

Università degli Studi di Padova

Finding Axions in a Universe of Data and Envisioning Their Use as Multi-Messenger Probes

Sebastian Hoof

LPTHE Seminar "Particles & Cosmology", Paris 5 April 2024

I msca_axitools

Brief axion intro

Axion global fits and model space

 The solar axion flux, its uncertainties, and the discovery potential for future helioscopes

Post-discovery physics of axions

The QCD Lagrangian contains the " θ term"

$$\mathcal{L}_{\text{QCD}} = \cdots - \frac{\alpha_{\text{s}}}{8\pi} \,\theta \, G^{a}_{\mu\nu} \widetilde{G}^{\mu\nu,a} = \cdots + \frac{\alpha_{\text{s}}}{2\pi} \,\theta \, \mathbf{E}^{a} \cdot \mathbf{B}^{a}$$

with gluon field dual $\tilde{G}^{\mu\nu,a} \equiv \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} G^{a}_{\alpha\beta}$ and a constant θ .

The QCD Lagrangian contains the " θ term"

$$\mathcal{L}_{\text{QCD}} = \cdots - \frac{\alpha_{\text{s}}}{8\pi} \,\theta \, G^{a}_{\mu\nu} \widetilde{G}^{\mu\nu,a} = \cdots + \frac{\alpha_{\text{s}}}{2\pi} \,\theta \, \mathbf{E}^{a} \cdot \mathbf{B}^{a}$$

with gluon field dual $\tilde{G}^{\mu\nu,a} \equiv \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} G^{a}_{\alpha\beta}$ and a constant θ .

• $\mathbf{E}^a \cdot \mathbf{B}^a \propto \partial_\alpha (\epsilon^{\alpha\beta\gamma\delta} A^a_\beta \partial_\gamma A^a_\delta)$ i.e. a total derivative, **but** also anomalous: can't be ignored due to instanton solutions

•
$$\alpha_{\rm s}(m_Z) = 0.1183(9)^{2309.12986}$$
 >> measure 6

The strong CP problem

- θ ~ O(1) should induce a measurable electric dipole moment of the neutron, d_n
- Current bound: |d_n| < 1.8 × 10⁻²⁶ e cm (90% CL)^{2001.11966} implies |θ| ≤ 10⁻¹⁰ (N.B. SM @ HO: |d_n| ~ 10⁻³² e cm)

The strong CP problem

- θ ~ O(1) should induce a measurable electric dipole moment of the neutron, d_n
- Current bound: $|d_n| < 1.8 \times 10^{-26} e \text{ cm} (90\% \text{ CL})^{2001.11966}$ implies $|\theta| \lesssim 10^{-10}$ (N.B. SM @ HO: $|d_n| \sim 10^{-32} e \text{ cm}$)
- Why is θ so small? Puzzling because ...
- ... *CP* violation exists in weak interactions (kaon decay, 1964), EM doesn't have *CP*-violating diagrams (at tree level)
- ... actually $\theta \mapsto \theta \arg \det(M_q)$, so small θ is even more surprising
- \ldots all allowed terms should be $\sim \mathcal{O}(1)$!?

Axion dark matter – realignment mechanism

• At early times, $T \gg T_{\chi} \sim T_{QCD,c} = 158.1(5) \text{ MeV},^{2002.02821}$ the axion field *a* can fluctuate freely

Axion dark matter – realignment mechanism

- At early times, T ≫ T_χ ~ T_{QCD,c} = 158.1(5) MeV,^{2002.02821} the axion field *a* can fluctuate freely
- Later times, T ≪ T_χ: periodic potential develops, a oscillates around the minimum

Axion dark matter – realignment mechanism

- At early times, $T \gg T_{\chi} \sim T_{\text{QCD,c}} = 158.1(5) \text{ MeV},^{2002.02821}$ the axion field *a* can fluctuate freely
- Later times, T ≪ T_χ: periodic potential develops, a oscillates around the minimum
- → Strong CP problem solved dynamically by promoting $\theta \mapsto a/f_a$
- ➤ Oscillating scalar field behaves as DM

Axion = pNGB from U(1) symmetry breaking (PQ symmetry)

Pre-inflationary PQ breaking

- Universe = single patch of constant θ stretched out by inflation
- Initial axion field value is random ⁽²⁾
- Inflation dilutes away topological defects ⁽²⁾

Axion = pNGB from U(1) symmetry breaking (PQ symmetry)

Pre-inflationary PQ breaking

- Universe = single patch of constant θ stretched out by inflation
- Initial axion field value is random ⁽²⁾
- Inflation dilutes away topological defects ⁽²⁾

Post-inflationary PQ breaking

- Universe = huge number of causally disconnected axion field patches
- Axion DM density from realignment = average ⁽²⁾
- Contribution from top. defects, very difficult to compute ⁽²⁾^{2007.04990, 2108.05368}

QCD axion mass from chiral perturbation theory^{1812.01008}

$$m_a = 5.69(5)\,\mu\text{eV}\left(\frac{10^{12}\,\text{GeV}}{f_a}\right)$$

 Axion-photon coupling depends on UV model through anomaly ratio E/N and axion-meson mixing^{1511.02867}

$$g_{a\gamma\gamma} = rac{lpha_{\mathsf{EM}}}{2\pi f_a} \left[rac{E}{N} - 1.92(4)
ight] \propto m_a$$

 Axion-like particles (ALPs): no connection to QCD = less predictable; however, e.g. mass spectra in string theory^{2103.06812}

Short summary

- Axions solve strong *CP* problem, explain smallness of $\theta G \tilde{G}$ term^{Peccei & Quinn '77} by promoting $|\theta| \lesssim 10^{-10}$ to a dynamical field
- Unintended bonus: excellent dark matter (DM) candidates!
- Success of axions doesn't depend on PQ scale ~ f_a ⁽¹⁾ But what's the axion's mass? Where to find it? ⁽²⁾

Short summary

- Axions solve strong *CP* problem, explain smallness of $\theta G \tilde{G}$ term^{Peccei & Quinn '77} by promoting $|\theta| \lesssim 10^{-10}$ to a dynamical field
- Unintended bonus: excellent dark matter (DM) candidates!
- Success of axions doesn't depend on PQ scale ~ f_a ☺ But what's the axion's mass? Where to find it? ☺
- String theory: potentially many axion-like particles (ALPs)
- Related ideas: relaxion,^{1504.07551} SMASH model,^{1610.01639}, ALP cogenesis,^{2006.04809}...

Current limits on the axion-photon coupling

Global fits for DM ALPs

- Consistency of assumptions?
- Overplotted, not combined
- Effects of "hidden parameters"?
- *g*_{aγγ} = pheno parameter; no connection to UV model

Global fits for DM ALPs

- Consistency of assumptions?
- Overplotted, not combined
- Effects of "hidden parameters"?
- g_{aγγ} = pheno parameter; no connection to UV model

With a global fit, we ensure^{1810.07192}

- self-consistent combination and analysis of data
- likelihoods can include all model and nuisance parameters

Where are the most probable, natural QCD axion models in the pre-inflationary PQ breakling scenario?

Where are the most probable, natural QCD axion models in the pre-inflationary PQ breakling scenario? ➤ Bayesian analysis

QCD axions = DM

DM density as an upper limit

Where are the most probable, natural QCD axion models in the pre-inflationary PQ breakling scenario? ➤ Bayesian analysis

QCD axions = DM

DM density as an upper limit

Prior dependence of the results

Investigate the prior dependence of the results:

- Uniform vs log uniform priors give very different results
- Are there any "physically motivated" priors?

Aside #1: The genesis of the QCD axion model band

In the beginning there were KSVZ and DFSZ models ...

Aside #1: The genesis of the QCD axion model band

... and then theorists found more models e.g. hep-ph/9506295 ...

Aside #1: The genesis of the QCD axion model band

... and experimentalists said "let there be a band!"e.g. hep-ex/0702006

Prior dependence: how to define the "QCD axion band"? Just add more and more models from the vast landscape?^{2003.01100}

Are there infinitely many discrete lines/models? Is the band effectively continuous due to QCD uncertainties?

 Beyond Bayesian analysis and priors: it would just be useful to have a catalogue of models. Let's start with KSVZ models:

- KSVZ models introduce one new heavy, chiral quark Q, charged under PQ; charge assignments determine E/N
- Multiple $Qs: E/N = (\sum_i E_i) / (\sum_i N_i)$

Let's start with KSVZ models:

- KSVZ models introduce one new heavy, chiral quark Q, charged under PQ; charge assignments determine E/N
- Multiple $Qs: E/N = (\sum_i E_i) / (\sum_i N_i)$
- Adding too many Qs will lead to LP below m_{Pl}; gives a *finite* number of models^{2107.12378}
- Creating a (finite) catalogue = combinatorial exercise with selection criteria^{1610.07593, 1705.05370}
 - N.B. N = 0 possible and the axion does not solve the strong CP problem! New selection criterion: N ≠ 0^{2107.12378}

Define distribution of "all" KSVZ models (here: equally probable preferred reps)^{2107.12378} \Rightarrow theory prior on $|g_{a\gamma\gamma}| \propto |E/N - 1.92(4)|$

QCD model band

- Also: DFSZ catalogue available!^{2302.04667} Both our^{Zenodo} and their^{Zenodo} catalogues can be found online
- Discrete E/N distribution + uncertainties from 1.92(4) term

QCD model band

- Also: DFSZ catalogue available!^{2302.04667} Both our^{Zenodo} and their^{Zenodo} catalogues can be found online
- Discrete E/N distribution + uncertainties from 1.92(4) term
- Catalogues can be interpreted as "theory priors" on E/N, or simply as a database to identify UV models (wait for slide 27)

Example for "boxing in" the axion

Select $N_{\text{DW}} = 1$ models from KSVZ catalogue (avoids "DW problem" in post-inflationary PQ breaking).

Example for "boxing in" the axion

Select $N_{\text{DW}} = 1$ models from KSVZ catalogue (avoids "DW problem" in post-inflationary PQ breaking). For more reliable axion top. defect and thermal production computations: define and probe the m_a - $g_{a\gamma\gamma}$ regions

Aside #2: ALP Constraints from SN1987A

- Heavy ALPs, produced in the SN, can decay into photons, SMM satellite would have detected gamma-rays
- We make analytical progress for computations with arbitrary decay lengths; fast code^{2212.09764}

Aside #2: ALP Constraints from SN1987A

- Heavy ALPs, produced in the SN, can decay into photons, SMM satellite would have detected gamma-rays
- We make analytical progress for computations with arbitrary decay lengths; fast code^{2212.09764}
- Alternatively: Light ALPs can convert to photons in the Galactic *B*-field

SMM data

- Previously: only integrated data was used; no timing info
- Justified for decays: signal is stretched out, approx. const.

SMM data

- Previously: only integrated data was used; no timing info
- Justified for decays: signal is stretched out, approx. const.
- For decays: $\frac{dN_{\gamma}}{dt} \propto \frac{dN_{a}}{dt}$, time dependence is manifest
Updated exclusion limits for SN1987A

■ ALP decays: only slight improvement due to additional energy bin, but no significant change (signal ≈ constant)^{2212.09764}

Updated exclusion limits for SN1987A

- ALP decays: only slight improvement due to additional energy bin, but no significant change (signal ≈ constant)^{2212.09764}
- ALP conversions: *factor 1.4 stronger limits* → "global fitting mindset" can help to get more out of the data

Helioscopes: detecting solar axions

- $T_{\odot} \sim \text{keV}$: produce (relativistic) axions in solar plasma
- Axions escape the solar interior \approx unimpeded
- ➤ Track the Sun across the sky with B-field + X-ray detector

Axions production in the Sun

Predictions from solar models

Solar axion flux uncertainties

10,000 Monte Carlo sims of low-Z (AGSS09) & high-Z (GS98) solar models^{astro-ph/0511337 + Serenelli update} to estimate uncertainties^{2101.08789}

ABC fluxes

10,000 Monte Carlo sims of low-Z (AGSS09) & high-Z (GS98) solar models^{astro-ph/0511337+ Serenelli update} to estimate uncertainties^{2101.08789}

Systematic shift between low-Z and high-Z models (metallicity problem)

10,000 Monte Carlo sims of low-Z (AGSS09) & high-Z (GS98) solar models^{astro-ph/0511337+ Serenelli update} to estimate uncertainties^{2101.08789}

Statistical fluctuations; similar for low-Z and high-Z models, smaller than systematics

Discovery potential of IAXO

 IAXO = helioscope experiment under construction at DESY, Hamburg^{1401.3233, 2010.12076}

 Can determine m_a and g_{aγγ} for the region of parameter space on the left

Parameter regions where IAXO detects $m_a \& g_{a\gamma\gamma}$ with $> 3\sigma$ significance, given energy resolution $E_0^{1811.09290}$

Discovery potential of IAXO

Parameter regions where IAXO detects $m_a \& g_{a\gamma\gamma}$ with $> 3\sigma$ significance, given energy resolution $E_0^{1811.09290}$

- IAXO = helioscope experiment under construction at DESY, Hamburg^{1401.3233, 2010.12076}
- Can determine m_a and g_{aγγ} for the region of parameter space on the left
- Opportunity to discover realistic QCD axion models!
- Exciting prospect of post-discovery physics

Other use cases: QCD axion models

- May simultaneously distinguish QCD axion and solar models,^{2101.08789} hint for solar metallicity problem solution
- Assume Primakoff flux, 15 KSVZ models (pre-catalogue era)
- Can also determine g_{aee},^{1811.09278} metallicities^{1908.10878}

- Simulated axion image in CAST helioscope^{hep-ex/0702006}
- ≈ spherically symmetric projection thanks to great X-ray optics
- Availability of photon-counting detectors with many pixels

- Simulated axion image in CAST helioscope^{hep-ex/0702006}
- ≈ spherically symmetric projection thanks to great X-ray optics
- Availability of photon-counting detectors with many pixels
- Estimate photon counts in rings about the centre of the signal region to obtain radial information

- Expected idealised signal in IAXO (actually 128 × 128 pixels, 20 radial, 4 spectral bins)
- Many pixels: photon counts/pixel ≈ equally distributed, integrate flux over radial bins

- Expected idealised signal in IAXO (actually 128 × 128 pixels, 20 radial, 4 spectral bins)
- Many pixels: photon counts/pixel ≈ equally distributed, integrate flux over radial bins
- Generate 1000 pseudodata sets for IAXO, "invert" solar axion image, fit axion and solar model parameters

The (simplified) Primakoff production rate

$$\Gamma^{\mathsf{P}}(E_{\mathsf{a}}) = \frac{g_{\mathsf{a}\gamma\gamma}^2 \,\kappa_{\mathsf{s}}^2 \,T}{32\pi} \left[\left(1 + \frac{\kappa_{\mathsf{s}}^2}{4E_{\mathsf{a}}^2} \right) \,\log\left(1 + \frac{4E_{\mathsf{a}}^2}{\kappa_{\mathsf{s}}^2} \right) - 1 \right] \frac{2}{\mathrm{e}^{E_{\mathsf{a}}/T} - 1}$$

The (simplified) Primakoff production rate

$$\Gamma^{\mathsf{P}}(E_{a}) = \frac{g_{a\gamma\gamma}^{2} \kappa_{\mathsf{s}}^{2} T}{32\pi} \left[\left(1 + \frac{\kappa_{\mathsf{s}}^{2}}{4E_{a}^{2}} \right) \log \left(1 + \frac{4E_{a}^{2}}{\kappa_{\mathsf{s}}^{2}} \right) - 1 \right] \frac{2}{\mathrm{e}^{E_{a}/T} - 1}$$

- Only depends on T(r), $\kappa_s(r)$ (local) and $g_{a\gamma\gamma}$ (global quantity)
- Ignores *e*[−] degeneracy and other corrections (few %)

The (simplified) Primakoff production rate

$$\Gamma^{\mathsf{P}}(E_{a}) = \frac{g_{a\gamma\gamma}^{2} \kappa_{\mathsf{s}}^{2} T}{32\pi} \left[\left(1 + \frac{\kappa_{\mathsf{s}}^{2}}{4E_{a}^{2}} \right) \log \left(1 + \frac{4E_{a}^{2}}{\kappa_{\mathsf{s}}^{2}} \right) - 1 \right] \frac{2}{\mathsf{e}^{E_{a}/T} - 1}$$

- Only depends on T(r), $\kappa_s(r)$ (local) and $g_{a\gamma\gamma}$ (global quantity)
- Ignores *e*[−] degeneracy and other corrections (few %)
- ➤ Can break parameter degeneracies with spectral information!

$$\bar{n}_{i,j} \propto \int_{\rho_i}^{\rho_{i+1}} \mathrm{d}\rho \, \int_{\rho}^{1} \mathrm{d}r \, \frac{r \, \rho}{\sqrt{r^2 - \rho^2}} \, \underbrace{\left(\int_{\omega_j}^{\omega_{j+1}} \mathrm{d}\omega \, \frac{\omega^2}{2\pi^2} \, \Gamma^{\mathsf{P}}(r, \, \omega) \right)}_{\equiv \bar{\Gamma}_j^{\mathsf{P}}(r)}$$

Piecewise-constant interpolation for $\bar{\Gamma}_i^{\rm P}$

$$\bar{\Gamma}_{j}^{\mathsf{P}}(r) = \sum_{i} \underbrace{\left(\int_{\omega_{j}}^{\omega_{j+1}} d\omega \, \frac{\omega^{2}}{2\pi^{2}} \, \Gamma^{\mathsf{P}}(r_{i}, \, \omega) \right)}_{\gamma_{i,j}} \, \Theta(r - r_{i}) \, \Theta(r_{i+1} - r)$$

Piecewise-constant interpolation for $\overline{\Gamma}_{j}^{P}$ + compute the $\overline{n}_{i,j}$ integral

$$\bar{\Gamma}_{j}^{\mathsf{P}}(r) = \sum_{i} \underbrace{\left(\int_{\omega_{j}}^{\omega_{j+1}} d\omega \ \frac{\omega^{2}}{2\pi^{2}} \Gamma^{\mathsf{P}}(r_{i}, \omega) \right)}_{\gamma_{i,j}} \Theta(r - r_{i}) \Theta(r_{i+1} - r)$$

$$\bar{n}_{i,j} \propto \int_{r_i}^{r_{i+1}} d\rho \,\rho \, \sum_{k=1}^{n_{\rho}} \int_{\rho}^{1} dr \, \frac{r}{\sqrt{r^2 - \rho^2}} \,\gamma_{k,j} \,\Theta(r - r_k) \,\Theta(r_{k+1} - r)$$
$$= \frac{1}{3} \left[\gamma_{i,j} \,\Delta_{i+1;i}^3 + \sum_{k=i+1}^{n_{\rho}} \gamma_{k,j} \left(\Delta_{k+1;i}^3 - \Delta_{k+1;i+1}^3 + \Delta_{k;i+1}^3 - \Delta_{k;i}^3 \right) \right]$$

with $\Delta^3_{\ell;m} \equiv (r_{\ell}^2 - r_m^2)^{3/2}$

► Can compute $\bar{n}_{i,j}$ analytically!

We write this as a matrix equation $\bar{n}_{i,j} = \sum_{k=1}^{n_{\rho}} \mathcal{M}_{ik} \gamma_{k,j}$ with

$$\mathcal{M}_{ik} \propto \begin{cases} \Delta^3_{i+1;i} & \text{for } i = k, \\ \Delta^3_{k+1;i} - \Delta^3_{k+1;i+1} + \Delta^3_{k;i+1} - \Delta^3_{k;i} & \text{for } k > i, \\ 0 & \text{otherwise.} \end{cases}$$

We write this as a matrix equation $\bar{n}_{i,j} = \sum_{k=1}^{n_p} \mathcal{M}_{ik} \gamma_{k,j}$ with

$$\mathcal{M}_{ik} \propto \begin{cases} \Delta^3_{i+1;i} & \text{for } i = k, \\ \Delta^3_{k+1;i} - \Delta^3_{k+1;i+1} + \Delta^3_{k;i+1} - \Delta^3_{k;i} & \text{for } k > i, \\ 0 & \text{otherwise.} \end{cases}$$

Triangular matrix: set expected = observed counts, invert

$$n_{i,j} = \mathcal{M}_{ii}\gamma_{i,j} + \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik}\gamma_{k,j} \Rightarrow \gamma_{i,j} = \frac{1}{\mathcal{M}_{ii}} \left(n_{i,j} - \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik}\gamma_{k,j} \right)$$

We write this as a matrix equation $\bar{n}_{i,j} = \sum_{k=1}^{n_p} \mathcal{M}_{ik} \gamma_{k,j}$ with

$$\mathcal{M}_{ik} \propto \begin{cases} \Delta^3_{i+1;i} & \text{for } i = k, \\ \Delta^3_{k+1;i} - \Delta^3_{k+1;i+1} + \Delta^3_{k;i+1} - \Delta^3_{k;i} & \text{for } k > i, \\ 0 & \text{otherwise.} \end{cases}$$

Triangular matrix: set expected = observed counts, invert

$$n_{i,j} = \mathcal{M}_{ii}\gamma_{i,j} + \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik}\gamma_{k,j} \Rightarrow \gamma_{i,j} = \frac{1}{\mathcal{M}_{ii}} \left(n_{i,j} - \sum_{k=i+1}^{n_{\rho}} \mathcal{M}_{ik}\gamma_{k,j} \right)$$

→ Can also propagate errors; use when fitting $g_{a\gamma\gamma}$, T_i and κ_i

$$\sigma_{i,j}^2 \equiv \left(\Delta\gamma_{i,j}
ight)^2 = rac{1}{\mathcal{M}_{ii}^2} \left[n_{i,j} + \sum_{k=i+1}^{n_{
ho}} \mathcal{M}_{ik}^2 \, \sigma_{k,j}^2
ight]$$

Reconstruction in practice

- Matrix only invertible if $n_{i,j} \neq 0 \Rightarrow$ uneven bin sizes \bigcirc
- More accurate approx. of T(r) with splines? Ringing ☺

Reconstruction in practice

- Matrix only invertible if $n_{i,j} \neq 0 \Rightarrow$ uneven bin sizes \bigcirc
- More accurate approx. of T(r) with splines? Ringing ☺
- Choose general (shape-preserving) spline interpolation, compute integral again:

$$\bar{\Gamma}_j^{\mathsf{P}}(r) = \sum_i \left[\gamma_{i,j} + \sum_{k=1}^3 c_{k;i,j}(r-r_i)^k \right] \Theta(r-r_i) \Theta(r_{i+1}-r) \,.$$

Reconstruction in practice

- Matrix only invertible if $n_{i,j} \neq 0 \Rightarrow$ uneven bin sizes \bigcirc
- More accurate approx. of T(r) with splines? Ringing ☺
- Choose general (shape-preserving) spline interpolation, compute integral again:

$$\bar{\Gamma}_{j}^{\mathsf{P}}(r) = \sum_{i} \left[\gamma_{i,j} + \sum_{k=1}^{3} c_{k;i,j} (r-r_i)^k \right] \Theta(r-r_i) \Theta(r_{i+1}-r) \,.$$

- Matrix not square, no inversion 🙂
- → Direct fitting needed to infer $g_{a\gamma\gamma}$, T_i and κ_i from the generated pseudodata $n_{i,i}$. Optimise:

$$\Delta \chi^2 \equiv -2 \log L(g_{a\gamma\gamma}, \{\kappa_i, T_i\}) = 2 \sum_j \bar{n}_{i,j} - n_{i,j} \log(\bar{n}_{i,j})$$

Temperature reconstruction

We find^{2306.00077}

- Accurate T(r) reconstruction up to 0.5 R_☉ (0.8 R_☉)
- Expected median statistical errors of 10% (16%)

Temperature reconstruction

We find 2306.00077

- Accurate T(r) reconstruction up to 0.5 R_☉ (0.8 R_☉)
- Expected median statistical errors of 10% (16%)
- Difficulties for κ_s: shallow minima, weaker functional dependence, approximation used for Γ^P

The upcoming IAXO helioscope can...

- ... probe more realistic QCD axion models than CAST
- ... determine mass & couplings^{1811.09278, 1811.09290}, *simultaneously distinguish QCD axion and solar models*^{2101.08789}
- ... measure solar metallicities^{1908.10878, 2101.08789}
- ... solar *B*-field (profiles),^{2005.00078, 2006.12431, 2010.06601}
- ... measure the solar temperature profile^{2306.00077}

- Axion haloscopes = cavity experiments, tuning the resonant frequency until it matches m_a
- The observed axion power spectrum |A(ω)|² depends on speed distribution in lab frame f_L:

$$|\mathcal{A}(\omega)|^2 = 2\pi \frac{
ho_a}{m_a^2} \frac{\mathrm{d}v}{\mathrm{d}\omega} f_{\mathrm{L}}(v)$$

➤ Use axions to study local halo properties^{1701.03118, 1711.10489}

Other post-discovery uses: axion astrometry

Can determine relative halo speed and its dispersion^{1701.03118}

Other post-discovery uses: axion astrometry

Multi-year obs. can study axion minicluster tidal streams^{1701.03118}

- Imagine we find a 5σ signal in a haloscope: is it an axions? Is it a QCD axion? What is g_{aγγ}?
- N.B. we would know m_a but can only fit $\rho_{\text{loc}} g_{a\gamma\gamma}^2$
- Can we break the degeneracy? Follow-up experiments needed, but no detailed strategies exist

- Imagine we find a 5σ signal in a haloscope: is it an axions? Is it a QCD axion? What is g_{aγγ}?
- N.B. we would know m_a but can only fit $\rho_{\text{loc}} g_{a\gamma\gamma}^2$
- Can we break the degeneracy? Follow-up experiments needed, but no detailed strategies exist
- ➤ Use idea for tuning light-shining-though-a-wall experiments with alternating magnet orientations^{1009.4875}

Enter HyperLSW[†] Total addressable parameter space = union of many individual, tuned magnet arrangements; this only works if you know m_a since the resonance is narrow!

[†]Working title. Ongoing project w/ J. Jaeckel & G. Lucente

Summary

- Axions can solve the strong CP problem, explain DM
- Vast model landscape: value of m_a? Where to look?
- DFSZ/KSVZ axion catalogues available now!
- Next-gen helioscopes can discover realistic QCD axion models, determine their mass & couplings
- Solar Primakoff flux predicted at %-level: axions = messengers for solar physics (and beyond)
- Example: accurate, model-independent(!) reconstruction of solar temperature profile T(r) with axions
- Growing range of open-source software tools for axions:
 GAMBIT O, SolarAxionFlux O, snax O, ...
Bonus Slides

KSVZ models with one new quark

Repr.	Operator	E/N	N _{DW}
$(3, 1, -\frac{1}{3})$	$\overline{Q}_L d_R$	2/3	1
$(3, 1, +\frac{2}{3})$	$\overline{Q}_L u_R$	8/3	1
$(3, 2, +\frac{1}{6})$	$\overline{Q}_R q_L$	5/3	2
$(3, 2, -\frac{5}{6})$	$\overline{Q}_L d_R H^{\dagger}$	17/3	2
$(3, 2, +\frac{7}{6})$	$\overline{Q}_L u_R H$	29/3	2
$(3, 3, -\frac{1}{3})$	$\overline{Q}_R q_L H^{\dagger}$	14/3	3
$(3, 3, +\frac{2}{3})$	$\overline{Q}_R q_L H$	20/3	3
$(3, 3, -\frac{4}{3})$	$\overline{Q}_L d_R H^{\dagger 2}$	44/3	3
$(\bar{6}, 1, -\frac{1}{3})$	$\overline{Q}_L \sigma d_R \cdot G$	4/15	5
$(\bar{6}, 1, +\frac{2}{3})$	$\overline{Q}_L \sigma u_R \cdot G$	16/15	5
$(\bar{6}, 2, +\frac{1}{6})$	$\overline{Q}_R \sigma q_L \cdot G$	2/3	10
(8, 1, -1)	$\overline{Q}_L \sigma e_R \cdot G$	8/3	6
$(8, 2, -\frac{1}{2})$	$\overline{Q}_R \sigma \ell_L \cdot G$	4/3	12
$(15, 1, -\frac{1}{3})$	$\overline{Q}_L \sigma d_R \cdot G$	1/6	20
$(15, 1, +\frac{2}{3})$	$\overline{Q}_L \sigma u_R \cdot G$	2/3	20

- Define selection criteria for phenomenologically preferred models^{1610.07593}
- Constraints from lifetimes, DM relic density, Landau poles, ...
- 15 preferred KSVZ-type models with one new exotic quark

Properties of string theory ALPs

- String theory: many axion-like particles (ALPs) exist^{Witten '84,...}
- How to compute their properties? One approach is to generate random mass matrices etc.^{1706.03236, 1909.05257, 2311.13658}
- Recently: explicitly computed mass spectra; can exclude some string theory solutions with BH superradiance?^{2103.06812}

Properties of string theory ALPs

- Even more recently: compute ALP-photon couplings $g_{a\gamma\gamma}$, so we can do more phenomenology!^{2309.13145}
- ► Q: how do deal with the complexity of multi-ALP theories?

Multi-ALP systems from string theory

Considering 100s of ALPs (from string theory) is tricky:

- Mass oscillations over longer distances even without explicit ALP-ALP interactions^{2107.12813}
- \mathcal{H} for ALP-photon system \approx sparse, but grows as $\propto N_{ALP}^2$!
- ➤ Numerical approach needed!

We can make our life easier:

- Can sum up (effectively) massless states and ignore "heavy" states^{1909.05257, 2107.12813}
- Relevant length and energy scales will depend on the ALP search^{2311.13658}
- ▶ Still need a code to solve a system of $\mathcal{O}(10)$ ALPs

Mixaph (WIP)

Enter mixaph! Upcoming software code to compute predictions of multi-ALP systems; esp. relevant for astrophysical constraints

ALP spectrum from SN1987A

- Use the ALP spectrum computed in previous work^{1410.3747}
- Rescale cross section to approximate massive case^{1702.02964}
- Ignore photon coalescence^{2008.04918, 2107.12393}

Solar metallicity problem solved?

A&A 661, A140 (2022) https://doi.org/10.1051/0004-6361/202142971 © E. Magg et al. 2022

Observational constraints on the origin of the elements

IV. Standard composition of the Sun

Ekaterina Magg¹, Maria Bergemann^{1,5}, Aldo Serenelli^{2,3,1}, Manuel Bautista⁴, Bertrand Plez⁷, Ulrike Heiter⁶, Jeffrey M. Gerber¹, Hans-Günter Ludwig⁸, Sarbani Basu⁹, Jason W. Ferguson¹⁰, Helena Carvajal Gallego¹¹, Sébastien Gamrath¹¹, Patrick Palmeri¹¹, and Pascal Quinet^{11,12}

- New composition: MB22^{2203.02255} (models available now^{Zenodo})
- Claims to reproduce sound velocity profile c(r) with both photospheric and meteoritic abundances? (However: potential issues?^{2308.13368})
- Benefits of our open-source code: re-compute all fluxes for models based on new compositions once available

Primakoff flux on the solar disc

- Primakoff process dominant for KSVZ
- = 50% (99%) of P flux contained within 0.15 R_{\odot} (0.5 $R_{\odot})$
- Few % stat. and sys. errors

Can we reconstruct solar T(r) with ν s?

Solar ν image with more than 10^5 events!

Sadly: angular res. \sim 40° vs the Sun's apparent size of \sim 0.5°, $e^$ recoil and ν path not aligned

➤ Helioscope X-ray optics offer superior spatial resolution

Different reconstruction techniques for T(r)

Axions as solar magnetometers

- Axions are produced in macroscopic solar *B* fields through plasmon interactions^{2005.00078, 2006.10415, 2010.06601}
- Mostly resonant phenomenon: relates $r \leftrightarrow \omega_{\mathsf{pl}} \leftrightarrow E_a$
- → Can map $B(r)^{2006.10415}$ impossible w/o axions!?