_c-b} (1-x_a y_{\alpha}^{-1}) \right)}{\prod_{1 \le a < b \le N_c} (x_a - x_b)}$$

Therefore, assuming we know the half-BPS line operator \mathcal{L}_{μ} corresponding to $[\mathcal{O}_{\mu}]$, we can compute the ring structure of $QK_{eq}(Gr(N_c, n_f))$:

$$g_{\mu
u}(q,y) = \sum_{\hat{x}\in\mathcal{S}_{\mathsf{BE}}}\mathcal{H}^{-1}(\hat{x})\mathfrak{G}_{\mu}(\hat{x})\mathfrak{G}_{
u}(\hat{x})$$

and,

$$\mathcal{N}_{\mu
u\lambda}(q,y) = \sum_{\hat{x}\in\mathcal{S}_{\mathsf{BE}}}\mathcal{H}^{-1}(\hat{x})\mathfrak{G}_{\mu}(\hat{x})\mathfrak{G}_{\nu}(\hat{x})\mathfrak{G}_{\lambda}(\hat{x})\;.$$

Indeed one can perform these sums efficiently using the Gröbner basis techniques [Jiang-Zhang'17, Closset-OK'2301].

As an example, one can do this computation for \mathbb{CP}^2 . In this case, the topological metric has the following components:

$$g_{\mu,
u} = egin{cases} 1 - rac{y_3}{y_1} + rac{q}{1-q} \;, \ \left(1 - rac{y_3}{y_1}
ight) \left(1 - rac{y_3}{y_2}
ight) + rac{q}{1-q} \;, \ rac{1}{1-q} \;, \end{cases}$$

$$(\mu, \nu) = (1, 2), (2, 1),$$

 $(\mu, \nu) = (2, 2),$
otherwise.

Meanwhile, the ring structure of $QK_{eq}(\mathbb{CP}^2)$ is given by:

$$\begin{split} \mathcal{O}_{1} \star \mathcal{O}_{2} &= \left(1 - \frac{y_{2}}{y_{1}}\right) \mathcal{O}_{1} + \frac{y_{2}}{y_{1}} \mathcal{O}_{2} \\ \mathcal{O}_{1} \star \mathcal{O}_{2} &= \left(1 - \frac{y_{3}}{y_{2}}\right) \mathcal{O}_{2} + \frac{y_{3}}{y_{2}} q \ , \\ \mathcal{O}_{2} \star \mathcal{O}_{2} &= \left(1 - \frac{y_{3}}{y_{1}}\right) \left(1 - \frac{y_{3}}{y_{2}}\right) \mathcal{O}_{2} + \frac{y_{3}}{y_{1}} q \mathcal{O}_{1} + \left(1 - \frac{y_{3}}{y_{2}}\right) \frac{y_{3}}{y_{1}} q \end{split}$$

These match the calculations of [Buch-Mihalcea'11].

Grothendieck lines

Now we come to answering the second question concerning the construction of the lines \mathcal{L}_{μ} that flow to $[\mathcal{O}_{\mu}]$. What are we looking for exactly?

We are looking for is a 1d $\mathcal{N}=2$ theory that we can couple to our 3d theory such that:

The insertion of these lines (1d theories) at a point z ∈ P¹ should restrict the target space X to the support of [O_µ] which is the Schubert cell C_µ:

$$\phi(z)\in\mathsf{C}_{\mu}$$
 .

If we compute the index of this 1d theory, we need to get the representative of [O_µ]:

$$\mathcal{I}_{\mathsf{1d}}[\mathcal{L}_{\mu}] = \mathfrak{G}_{\mu}(x,y) \; .$$

We propose that the 1d theory is the following quiver: [Closset-OK'2309]

The coupling to the 3d theory is established by introducing the 1d J-potential:

$$J_{\alpha^{(l)}}^{(l)} = \varphi_l^{l+1} \cdots \varphi_n^{n+1} \cdot \phi_{\alpha^{(l)}} ,$$

by adding the following term to the Lagrangian:

$$\int d\theta \sum_{l=1}^n \sum_{\alpha^{(l)} \in I_l} J^{(l)}_{\alpha^{(l)}}(\varphi, \phi) \, \Lambda^{(l)}_{\alpha^{(l)}}$$

Here $\Lambda_{\alpha^{(l)}}^{(l)}$ are 1d $\mathcal{N} = 2$ Fermi multiplets. The number of these multiplets coupled at each 1d gauge node is determined in terms of the partition:

$$\mu = [\mu_1, \cdots, \mu_n, \underbrace{0, \cdots, 0}_{N_c - n}]$$

as follows:

$$M_{l} = \begin{cases} \mu_{l} - \mu_{l+1} + 1 , & l = 1, \cdots, n-1 , \\ \mu_{n} - n + N_{c} , & l = n . \end{cases}$$

In terms of these numbers, the $SU(n_f)$ indices $\alpha^{(l)}$ live in the index set:

$$I_{l} = \{1 + \sum_{q=l+1}^{n} M_{q}, 2 + \sum_{q=l+1}^{n} M_{q}, \cdots, \sum_{q=l}^{n} M_{q}\}$$

Along with the 1d D-term equations, the insertion of *J*-potential imposes the following constraints on ϕ :

$$J^{(I)}_{lpha^{(I)}} = 0$$
 .

Examples

Computing the 1d index

Following the localization analysis of [Hori-Kim-Yi'14], the index of the 1d theory is given by:

$$\mathcal{L}_{\mu}(x,y) = \oint_{\mathsf{JK}} \left[\prod_{l=1}^{n} \frac{1}{l!} \prod_{i_{l}=1}^{r_{l}} \frac{-dz_{i_{l}}^{(l)}}{2\pi i z_{i_{l}}^{(l)}} \prod_{1 \leq i_{l} \neq j_{l} \leq l} \left(1 - \frac{z_{i_{l}}^{(l)}}{z_{j_{l}}^{(l)}} \right) \right] \mathsf{Z}_{\mathsf{matter}}^{\mathrm{1d}}(z,x,y) \,,$$

where,

$$\mathsf{Z}_{\mathsf{matter}}^{\mathrm{1d}}(z,x,y) \equiv \prod_{l=1}^{n-1} \prod_{i_l=1}^{l} \frac{\prod_{\alpha^{(l)} \in I_l} \left(1 - \frac{z_{i_l}^{(l)}}{y_{\alpha^{(l)}}}\right)}{\prod_{j_{l+1}=1}^{l+1} \left(1 - \frac{z_{i_l}^{(l)}}{z_{j_{l+1}}^{(l+1)}}\right)} \prod_{i_n=1}^{r_n} \frac{\prod_{\alpha^{(n)} \in I_n} \left(1 - \frac{z_{i_n}^{(n)}}{y_{\alpha^{(n)}}}\right)}{\prod_{a=1}^{N_c} \left(1 - \frac{z_{i_n}^{(n)}}{x_a}\right)}$$

Taking the 1d FI parameters to be positive, the JK prescription instructs us to only consider the poles coming from the matter contribution. Doing so, indeed we get $\mathcal{L}_{\mu}(x, y) = \mathfrak{G}_{\mu}(x, y)$.

2d limit and $QH_{eq}^{\bullet}(Gr(N_c, n_f))$

To move back to the 2d theory, we look at the $\beta \rightarrow 0$ limit. We recall that:

$$x_{a}\sim e^{-2\pieta\sigma_{a}}~,~~y_{lpha}\sim e^{-2\pieta m_{lpha}}~,~~q_{
m 3d}\sim (-2\pieta)^{n_{f}}q_{
m 2d}~.$$

In this limit,

$$\mathfrak{G}_{\mu}(\mathbf{x},\mathbf{y}) \rightarrow (2\pi\beta)^{|\mu|} \mathfrak{S}_{\mu}(\sigma,m) \; ,$$

where the double Schubert polynomials

$$\mathfrak{S}_{\mu}(\sigma,m) = \frac{\det_{1 \leq a,b \leq N_c} \left(\prod_{\alpha=1}^{\mu_a + N_c - b} (\sigma_b - m_{\alpha}) \right)}{\prod_{1 \leq a < b \leq N_c} (\sigma_a - \sigma_b)}$$

These polynomials are known to represent the equivariant Schubert classes in $QH_{eq}^{\bullet}(Gr(N_c, n_f))$.

We can consider a 0d-2d coupled system similar to the 1d-3d above to construct the point defects \mathcal{P}_{μ} that correspond to Schubert classes $[\omega_{\mu}] \in H^{\bullet}(Gr(N_c, n_f))$.

The index of the gauged supersymmetric matrix model in this case is given by:

$$\omega_{\lambda}(\sigma, m) = \prod_{l=1}^{n} \frac{1}{l!} \oint \frac{d^{l} s^{(l)}}{(2\pi i)^{l}} \Delta^{(l)}(s) Z_{\text{matter}}^{\text{Od}}(s, \sigma, m) ,$$
$$\Delta^{(l)}(s) = \prod_{i_{l} \neq i_{l}} \left(s_{i_{l}}^{(l)} - s_{j_{l}}^{(l)} \right) , \qquad (1)$$

and

$$\mathsf{Z}_{\mathsf{matter}}^{\mathrm{Od}}(\sigma,m) = \prod_{l=1}^{n-1} \left(\prod_{i_{l}=1}^{r_{l}} \frac{\prod_{\alpha^{(l)} \in I_{l}} \left(s_{i_{l}}^{(l)} - m_{\alpha^{(l)}} \right)}{\prod_{j_{l+1}=1}^{l+1} \left(s_{i_{l}}^{(l)} - s_{j_{l+1}}^{(l+1)} \right)} \right) \prod_{i_{n}=1}^{r_{n}} \frac{\prod_{\alpha^{(n)} \in I_{n}} \left(s_{i_{n}}^{(n)} - m_{\alpha^{(n)}} \right)}{\prod_{a=1}^{N_{c}} \left(s_{i_{n}}^{(n)} - \sigma_{a} \right)}$$

Indeed, if we work out these integrals we end up with the double Schubert polynomial $\mathfrak{S}_{\mu}(\sigma,m)$ defined above

Work to appear/in progress

- In this talk we have focused on only one choice of (k, ℓ) from the geometric window. In a work to appear with C. Closset and H. Kim, we give an enumerative geometry interpretation for the other possible (k, l) in terms of the level structure construction of [Ruan-Zhang'19].
- In the same work, we will also give a physical realisation to the moduli space of stable maps on which GW theory acts [Bullimore-Ferrari-Kim'18].
- So far, we have been only focusing on the SQCD case. In a work in progress, we are extending this line construction to any partial flag variety.

Thank You!