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Introduction to Bondi gauge



Introduction

* Asymptotic states (scattering amplitudes)

* Conformal compactification: brings the infinite boundary to a
finite distance by a conformal transformation

* Penrose diagram

* Focus on radiation and therefor on future null infinity
-> adapted gauge: Bondi gauge

* Asymptotic boundaries allow to define a notion of energy (or
other observables) for gravity

from I. Neutelings on TikZ.net



BOndi gauge [H. Bondi, M. G. J. van der Burg and A. W. K. Metzner '62; Sachs '61]
Gauge adapted to future null infinity

1. Retarded time u is a null coordinate g"* = 0

A

2. Angular coordinates x”* = (6, ¢) are transverse to the null direction g4 = (

v
ds® = e’ —du? — 2e*’dudr + ;/AB(a’xA — Udu)(dx® — UBdu)
r

e
3. Bondi determinant condition 0, (%) =0and y,z = O(r%)
r

Solving the eom will determine the radial dependence of (V, U%, )



v
ds® = e?’—du* — 2e*Pdu dr + ;/AB(dxA — Udu)(dx® — UBdu)
r

Asymptotically (assuming fy = 0 = Ué‘ = 0,4 p),

Yap = 2 gap + 1 Cyup+ 0(1) C,p is the shear, M the mass, R the Ricci of g,

1
f=——=CyC" + O(r)
I

R
V=—E+2M+O(1)



BMS & Asymtotic symmetries

* Asymptotic symmetries preserved the choice of gauge and boundary conditions

* The generator associated to the asymptotic symmetries are charges, which carries physical
iInformation such as the mass of spacetimes, ...

* They satisfy an algebra which is a entry of the holographic dictionary -> use in bottom-up
approach of holography



BMS & Asymptotic symmetries

{gBC—BOndi + gngC—BOndi} — {gBC—BOndi}
Ex: g, = 0= Zg, =0=¢" = f(u, x*)
Imposing the rest of gauge conditions and boundary conditions we obtain

—— f(u,xA) = T(xM) + u W)

EN = — r Wx?) g(UAaA f—=DEY = — r W) ;Af

|

EA = YA — =0+ ...
r

1= supertranslation

Y4 = superrotations

W = Weyl rescaling



BMS algebra

E(T(x™), W(x™), YA (x™h))

Ty, =Ty W, + Y01, — (1 & 2)
[f(Tla W19 Y114)9 5(T29 Wza Y?)] — 5(T129 W129 Y1142) Wlth W12 — Y?aAWQ T (1 < 2)

Yi, = 170pYy — (1 & 2)
( Diff(S?)(Y?) semi-direct sum R(W) ) semi-direct sum R(7T) = BMSW

[Barnich-Troessaert ’10; Freidel, Oliveri Pranzetti, Speziale '21]

|
If 55\/5 = 0, then W = =D, Y* and we talked of the generalized BMS group
2 [Campiglia-Laddha 15, Compere, Fiorucci,Ruzziconi ’18]

|f 5§qAB = (0and Y4 globally well-definied, you land on global BMS group
[H. Bpndi, M. G. J. van der Burg and A. W. K. Metzner '62; Sachs '61]



Peeling property



Newman-Penrose formalism

. Introduction of a null tetrad £# = 0,,n* = 0, — —ad,. + O(r™ 1),

A
| |
mt = —m(;‘aA + O™, mt = —IfﬁéaA + O(r~?)
r r
o= — lC miamP
» 0= 75 as Mo

» contraction of the Weyl tensor with the null tetrad = Weyl scalars = 5 complex numbers ¥,
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Weyl Scalars

P, W carries information about the radiation (¥}, « 9.0, ¥3  m{'0,0,0)
Re(‘P(Z)) the mass,
‘P(l) the angular momentum

¥, the higher spin charges

1
Peeling property ¥, = — PO + O("°)

7
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BC compatible with the peeling = Asympt. Simple

11
P, = —EagcABmg‘mg + O(r™?)
r

chBchB
Yap=1" C]AB\/l P G B

11
P, = 2DB(()MCAB)mg‘ + O>(r)

00 1 1"2
rGap=rCapt 0 + ) —El, i i )
1 1 4
UA — 5 2DBCAB + —3NA+ @(I”_4) 1 3 3 BC 3 BC A s
r r Y =—\{—-—N,+—D,Cr-C°* +—C,,D-C mi + O(r~
P | 1r4<2A32ABC 4 ABYC )o (r™)
V=-— E + 2M+0O(r~—) i 3
¥y = = (3Bl CocC™ ) mimf + 617
¥ =—P+ O6("°)



Absence of the peeling




Logarithmically Asympt. Flat

¥, = —‘PO + O(r=?)

1
%AB%AB ¥ = _2‘11O T @(r—3)
}’AB=”2Q'AB I 4 RAPY '
2r? 1
NS n(r>m ¥y =5+ 00T
F%AB — I”CAB DAB Z 2 1
o ¥y = (¥ DD, ) + 00
A AB | A -3 d
UA = 2’”2DBC | r3(N +...Inr)+ o(r ) 1 W n
o Yo = —D,pgmymy,
V — I 2M + 0(7’0) :
2 . 1 ((\IIO 4 ) + (3E1’1 -+ )ln r + 3E1’2 In 7’2)
0,Dpp =0 S Vo A
+o(r=>)

[Winicour ’85; P. T. Chrusciel, M. A. H. MacCallum and D. B. Singleton '93; Kroon ’98]
[L. Kehrberger and H. Masaood ‘24] 15



Why?

General relativity

* There has been a debate on Peeling or not peeling” Friedrich 17]

* Blanchet’s theorem: past stationarity & no incoming radiation -> No violation of
peeling at future null infinity

« BUT typical radiative fields sourced by matter stress tensor yields violation of peeling
(no past stationarity).

For instance: hyperbolic encounters [Damour ‘86, Christodoulou '02, Kehrberger '21->24, ..]

What is the impact of violation of peeling on the symmetries, the charges, fluxes?

16



Why?

Soft theorems

* In a scattering process, the gravitational field has remarquable universal properties at the late/early time.

* Displacement memory effect: gravitational field is dominated to by a static mode which is fixed only by
incoming and out coming momenta of the scattered particles at late/early time

This is the same thing as Weinberg soft theorem.
1
Cyp = Cio(x™) + ;CjB(xA) +o(u™")

« Saha, Sahoo, Sen shows that the shear CjB is also universal (incoming and out coming momenta of the
scattered particles).

This is the same thing as logarithmic soft theorem

17



Why?
Christodoulou’s heuristic argument

Using the eom, Christodoulou showed that it will
precisely yield a violation of peeling at the order ¥,

C
oco=—+...,
U

V) =—00,0,¥,=— 00

0*C
Il Uu==1—r

0°C "
0, ¥) = 0¥, - 269, = 0997 =- - J P? = —0°C(lnu — Inr)

0, ¥)= 0¥, - ¥, = V¥, =-

1

0 :=m}o,
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Infrared triangle

 Shown for leading infrared triangle (supertranslations,
Asymptotic Symm. displacement memory, leading soft theorem)

[A. Strominger, ‘14; T. He, V. Lysov, P. Mitra and A.
Strominger, ‘15; A. Strominger and A. Zhiboedov, ’10]

* Use of charges/fluxes

1

. Log soft theorems and C,5 ~ — is shown to be related to

Soft theorems Memory eftects superrotation Ward identity

[S. Agrawal, L. Donnay, K. Nguyen and R. Ruzziconi ’23,
S. Choi, A. Laddha and A. Puhm ’24]
[L. Baulieu and T. Wetzstein ’24]

BUT based on BC & symm. preserving the peeling ...

What is the impact of viglation of peeling on symmetries, charges, fluxes?



Symmetries in Log. Asympt. Flat

« BMSW is still a symmetries (the derivation we used didn’t depend on the expansion of ¥, )

* Charges (after renormalization), there is a contribution to supertranslation charges for generalized
BMS

_ 1
K = R 4 25 (\/5 YADBDAB> - =DcYC\/3q" 6D,

* Flux happens to be insensitive to the peeling!
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Equations of motion



Evolution equations
With peeling

* Flux balance law for the mass and the angular momentum
0y — ,.,A 0 0
0,Re(¥9) = m{10,¥? — oV

-> Related to leading and sub soft theorem

. Tower of flux balance laws for EX}? (Vo)

» Related to the tower of (sub)*#- soft theorems and w__ , algebra (in a sector)

* But not to local spacetimes symmetries (-> twistors)
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Evolution equations
Log. Asympt. Flat

« Dressed eom for mass, angular momentum and EX}?

* Conserved logarithmic branches

0,Dyp=0,  OE =0

« NEW flux balance law at sufficiently low order

3 | 3
32 CD 1,2 1,2 CD 1,2 CD

Sub log infrared triangle? (Wip)

23



Summary



Summary

 Some physical phenomena require a violation of peeling (Log. Asympt. Flat BC)

 Symmetries of scattering also require a violation of peeling (Log. Asympt. Flat BC)

 BMS still preserve Log. Asympt. Flat BC
* Superrotation charge is modified (for generalized BMS)

* Fluxes are NOT modified -> the connection to (leading) logarithmic soft theorem can be made
assuming peeling

 New tower of conserved quantities and flux balances law in the log-sector -> Connection to sub
-log soft theorems?
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