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Candidate De Sitter Vacua

Jakob Moritz
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based on arXiv:2406.13751 with Liam McAllister, Richard Nally and Andreas Schachner

and previous works with Mehmet Demirtas, Manki Kim and Andres Rios-Tascon 



upshot of this talk:

First concrete candidates for de Sitter vacua  
as envisioned by Kachru, Kallosh, Linde and Trivedi  (KKLT)

with an important caveat: our candidates come with finite control 
parameters, such as the string coupling, and are potentially vulnerable 

to unknown corrections.
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δρCMB

ρCMB
∼ 10−4

ye ∼ 10−6

vHiggs ∼ 10−16Mpl

ρvac ∼ 10−120M4
pl

θQCD < 10−10

JW Telescope ‘21

The laws of physics in our Universe display shocking hierarchies



Let us go through important length scales in physics, and 
collect hierarchy problems along the way…

1015 × M−1
pl ≳ ℓQuantum Gravity ≳ 1 × M−1

pl

The length scale of quantum gravity could lie near the Planck scale

Mpl ≈ 2.4 × 1018 GeV

We begin with the smallest conceivable scale:



Electroweak scale

The electroweak hierarchy problem:
 1/vHiggs ≈ 1/(250 GeV) ∼ 1016M−1

pl

Why is the weak scale so long?



The Wh

Stodolna et al ‘13

Bohr radius  ℓBohr ∼ 1023 × M−1
pl

ℓBohr =
1

αEMme
∼

1
αEM × ye × vHiggs

  ye ∼ 10−6

Why are Yukawa’s small?

Hydrogen Atom

Bohr ‘13



Apollo 8

ℓEarth ≈ 1042 × M−1
pl

Earth



Voyager 1

ℓSolar system ≈ 1051 × M−1
pl

The Solar System



Paranal Observatory

ℓMilky way ≈ 1055 × M−1
pl

The Milky Way



The observable Universe

ℓCMB ≈ 1061 × M−1
pl

Planck 2018

Size of “observable” universe

 
δρCMB

ρCMB
∼ 10−4

Seed for structure formation

Why are the CMB 
anisotropies so small? 



But towering above all we have

  ρvac ∼ 10−120M4
pl

the cosmological constant problem:

 Why is the vacuum energy so small?

ℓHorizon ≈ 1060 × M−1
pl

or

 Why is our universe so large?



Famously, both the electroweak hierachy problem, as well as the 
cosmological constant problem are fine tuning problems, and are thus 

sensitive to the physics of the deep UV.

It is therefore plausible to me that much can be learned about these 
problems of fundamental physics by trying to reproduce (aspects of) them in 

string theory!

Concretely, this talk is about addressing the cosmological constant problem,

in string theory.

(for example, one might gain insight into the microscopic meaning of the de Sitter entropy?)



Solving the true cosmological constant problem seems impossible) 

Vacuum energy receives divergent 
loop corrections from all particles   fine tuning

μ4
UV−cutoff

ρvacuum
≳ 1056

Fine tuned cancellation spoiled by loop corrections

e.g. with  one would need to compute to  order in loops…α = αQCD ∼ 0.1 ≳ 56



• weakly coupled supersymmetric EFT in string theory 

• isolated supersymmetric vacuum 

• small vev of superpotential  W0 := ⟨ |W |⟩ ≪ 1

Task: Identify

key fact: superpotential can be computed 
(more or less) exactly in string theory!

But a version with unbroken supersymmetry can be solved:

ρvac = − 3 |W0 |2 M4
pl ≪ M4

pl

i.e. Anti-de Sitter (AdS) vacuum with small CC

AdS4

this general idea has been around for 
~20 years, but was believed to be 

exponentially hard to achieve!
Kachru, Kallosh, Linde, Trivedi ‘03



More generally, one can study a supersymmetric version of the cosmological 
constant problem by finding vacua of stringy F-term potentials:

with small superpotential:

but without any fine tuning:

In this way one can hope to even construct 
controlled de Sitter vacua in string theory!



Compact space is called Calabi-Yau threefold*

Rij ( ) = 0

*equipped with other sources of stress-energy

A real Calabi-Yau!
Geoffrey Fatin

Self-consistency at quantum level: string theory has ten dimensions of spacetime

M1,9 ≃ (ℝ1,3, AdS4, or dS4) ×

Weakly coupled string theory solutions  

= 

 compactifications of ten-dimensional 
string theories down to four dimensions 

Therefore:

cf Kaluza ’1921, and Klein ‘1926



Let’s see how this works 
in practice!

Choice of Calabi-Yau threefold (and other sources) 
are defined in combinatorial terms (will see later)

One needs to find ways to choose integer data in the UV 
such that string theory generates a Universe with 

exponential hierarchies in the deep IR
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Roadmap: Constructing minimally supersymmetric EFTs

Type IIB string theory

String coupling gs ≡ 1/Im(τ)

Coordinates on metric space 

• extended supersymmetry, only  

• many exactly massless scalars (moduli)

ℝ1,3

“compactification”
Type IIB on CY threefold X

• highly supersymmetric 

• pair of 3-form field strengths (F3, H3)

W( ⃗z, τ) = ( ⃗f − τ h⃗ ) ⋅ ⃗Π( ⃗z)
Gukov, Vafa, Witten ‘99

Dirac-quantized fluxes 

∫3d
F3 , ∫3d

H3

Type IIB on CY Orientifold X/Z2
• Minimally supersymmetric (like e.g. MSSM) 

• Light scalar fields can become massive 
through superpotential 

• enough structure for  and AdS4 dS4

orientifo
ld projection

def. in
 terms of a reflection 

symmetry of th
e Calabi-Yau



Step 1: How to construct EFTs “projective spaces” (toric varieties) 
constructed combinatorially:

Batyrev ‘94

473,800,776 (reflexive) polytopes in 4d
Kreuzer, Skarke ‘00 Demirtas, McAllister, Rios-Tascon ‘20

triangulate 4d 
lattice polytopes

 Calabi-Yau threefolds≲ 10428

Hypersurfaces in “projective space”

y2 = x3 + f x + g

To define minimally supersymmetric EFTs: reflection-symmetries of Calabi-Yau’s

 construct explicit models in ⇒ 𝒪(ms)

Demirtas, Rios-Tascon, 
McAllister ’22 

Ever growing open source 
library of algorithms to treat 

and analyze Calabi-Yau 
hypersurfaces

e.g. Demirtas, Kim, McAllister, 
JM, Rios-Tascon ‘23

JM ‘23 allows studying previously 
inaccessible regime of 
generic Calabi-Yau’s 



Step 2: How to compute the superpotential

Key task: evaluate superpotential Compute periods  of 
Calabi-Yau threefold

⃗Π( ⃗z)W(z, τ) = ( ⃗f − τh⃗) ⋅ ⃗Π( ⃗z)

Famous result of the 1990s:
Candelas, de la Ossa ‘90

⃗Π( ⃗z) = ⃗Πclassical ( ⃗z) + ⃗Π instanton ( ⃗z)

determined by 
“classical” integers

computation (in principle; simplest examples): Hosono, Klemm, Theisen, Yau ‘94

computation (in practice; general case): Demirtas, Kim, McAllister, JM, Rios-Tascon ‘23

determined by 
“quantum” integers



Step 3: Vacua with small superpotential

integer matrix computed from pair of integer flux vectors ⃗M, ⃗K

One-dimensional solution space 
 ⃗z = ⃗p τ , ⃗p ∈ ℚN

“Perturbatively Flat Vacua” (PFVs) 
Weff = 𝒪(e−Sinstanton)

A restricted ansatz of fluxes 
yields quadratic superpotential:

W(z, τ) =
1
2

(τ ⃗z) ⋅ N ⋅ (τ
⃗z) + 𝒪 (e−Sinstanton)

Vacuum solutions W = dW = 0 Solutions of Diophantine equation 
det N = 0

Because of Dirac 
quantization!

Demirtas, Kim, McAllister, JM ‘19



za
=

p
a τ

Heavy moduli

PFVs  = EFTs of single light modulus   and 
superpotential generated by instantons

τ

Key feature:  

All perturbative 
contributions to  are 
cancelled dynamically.

W

Scale of vacuum 
energy set entirely by 

non-perturbative 
physics!



Stabilizing the flat direction:

Racetrack model (A, B, α, β){ }/Z2 , ⃗M , ⃗KRG-flow:

“Racetrack” 
superpotential

∂ τWeff
= 0

Weff(τ) = Ae2πiα τ − Be2πiβ τ + …

⟨e2πiτ⟩ = ( A
B )

1
β − α exponential hierarchy problem 

reduced to polynomial tuning   
A ≪ B & α ≈ β

exponentially small



A real example:

quantum integers

computed using Demirtas, Kim, McAllister, JM, Rios-Tascon ‘23

Aligned exponents

RG-

⟨W⟩ ≈ 0.53 × ( 2
252 )

29

≈ 6.5 × 10−62

Demirtas, Kim, McAllister, JM, Rios-Tascon ‘21
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1. a Calabi-Yau threefold 
2. a holomorphic O3/O7 orientifold projection   
3. a choice of threeform fluxes yielding a very small flux superpotential: 

4. sufficiently generic non-perturbative corrections to the superpotential. 
5. an F-term vacuum for Kähler moduli. 
6.a warped throat region with redshift of scales of order             ,  

hosting a supersymmetry breaking anti-D3 brane state. Not yet!

We have closely followed a proposal for de Sitter vacua in string theory 
made in 2003 by Kachru, Kallosh, Linde and Trivedi:

Let’s see how the final ingredient can be realized!

I didn’t 
show you

I didn’t 
show you
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Engineering Warped Throats
For an “Uplift” to de Sitter we have to change our setup in some regards.

Giddings, Kachru, Polchinski ‘01
Klebanov, Strassler ‘00

First, instead of stabilizing at large complex structure, we need to stabilize 
them near a conifold singularity in moduli space.

RS 

Anti-brane

IR

UV

distance from conifold locus 
in moduli space 

For a single Anti-D3 brane to raise the vacuum energy to positive 
values, without causing a decompactification instability, we need

Conifold

Therefore we need to stabilize moduli such that both         and          are small!



Engineering Warped Throats (actually doing it)

RS 

Anti-brane

IR

UV

The conifold F-term is solved for

One can compute the superpotential systematically, order by order in      :
Álvarez-García, Blumenhagen, Brinkmann, Schlechter'20
Demirtas, Kim, McAllister, JM ‘20



Meta-stable Anti-D3 brane
In addition to constructing a strongly warped throat, one needs to ensure 

meta-stability of an Anti-D3 brane uplift.

At leading order in  this requires                     ,α′ Kachru, Pearson, Verlinde ‘01

and controlling -corrections to KS requires α′ 

E.g., for the largest D3-charge possible in known Calabi-Yau threefolds, 
and control parameters                                    , typical values for volumes,  
this bound is saturated for                        …

Requiring an uplift to de Sitter then severely limits our computational control:

cf. Bena, Dudas, Graña, Lüst ‘18
Gao, Hebecker, Schreyer, Venken ‘22



Everything, Everywhere, All at Once
 So far, we have understood all components of the KKLT proposal separately.

But, finding fully concrete solutions that feature them all, has 
required sifting through a substantial set of candidates:

• 202,703 polytopes in Kreuzer-Skarke in range

Kwan, Scheinert'22

McAllister, JM, Nally, Schachner ‘24

• 33,371 vacua with                                 and            

• 3,187 favorable polytopes admitting an orientifold with 
• 322 polytopes yielding large D3-charges                       ,  

and hosting enough rigid divisors.
• 416 Calabi-Yau orientifolds with suitable conifold limits  

(i.e., that arise away from O-planes).
• 240,480,253 vacua with conifolds.



In the remaining set of “only” 33,371 vacua one still has to select those in 
which the generically unrelated scales of the warped throat, and the bulk 

superpotential, match:

The regime where weakly curved 
throats are possible

McAllister, JM, Nally, Schachner ‘24

396 candidates:



Even so, 30 good examples make it through 
to the end, and here is one of them:

McAllister, JM, Nally, Schachner ‘24

Including the contribution of 
the anti-D3 brane, the vacuum 
energy is positive:

Full scalar potential

Without including Anti-brane energy



… and the vacuum is free of tachyons:
McAllister, JM, Nally, Schachner ‘24
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At first sight, the perhaps most serious issue with our solutions is that there is no 
parametric control over  corrections, whatsoever! α′ 

For small superpotential, Einstein-frame volumes become large, but 
simultaneously the string coupling becomes small…

Actually computing them was a serious 
undertaking, but we were able to this, 
and consistently incorporate them in 
evaluating the F-term potential.

Negative slopes

Converging worldsheet instanton series

Fortunately, to leading order in the string coupling, all  
corrections to the Kähler potential are inherited from the 
N=2 parent compactification, and are thus computable 
using mirror symmetry:

α′ 

Robles-Llana, Rocek, Saueressig, Theis, Vandoren ‘06
Demirtas, Kim, McAllister, JM, Rios-Tascon ‘21

Becker, Becker, Haack, Louis ‘02



The control parameters in these solutions are the best we could 
do in 2024, but can conceivably be improved.

The perhaps most vulnerable aspect of these constructions is the question of meta-
stability of the warped anti-D3 state. At tree level in  we satisfy all constraints …α′ 

The question of meta-stability of the uplift in the regime                      
remains an important open problem! 

… but recent computations of  corrections to the anti-D3 brane imply 
that our throat radii are not large enough to safely ignore them.

α′ 

Hebecker, Schreyer, Venken ‘22
Schreyer, Venken ‘22
Gao, Hebecker, Schreyer, Venken ‘22
Schreyer ‘24



Similarly, the string coupling is not extremely small, and Einstein-frame cycle volumes 
are not impressively large. Simple models of loop and warping corrections to the 

Kähler potential suggest                            corrections.

Whether odd fluxes are allowed in our Calabi-Yau orientifolds, or if one has to 
adapt the search to find all even fluxes remains to be understood.

Further, while relevant perturbations to the KS-throat are parametrically 
negligible when                                 , one needs to check numerically how it turns 

out in our example(s). This requires knowing the CY-metric…

Finally, in orientifolds of tori, odd integer quantized fluxes lead to exotic O3 
planes, related to the existence of “twisted cycles” ~ Frey, Polchinski ‘02
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This is not the last word on this subject...

Main takeaway: we have constructed the first explicit de Sitter solutions in type IIB 
string theory along the lines anticipated by Kachru, Kallosh, Linde and Trivedi in ’03, by

1. computing superpotentials from fluxes and D3-instantons using toric geometry, and 
enumerative invariants,

2. finding vacua by solving Diophantine equations in flux quanta, and identifying F-term 
solutions in low energy effective theory featuring explicit racetrack superpotential,

4. identifying the F-term minima in Kähler moduli (via following a discretized BPS 
attractor flow in the extended Kähler cone).

3. explicitly constructing warped throat regions suitable for anti-D3 uplift to de Sitter,



... within constraints set by D3-tadpole, one should be able to find better values for 
the control parameters.

Furthermore, one can improve control by better understanding  
the structure of corrections along lines of recent work

Alexandrov, Firat, Kim, Sen, Stefanski ‘22
Gendler, Kim, McAllister, JM, Stillman ‘22
Liu, Minasian, Savelli, Schachner ‘22
Hebecker, Schreyer, Venken ‘22
Schreyer, Venken ‘22
Gao, Hebecker, Schreyer, Venken ‘22
3x Kim ‘23
Cho, Kim ‘23
Schreyer ‘24 …
Kim ‘24



Thank you!



Kähler moduli stabilization
Given non-perturbative contributions to superpotential (of full rank) 
one expects Kähler moduli to be stabilized near

with

It is useful to first find this point, by following a 
BPS attractor flow of sorts, starting from any 
point in Kähler moduli space.

Once one arrives at this point, one typically is 
close enough to the minimum, such that 
straightforward methods such Newton’s method 
can be successfully implemented to find the 
vacuum solution numerically.

Start

Vacuum

Extended Kähler cone



An Anti de Sitter vacuum with even fluxes
Here is an example of a supersymmetric flux vacuum in which all fluxes are even:

A Calabi-Yau hypersurface with Hodge numbers                       and 

leads to a “PFV” with 

For flux choice:

The resulting effective superpotential reads

And leads to a vacuum with After stabilizing Kähler moduli:



Distribution of  conifold fluxes:


