Grothendieck lines in 3d SQCD and the quantum K-theory of the Grassmannian

Osama Khlaif
University of Birmingham

Rencontre théoriciennes
Institut Henri Poincaré, Paris
March 142024

Based on 2301.10753, 2305.00534, 2309.06980 with Cyril Closset (see also 2312.05076 for a review)

Introduction

In the 90's, Witten taught us the following lessons:

- A $2 \mathrm{~d} \mathcal{N}=(2,2)$ GLSM can flow to a NLSM with target space X which is the Higgs branch of the theory (e.g. for $U\left(N_{c}\right)$ coupled with $n_{f} \square_{N_{c}}$ we get $\left.X=\operatorname{Gr}\left(N_{c}, n_{f}\right)\right)$.
- To put the theory on a Riemann surface Σ_{g}, one needs to A-twist the theory. Focus on the twisted chiral ring $\mathcal{R}_{2 \mathrm{~d}}=\left\{\mathcal{P}_{\mu}\right\}_{\mu \in I}$.
- $\mathcal{R}_{2 \mathrm{~d}} \cong($ small $) \mathrm{QH}_{\text {eq }}^{\bullet}(X)$:
- $\mathcal{P}_{\mu} \longleftrightarrow\left[\omega_{\mu}\right] \in \mathrm{H}^{\bullet}(X)$.
$-\left\langle\mathcal{P}_{\mu_{1}} \mathcal{P}_{\mu_{2}} \cdots\right\rangle_{\mathbb{P}^{1}} \longleftrightarrow \mathrm{GW}_{0}\left(\left[\omega_{\mu_{1}}\right],\left[\omega_{\mu_{2}}\right], \cdots\right)$.

For example, taking $g=0$, we have the following data:

- The topological metric:

- The structure constants:

$$
\mathcal{C}_{\mu \nu \lambda}(\mathcal{P})=\left\langle\begin{array}{l}
3+ \\
\hline
\end{array}\right.
$$

From the correspondence, the ring relations of $\mathrm{QH}_{\mathrm{eq}}^{\bullet}(X)$ are given as:

$$
\left[\omega_{\mu}\right] \star\left[\omega_{\nu}\right]=\mathcal{C}_{\mu \nu}{ }^{\lambda}\left(q_{2 \mathrm{~d}}, m, \omega\right)\left[\omega_{\lambda}\right]
$$

Here,

$$
\mathcal{C}_{\mu \nu}{ }^{\lambda}=\eta^{\lambda \rho} \mathcal{C}_{\mu \nu \rho}, \quad \eta^{\mu \rho} \eta_{\rho \nu}=\delta_{\nu}^{\mu} .
$$

In this talk, we are interested in the 3d (K-theoretic) uplift of this set up. [Kapustin-Willet'13, Jockers-Mayer'18, ‥].

Doing a topological A-twist along Σ_{g}, we get the twisted chiral ring $\mathcal{R}_{3 \mathrm{~d}}=\left\{\mathcal{L}_{\mu}\right\}_{\mu \in I}$. This consists of half-BPS line operators \mathcal{L}_{μ} wrapping the S^{1}-fibres.

The Witten correspondence in this case becomes
$-\mathcal{L}_{\mu} \longleftrightarrow\left[\mathcal{O}_{\mu}\right] \in \mathrm{K}_{\text {eq }}(X)$.
$-\left\langle\mathcal{L}_{\mu_{1}} \mathcal{L}_{\mu_{2}} \cdots\right\rangle_{\mathbb{P}^{1} \times S_{\beta}^{1}} \longleftrightarrow$ K-theoretic $\mathrm{GW}_{g=0}\left(\left[\mathcal{O}_{\mu_{1}}\right],\left[\mathcal{O}_{\mu_{2}}\right], \cdots\right)$.

For the $g=0$ we compute the following data:

- The topological metric:

- The structure constants:

And the ring relations from $\mathrm{QK}_{\text {eq }}(X)$ are given by:

$$
\left[\mathcal{O}_{\mu}\right] \star\left[\mathcal{O}_{\nu}\right]=\mathcal{N}_{\mu \nu}{ }^{\lambda}\left(q_{3 \mathrm{~d}}, y, \mathcal{O}\right)\left[\mathcal{O}_{\lambda}\right]
$$

We will focus on the case where the gauge group is $U\left(N_{c}\right)$ and the theory is coupled with n_{f} multiplets in representation $\square_{N_{c}}$.

- Recall that in 3d, we can have CS levels as an input of the theory:

$$
U\left(N_{c}\right)_{k, k+\ell N_{c}} \cong \frac{S U\left(N_{c}\right)_{k} \times U(1)_{N_{c}\left(k+\ell N_{c}\right)}}{\mathbb{Z}_{N_{c}}}
$$

So, one question that we will discuss here is: how can we tune the levels (k, ℓ) such that we have a " 3 d GLSM"?

- A standard basis for $\mathrm{K}\left(\operatorname{Gr}\left(N_{c}, n_{f}\right)\right)$ is given by the Schubert classes $\left[\mathcal{O}_{\mu}\right]$ with \mathcal{O}_{μ} being the structure sheaf of the Schubert subvariety X_{μ} (the closure Schubert cell $\left.\mathrm{C}_{\mu} \subseteq \operatorname{Gr}\left(N_{c}, n_{f}\right)\right)$. The index μ here is an N_{c}-partition:

$$
n_{f}-N_{c} \geq \mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{N_{c}} \geq 0
$$

Another natural question is: what is the set of line operators that flow to the elements of this basis?

Outline

- 3d moduli space of vacua
- 3d A-model: lightning review
- Grothendieck lines
- 2d limit and Schubert lines
- Work to appear/in progress

3d moduli space of vacua

So, we have $3 \mathrm{~d} \mathcal{N}=2 \mathrm{CS}$ theory with gauge group $U\left(N_{c}\right)_{k, k+\ell N_{c}}$ coupled with n_{f} chiral multiplets in fundamental representation. Recall that:

$$
\begin{aligned}
& \mathcal{V}=\left(\sigma, A_{\mu}, \lambda, \bar{\lambda}, D\right), \\
& \Phi=(\phi, \psi, F) .
\end{aligned}
$$

Semi-classically [Intriligator-Seiberg'13], the SUSY vacua are solutions to:

$$
\begin{aligned}
& \left(\sigma_{a}-m_{\alpha}\right) \phi_{\alpha}^{a}=0, \quad a=1, \cdots, N_{c}, \quad \alpha=1, \cdots, n_{f} \\
& \sum_{\alpha=1}^{n_{f}} \phi_{a}^{\alpha \dagger} \phi_{\alpha}^{b}=\frac{\delta_{a}^{b}}{2 \pi} F_{a}(\sigma, m), \quad a, b=1, \cdots, N_{c}
\end{aligned}
$$

up to $U\left(N_{c}\right)$. Here

$$
F_{a}(\sigma, m)=\xi+k \sigma_{a}+\ell \sum_{b=1}^{N_{c}} \sigma_{b}+\frac{1}{2} \sum_{\alpha=1}^{n_{f}}\left|\sigma_{a}-m_{\alpha}\right|
$$

Taking $m_{\alpha}=0$ and $\xi \neq 0$, we have the following possible solutions (depending on k and ℓ for fixed N_{c} and n_{f}) [Closset-OK'2305]:

- Higgs vacua: $\sigma_{a}=0, \forall a$. For $\xi>0$, the equations describe $\operatorname{Gr}\left(N_{c}, n_{f}\right)$.
- Topological vacua: $\sigma_{a} \neq 0, \forall a$. The matter multiplets become massive and we integrate them out leaving us with pure CS theory with gauge group:

$$
U(\underbrace{p)_{k_{\text {eff }} \times U\left(N_{c}-p\right.}}_{k_{\text {mix }}} \tilde{k}_{\text {eff }} .
$$

- Hybrid vacua: $\sigma_{a}=0$, for some a. This is a hybrid of the above two cases where the vacua are described by:

$$
\operatorname{Gr}\left(p, n_{f}\right) \times U\left(N_{c}-p\right)_{k_{\text {eff }}} .
$$

- Strongly-coupled vacua: this the case where a non-compact Coulomb branch opens up. Usually happens at $k= \pm \frac{n_{f}}{2}$.
$U(2)_{k, k+2 \ell}$ with $4 \square_{2}$

$k \backslash I$	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
0	11	10	9	8	7	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{6}$	7	8	9	10	11
1	15	13	11	9	7	6	6	6	7	9	11	13	15
2	18	15	12	9	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{1 2}$	$\mathbf{1 5}$	$\mathbf{1 8}$	$\mathbf{2 1}$	$\mathbf{2 4}$
3	20	16	12	8	6	6	10	14	18	22	26	30	34
4	21	16	11	6	6	10	15	20	25	30	35	40	45
5	21	15	9	6	10	15	21	27	33	39	45	51	57
6	20	13	6	10	14	21	28	35	42	49	56	63	70
7	18	10	10	14	20	28	36	44	52	60	68	76	84
8	15	10	14	18	27	36	45	54	63	72	81	90	99
9	15	14	18	25	35	45	55	65	75	85	95	105	115
10	14	18	22	33	44	55	66	77	88	99	110	121	132

$U(2)_{k, k+2 \ell}$ with $4 \square_{2}$

(k, l)	$\xi>0$ phase	$\xi<0$ phase
$(0,10)$	$\operatorname{Gr}(2,4) \oplus U(2)_{-2,18}$	$U(2)_{2,22} \oplus U(\underbrace{}_{12} \times U(1)_{10}$
		$U(2)_{3,9}$
$(1,3)$	$\operatorname{Gr}(2,4) \oplus U(\underbrace{}_{1_{6}} \times U(1)_{2}$	3
	$\operatorname{Gr}(2,4)$	$\mathbb{C P}^{3} \times U(1)_{-1} \oplus U(2)_{5,1}$
$(3,-2)$	$\operatorname{Gr}(2,4) \oplus \mathbb{C P}^{3} \times U(1)_{9} \oplus U(2)_{2,16}$	$U(2)_{6,20}$
$(4,7)$	$\operatorname{Gr}(2,4) \oplus U(2)_{7,-5}$	$\mathbb{C P}^{3} \times U(1)_{-3} \oplus U(2)_{3,-9}$
$(5,-6)$	$\operatorname{Gr}(2,4)$	$U(2)_{4,-4}$
$(6,-4)$	$\operatorname{Gr}(2,4) \oplus U(2)_{9,-9}$	$\mathbb{C P}^{3} \times U(1)_{-4} \oplus U(2)_{5,-13}$
$(7,-9)$	$\operatorname{Gr}(2,4) \oplus \mathbb{C P}^{3} \times U(1)_{14} \oplus U(2)_{6,22}$	$U(2)_{10,26}$
$(8,8)$	$U(2)_{11,31}$	
$(9,10)$	$\operatorname{Gr}(2,4) \oplus \mathbb{C P}^{3} \times U(1)_{17} \oplus U(2)_{7,77}$	$U(2)_{12,22}$
$(10,5)$	$\operatorname{Gr}(2,4) \oplus \mathbb{C P}^{3} \times U(1)_{13} \oplus U(2)_{8,18}$	

3d A-model: lightning review

Let us now put this theory on $\Sigma_{g} \times S_{\beta}^{1}$. We do so by performing a topological A-twist along Σ_{g}. Effectively, this is a $2 \mathrm{~d} \mathcal{N}=(2,2)$ theory on Σ_{g} with massive KK modes on the fibres. The path integral computes the twisted index [Nekrasov-Shatashvili'09, Benini-Zaffaroni'15, Closset-Kim'16]:

$$
\mathcal{I}_{3 \mathrm{~d}}(q, y)=\sum_{d \in \mathbb{Z}} q^{d} \operatorname{Tr}_{\mathcal{H}_{\Sigma_{g} ; d}}\left((-1)^{\mathrm{F}} \prod_{i=1}^{n_{f}} y_{\alpha}^{Q_{f}^{\alpha}}\right)
$$

where $q \sim e^{-2 \pi \beta \xi}$ and $y_{\alpha} \sim e^{-2 \pi \beta m_{\alpha}}$. Upon SUSY localization, the correlation function of a collection of half-BPS line operators reduces to:

$$
\left\langle\prod_{p} \mathcal{L}_{\mu_{p}}\right\rangle_{\Sigma_{g} \times S_{\beta}^{1}}=\sum_{\hat{x} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}^{g-1}(\hat{x}) \prod_{p} \mathcal{L}_{\mu_{p}}(\hat{x}) .
$$

Where these ingredients are defined in terms of the effective twisted superpotential \mathcal{W} and the effective dilaton potential Ω.

$$
\begin{aligned}
\mathcal{W}= & \frac{1}{2 \pi i} \sum_{\alpha=1}^{n_{f}} \sum_{a=1}^{N_{c}} \mathrm{Li}_{2}\left(x_{a} y_{\alpha}^{-1}\right)+\tau \sum_{a=1}^{N_{c}} u_{a}+\frac{k+\frac{n_{f}}{2}}{2} \sum_{a=1}^{N_{c}} u_{a}\left(u_{a}+1\right) \\
& +\frac{\ell}{2}\left(\left(\sum_{a=1}^{N_{c}} u_{a}\right)^{2}+\sum_{a=1}^{N_{c}} u_{a}\right) \\
e^{2 \pi i \Omega}= & \prod_{a=1}^{N_{c}} \prod_{i=1}^{n_{f}}\left(1-x_{a} y_{\alpha}^{-1}\right) \prod_{a \neq b}\left(1-\frac{x_{a}}{x_{b}}\right)^{-1} .
\end{aligned}
$$

Here we introduced $x_{a}=e^{2 \pi i u_{a}} \sim e^{-2 \pi \beta \sigma_{a}}$.
In terms of these, the handle-gluing operator is given by: [Vafa' 91, Nekrasov-Shatashvili' 14]

$$
\mathcal{H}(x)=e^{2 \pi i \Omega} \operatorname{det}\left(\frac{\partial^{2} \mathcal{W}}{\partial u_{a} \partial u_{b}}\right)
$$

As for the sum, it is taken over the Bethe vacua [Hori-Tong'06, Nekrasov-Shatashvili'09]:

$$
\mathcal{S}_{\mathrm{BE}}=\left\{\hat{x}:\left.e^{2 \pi i \partial \mathcal{W}}\right|_{\hat{x}}=1, \quad \hat{x}_{a} \neq \hat{x}_{b}, \forall a \neq b\right\} / S_{N_{c}}
$$

In our case, the BAE take the following form:

$$
q(-\operatorname{det} x)^{\ell}\left(-x_{a}\right)^{k+\frac{n_{f}}{2}} \prod_{\alpha=1}^{n_{f}}\left(1-x_{a} y_{\alpha}^{-1}\right)^{-1}=1, \quad \forall a=1, \cdots, N_{c} .
$$

Here $\operatorname{det} x=\prod_{b=1}^{N_{c}} x_{b}$.
For the case

$$
k=N_{c}-\frac{n_{f}}{2}, \quad \ell=-1
$$

we have the equivalence [Givental et al, Mihalcea et al]:

$$
\mathcal{R}_{3 \mathrm{~d}} \cong \operatorname{QK}_{\mathrm{eq}}\left(\operatorname{Gr}\left(N_{c}, n_{f}\right)\right) .
$$

For example, in this ring, the equivariant Schubert classes $\left[\mathcal{O}_{\mu}\right]$ are represented by the double Grothendieck polynomials $\mathfrak{G}_{\mu}(x, y)$ [Fulton-Lascoux'94, Ikeda-Naruse'13]

$$
\mathfrak{G}_{\mu}(x, y)=\frac{\operatorname{det}_{1 \leq a, b \leq N_{c}}\left(x_{a}^{b-1} \prod_{\alpha=1}^{\mu_{b}+N_{c}-b}\left(1-x_{a} y_{\alpha}^{-1}\right)\right)}{\prod_{1 \leq a<b \leq N_{c}}\left(x_{a}-x_{b}\right)} .
$$

Therefore, assuming we know the half-BPS line operator \mathcal{L}_{μ} corresponding to $\left[\mathcal{O}_{\mu}\right]$, we can compute the ring structure of $\mathrm{QK}_{\text {eq }}\left(\operatorname{Gr}\left(N_{c}, n_{f}\right)\right)$:

$$
g_{\mu \nu}(q, y)=\sum_{\hat{x} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}^{-1}(\hat{x}) \mathfrak{G}_{\mu}(\hat{x}) \mathfrak{G}_{\nu}(\hat{x})
$$

and,

$$
\mathcal{N}_{\mu \nu \lambda}(q, y)=\sum_{\hat{x} \in \mathcal{S}_{\mathrm{BE}}} \mathcal{H}^{-1}(\hat{x}) \mathfrak{G}_{\mu}(\hat{x}) \mathfrak{G}_{\nu}(\hat{x}) \mathfrak{G}_{\lambda}(\hat{x}) .
$$

Indeed one can perform these sums efficiently using the Gröbner basis techniques [Jiang-Zhang'17, Closset-OK'2301].

As an example, one can do this computation for $\mathbb{C P}^{2}$. In this case, the topological metric has the following components:

$$
g_{\mu, \nu}= \begin{cases}1-\frac{y_{3}}{y_{1}}+\frac{q}{1-q}, & (\mu, \nu)=(1,2),(2,1) \\ \left(1-\frac{y_{3}}{y_{1}}\right)\left(1-\frac{y_{3}}{y_{2}}\right)+\frac{q}{1-q}, & (\mu, \nu)=(2,2) \\ \frac{1}{1-q}, & \text { otherwise }\end{cases}
$$

Meanwhile, the ring structure of $\mathrm{QK}_{\mathrm{eq}}\left(\mathbb{C P}^{2}\right)$ is given by:

$$
\begin{aligned}
& \mathcal{O}_{1} \star \mathcal{O}_{2}=\left(1-\frac{y_{2}}{y_{1}}\right) \mathcal{O}_{1}+\frac{y_{2}}{y_{1}} \mathcal{O}_{2} \\
& \mathcal{O}_{1} \star \mathcal{O}_{2}=\left(1-\frac{y_{3}}{y_{2}}\right) \mathcal{O}_{2}+\frac{y_{3}}{y_{2}} q \\
& \mathcal{O}_{2} \star \mathcal{O}_{2}=\left(1-\frac{y_{3}}{y_{1}}\right)\left(1-\frac{y_{3}}{y_{2}}\right) \mathcal{O}_{2}+\frac{y_{3}}{y_{1}} q \mathcal{O}_{1}+\left(1-\frac{y_{3}}{y_{2}}\right) \frac{y_{3}}{y_{1}} q
\end{aligned}
$$

These match the calculations of [Buch-Mihalcea'11].

Grothendieck lines

Now we come to answering the second question concerning the construction of the lines \mathcal{L}_{μ} that flow to $\left[\mathcal{O}_{\mu}\right]$. What are we looking for exactly?

We are looking for is a $1 \mathrm{~d} \mathcal{N}=2$ theory that we can couple to our 3d theory such that:

- The insertion of these lines (1d theories) at a point $z \in \mathbb{P}^{1}$ should restrict the target space X to the support of $\left[\mathcal{O}_{\mu}\right]$ which is the Schubert cell C_{μ} :

$$
\phi(z) \in \mathrm{C}_{\mu} .
$$

- If we compute the index of this 1d theory, we need to get the representative of $\left[\mathcal{O}_{\mu}\right]$:

$$
\mathcal{I}_{1 \mathrm{~d}}\left[\mathcal{L}_{\mu}\right]=\mathfrak{G}_{\mu}(x, y)
$$

We propose that the 1d theory is the following quiver:[Closset-OK'2309]

The coupling to the 3d theory is established by introducing the 1d J-potential:

$$
J_{\alpha^{(l)}}^{(I)}=\varphi_{1}^{I+1} \cdots \varphi_{n}^{n+1} \cdot \phi_{\alpha^{(I)}},
$$

by adding the following term to the Lagrangian:

$$
\int d \theta \sum_{l=1}^{n} \sum_{\alpha^{(l)} \in I_{l}} J_{\alpha^{(l)}}^{(I)}(\varphi, \phi) \Lambda_{\alpha^{(l)}}^{(I)}
$$

Here $\Lambda_{\alpha^{(I)}}^{(I)}$ are $1 \mathrm{~d} \mathcal{N}=2$ Fermi multiplets. The number of these multiplets coupled at each 1d gauge node is determined in terms of the partition:

$$
\mu=[\mu_{1}, \cdots, \mu_{n}, \underbrace{0, \cdots, 0}_{N_{c}-n}]
$$

as follows:

$$
M_{I}= \begin{cases}\mu_{l}-\mu_{I+1}+1, & I=1, \cdots, n-1 \\ \mu_{n}-n+N_{c}, & I=n\end{cases}
$$

In terms of these numbers, the $S U\left(n_{f}\right)$ indices $\alpha^{(I)}$ live in the index set:

$$
I_{l}=\left\{1+\sum_{q=I+1}^{n} M_{q}, 2+\sum_{q=I+1}^{n} M_{q}, \cdots, \sum_{q=I}^{n} M_{q}\right\}
$$

Along with the 1d D-term equations, the insertion of J-potential imposes the following constraints on ϕ :

$$
J_{\alpha^{(I)}}^{(I)}=0
$$

Examples

Computing the 1 d index

Following the localization analysis of [Hori-Kim-Yi'14], the index of the 1 d theory is given by:
$\mathcal{L}_{\mu}(x, y)=\oint_{\mathrm{JK}}\left[\prod_{l=1}^{n} \frac{1}{l!} \prod_{i_{l}=1}^{r_{l}} \frac{-d z_{i_{l}}^{(I)}}{2 \pi i z_{i_{l}}^{(I)}} \prod_{1 \leq i_{l} \neq j_{l} \leq l}\left(1-\frac{z_{i_{l}}^{(I)}}{z_{j_{l}}^{(I)}}\right)\right] Z_{\text {matter }}^{1 \mathrm{~d}}(z, x, y)$,
where,

Taking the 1d FI parameters to be positive, the JK prescription instructs us to only consider the poles coming from the matter contribution. Doing so, indeed we get $\mathcal{L}_{\mu}(x, y)=\mathfrak{G}_{\mu}(x, y)$.

2d limit and $\mathrm{QH}_{\mathrm{eq}}^{\bullet}\left(\operatorname{Gr}\left(N_{c}, n_{f}\right)\right)$

To move back to the 2d theory, we look at the $\beta \rightarrow 0$ limit. We recall that:

$$
x_{a} \sim e^{-2 \pi \beta \sigma_{a}}, \quad y_{\alpha} \sim e^{-2 \pi \beta m_{\alpha}}, \quad q_{3 \mathrm{~d}} \sim(-2 \pi \beta)^{n_{f}} q_{2 \mathrm{~d}}
$$

In this limit,

$$
\mathfrak{G}_{\mu}(x, y) \rightarrow(2 \pi \beta)^{|\mu|} \mathfrak{S}_{\mu}(\sigma, m)
$$

where the double Schubert polynomials

$$
\mathfrak{S}_{\mu}(\sigma, m)=\frac{\operatorname{det}_{1 \leq a, b \leq N_{c}}\left(\prod_{\alpha=1}^{\mu_{a}+N_{c}-b}\left(\sigma_{b}-m_{\alpha}\right)\right)}{\prod_{1 \leq a<b \leq N_{c}}\left(\sigma_{a}-\sigma_{b}\right)}
$$

These polynomials are known to represent the equivariant Schubert classes in $\mathrm{QH}_{\text {eq }}^{\bullet}\left(\operatorname{Gr}\left(N_{c}, n_{f}\right)\right)$.

We can consider a 0d-2d coupled system similar to the 1d-3d above to construct the point defects \mathcal{P}_{μ} that correspond to Schubert classes $\left[\omega_{\mu}\right] \in \mathrm{H}^{\bullet}\left(\operatorname{Gr}\left(N_{c}, n_{f}\right)\right)$.

The index of the gauged supersymmetric matrix model in this case is given by:

$$
\begin{gather*}
\omega_{\lambda}(\sigma, m)=\prod_{l=1}^{n} \frac{1}{l!} \oint \frac{d^{\prime} s^{(I)}}{(2 \pi i)^{\prime}} \Delta^{(I)}(s) Z_{\text {matter }}^{0 \mathrm{~d}}(s, \sigma, m) \\
\Delta^{(I)}(s)=\prod_{i_{l} \neq j_{l}}\left(s_{i_{l}}^{(I)}-s_{j_{l}}^{(I)}\right) \tag{1}
\end{gather*}
$$

and
$Z_{\text {matter }}^{0 \mathrm{~d}}(\sigma, m)=\prod_{l=1}^{n-1}\left(\prod_{i_{i}=1}^{r_{I}} \frac{\prod_{\alpha^{(l)} \in I_{l}}\left(s_{i_{l}}^{(I)}-m_{\alpha^{(I)}}\right)}{\prod_{j_{i+1}=1}^{1+1}\left(s_{i_{j}}^{(I)}-s_{j_{l+1}}^{(l+1)}\right)}\right) \prod_{i_{n}=1}^{r_{n}} \frac{\prod_{\alpha^{(n)} \in I_{n}}\left(s_{i_{n}}^{(n)}-m_{\alpha^{(n)}}\right)}{\prod_{a=1}^{N_{c}}\left(s_{i_{n}}^{(n)}-\sigma_{a}\right)}$.
Indeed, if we work out these integrals we end up with the double Schubert polynomial $\mathfrak{S}_{\mu}(\sigma, m)$ defined above

Work to appear/in progress

- In this talk we have focused on only one choice of (k, ℓ) from the geometric window. In a work to appear with C. Closset and H. Kim, we give an enumerative geometry interpretation for the other possible (k, l) in terms of the level structure construction of [Ruan-Zhang'19].
- In the same work, we will also give a physical realisation to the moduli space of stable maps on which GW theory acts [Bullimore-Ferrari-Kim'18].
- So far, we have been only focusing on the SQCD case. In a work in progress, we are extending this line construction to any partial flag variety.

Thank You!

