Two portals to GeV sterile neutrinos: dipole vs mixing

with Michele Frigerio (2412.10101)

Enrico Bertuzzo (University of Modena, Italy)

Motivations: mixing portal

ν 's have masses

• The simplest (?) way to generate m_{ν} is to add sterile (RH) neutrinos: (N_i)

• How many? At least 2 (to generate solar and atmospheric mass differences)

minimal model on which we will focus

two possibilities:

- Heavy N's ($M \gg M_{EW}$)

Light N's ($M \lesssim M_{EW}$)

our focus (advantage: can be directly probed)

generates neutrino masses and mixings via seesaw

 $\mathscr{L}_{\nu SM} = \mathscr{L}_{SM} + i N_i^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} N_i - \frac{1}{2} \mu_i N_i N_i - M N_1 N_2 + h \cdot c \,.$

 $(Y_N^l v)^2$ $m_{\nu}\simeq$ -M. $Y_N^i v$ M_i

Current limits

See reviews <u>https://www.hep.ucl.ac.uk/~pbolton/</u> 2203.08039

Current limits

See reviews https://www.hep.ucl.ac.uk/~pbolton/ 2203.08039

 m_N [GeV]

The dipole portal

At dimension 5:

- Weinberg operator $(LH)^2$ (de-correlates m_{ν} from N)
- $H^{\dagger}HNN$: Higgs physics + N mass
- $N\sigma^{\mu\nu}NB_{\mu\nu}$: <u>dipole operator</u> (may be important at low energy)

see Aparici, Kim, Santamaria, Wudka'09

At dimension 5:

- Weinberg operator $(LH)^2$ (de-correlates m_{ν} from N)
- $H^{\dagger}HNN$: Higgs physics + N mass
- $N\sigma^{\mu\nu}NB_{\mu\nu}$: <u>dipole operator</u> (may be important at low energy)

see Aparici, Kim, Santamaria, Wudka'09

$\mathscr{L}_{dipole} = d N_1 \sigma^{\mu\nu} N_2 B_{\mu\nu} = \frac{d}{2} \overrightarrow{N}_a \sigma^{\mu\nu} \epsilon^{ab} \overrightarrow{N}_b B_{\mu\nu} \qquad \overrightarrow{N} = \begin{pmatrix} N_1 \\ N_2 \end{pmatrix}$

how large can the dipole be?

power counting estimate: $\left(d \sim \frac{g' g_{\star}^2}{16\pi^2 m_{\star}} \right)$

Symmetries give us a useful guidance:

$$\mathscr{L}_{kin} = i \overrightarrow{N}^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \overrightarrow{N}$$

 $\mathscr{L}_{dipole} = \frac{d}{2} \overrightarrow{N}_a \sigma^{\mu\nu} \epsilon^{ab} \overrightarrow{N}_b B_{\mu\nu}$

 $\vec{N} \to V_N \vec{N}$ $\vec{N} \to e^{i\alpha_N} \vec{N} \qquad SU(2)_N \times U(1)_N$

Symmetries give us a useful guidance:

 $\mathscr{L}_{mass} = \mathscr{M}_{ii} N_i N_i \qquad \mathscr{M} \sim 3 \text{ of } SU(2)_N$

 $\mathcal{M}_{ii} \in \mathbb{C} \longleftrightarrow SU(2)_N$ completely broken

$\mathcal{M}_{ii} \in \mathbb{R} \longleftrightarrow U(1)'_N \subset SU(2)_N$ preserved

when $U(1)'_N \subset SU(2)_N$ preserved

- can always assign $q(N_1) = 1 = -q(N_2)$
- $N_{1,2}$ combine in a Dirac pair (= 2 degenerate Majoranas)
- can be extended to $q(L) = -1 \Rightarrow U(1)'_N \simeq U(1)_L$

Ψ $m_{\nu} = 0$

when $U(1)'_N \subset SU(2)_N$ broken

- Lepton number broken
- $N_{1,2}$ are two non-degenerate Majorana fermions

How large can the dipole be?

- Dipole can be as large as perturbativity allows
- $M_{1,2}$ small is technically natural (when $M_{1,2} = 0$ we recover $SU(2)_N$)
- $M_2 M_1 \ll M_{1,2}$ also technically natural
 - (when $M_1 = M_2$ we recover $U(1)'_N \simeq U(1)_I$)

$+ m_{\nu} \simeq 0$

$\delta = \frac{M_2 - M_1}{M_2 + M_1}$

useful quantity: relative mass splitting

Phenomenology

$$\mathscr{L}_{dipole} = \frac{d}{2} \overrightarrow{N}_a \sigma^{\mu\nu} \epsilon^{ab} \overrightarrow{N}_b B_{\mu\nu}$$

but $B_{\mu\nu} \supset F_{\mu\nu}$ and the photon is important at low energies

Sketch of the physics

In addition to mixing-mediated charged and neutral currents

all amplitudes suppressed by $\theta \ll 1$, $dM \ll 1$ and/or δ

 \Rightarrow $N_{1,2}$ expected to be LONG LIVED

INTENSITY (LONG-LIVED) FRONTIER

production $M \rightarrow N_i + X$ (LHC, fixed target)

macroscopic distance $\gtrsim \mathcal{O}(100 \,\mathrm{m})$

SHiP (400 GeV)

Future sensitivities

FASER (LHC)

supernova explosion

N_{dipole} > N_{mixing}

10⁻⁸ 10⁻⁷

 $\Gamma_{dipole} > \Gamma_{mixing}$

10⁻⁶

10⁻⁵

10⁻⁴

 $\theta_{1\tau}$

mixing or dipole dominance in production/decays depends crucially on parameters/flavour

 $\theta_{i\tau} = 10^{-3}$

10⁻³

10⁻²

see also Barducci, B, Taoso, Toni '22 Barducci, B, Taoso, Ternes, Toni '24

Sensitivities

- No mixing
- only $N_2 \rightarrow N_1 \gamma$ active
- 95% C.L. curves

turning on mixing?

Sensitivities

- mixing with au
- $N_2 \rightarrow N_1 \gamma, N_i \rightarrow \nu_\tau \gamma$
- 95% C.L. curves
- mixing dominates production

changing δ ?

Sensitivities

- mixing with au
- $N_2 \rightarrow N_1 \gamma, N_i \rightarrow \nu_\tau \gamma$
- 95% C.L. curves
- mixing dominates production

changing flavour?

Sensitivities

Takeaway messages

Takeaway messages

Interplay between dipole & mixing highly non-trivial:

strong correlation between flavour and reach

- Future intensity frontier experiments will probe unconstrained regions of parameter space
- SHiP will mark a jump in sensitivity:

up to 10^3 TeV (10^6 TeV) in weakly (strongly) coupled theories

Takeaway messages

• Bonus: when $\theta_{i\alpha} = 0$, N_1 is a DM candidate

