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Ringel–Youngs ’68: M a closed surface

chr(M) =

⌊
1

2
(7 +

√
49− 24χ(M))

⌋
unless M is the Klein bottle, then chr(M) = 6 (and not 7).
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Counterexamples to Colin-de-Verdière’s conjecture: m1(X10) = 16 > 13 and m1(X17) = 21 > 16

Remarks:
- If M closed orientable of genus g, m1(M) ≤ 2g + 3 (Sévennec ’02)
- If M closed orientable hyperbolic of genus g ≫ 0, m1(M) ≤ 2g − 1 (Fortier Bourque–P. ’23)
- If sys > ε and pinched negative curvature: sublinear upper bound (Letrouit–Machado ’23)
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Hyperbolic surfaces

(a) The Bolza surface
(b) The Klein quartic

Question: Let g ≥ 2: what are the maxima of systole(X), kiss(X), λ1(X) and m1(X) for X ∈ Mg ?

Lots of previous work: Huber ’74, Cheng ’75, Huber ’76, Buser ’77, Huber ’80, Yang–Yau ’80, Jenni ’84, Burger Colbois
’85, Brooks ’88, Burger–Buser–Dodziuk ’88, Colbois–Colin-de-Verdière ’88, Burger ’90, Schmutz ’93, Schmutz ’94, Buser–
Sarnak ’94, Bavard ’96, Bavard ’97, Schmutz-Schaller ’97, Adams ’98, Hamendstädt ’01, Hamenstädt–Koch ’02, Kim–Sarnak
’03, Casamayou-Boucau ’05, Katz–Schaps–Vishne ’07, Otal ’08, Gendulphe ’09, Otal–Rosas ’09, Parlier ’13, Strohmaier–
Uski ’13, Fanoni–Parlier ’15, Gendulphe ’15, Cook ’18, Petri–Walker ’18, Petri ’18, Hide–Magee ’21, Jammes ’21, Bonifa-
cio ’21, Kravchuk–Mazac–Pal ’21, Wu–Xue ’21, Lipnowski–Wright ’21, Fortier Bourque–Rafi ’22, Magee–Naud–Puder ’22,
Anantharaman–Monk ’23, and many more.
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Known maximizers

Systole Kissing number λ1 m1

genus 2 Bolza surface Bolza surface Conjecture: Conjecture:
[Jenni ‘84] 24, [Schmutz ’94] Bolza surface Bolza surface

genus 3 Conjecture: Conjecture: Conjecture: Klein quartic
Picard curve Picard curve Klein quartic [Fortier Bourque

–P. ‘21]

genus ≤ 10 Local maxizers
[Schmutz ’99]
[Hamenstädt ‘01]

g → ∞ ≫ gag local max.
for some a > 0
[Fortier Bourque
–Rafi ’22]
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New bounds (Fortier Bourque – P. ‘23):
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Large genus asymptotics: For g ≫ 0:

systole(X) < 2 log(g) + 2.409,

kiss(X) <
4.873 · g2

log(g) + 1.2045
,

λ1(X) <
1

4
+

(
π

log(g) + 0.7436

)2

,

Bounds before: Bavard ’96, Fortier Bourque–P. ’22 (and Parlier ’13), Cheng ’75 and Huber ’76.
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dim. Density Kissing number

1 Trivial Trivial

2 [Thue, Fejes-Tóth] Exercise

3 [Hales] [Newton,Gregory,...,Schütte–van der Waerden]

4 ? [Musin]

8 [Viazovska] [Levenshtĕın,Odlyzko–Sloane]

24 [Cohn–Kumar–Miller–Radchenko–Viazovska] [Levenshtĕın,Odlyzko–Sloane]
196560
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The Selberg trace formula:

Let X be a closed and oriented hyperbolic surface of genus g. Then∑
n≥0

f̂(rn) = (g − 1) ·
∫ +∞

−∞
f̂(r) · r tanh(πr)dr +

∑
γ∈G(X)

ℓ0(γ)

2 sinh(ℓ(γ)/2)
f(ℓ(γ))

where:

• if the eigenvalues of the Laplacian on X are 0 = λ0 < λ1 ≤ λ2 ≤ . . ., then

rn =

 i
√

1
4
− λn if λn ≤ 1

4√
λn − 1

4
if λn > 1

4

• G(X) is the set of closed geodesics on X. Given γ ∈ G(X), ℓ(γ) is the length of γ and ℓ0(γ) is the length of the unique
primitive geodesic γ0 for which there exists a k ∈ N such that γk

0 = γ

• (f, f̂) is an admissible pair of functions: the function f : R → C is even and continuous, its Fourier transform f̂(ξ) =∫
R f(x)e

iξxdx is holomorphic and

f̂(ξ) = O
(
(1 + |ξ|2)−1−ε

)
on

{
ξ ∈ C; |Im(ξ)| < 1

2
+ ε

}
→ C
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Presentations found by Conder.
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Surfaces:
Xg = Λg\H2, g ∈ {10, 17}.

Fact: X10 is a 9-sheeted cover of the Bolza surface and X17 is an 8-sheeted cover of the Klein quartic.
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Representation theory:

The dimensions of the real irreps of G10 = T (2, 3, 8)/Λ10:

1, 1, 2, 3, 3, 4, 4, 4, 8, 8, 16

and the dimensions of the real irreps of G17 = T (2, 3, 7)/Λ17:

1, 6, 6, 6, 7, 7, 7, 8, 14, 21, 21


