The Conformal Generators on the Fuzzy Sphere

Giulia Fardelli

Rencontres théoriciennes Paris, November $7^{\rm th}$ 2024

Based on 2409.02998 with Liam Fitzpatrick and Ami Katz

Table of Contents

- Introduction and Motivations
- 2 Lightning Fuzzy Sphere Review
- Conformal generators
- 4 How to select primaries and construct conformal multiplets

Conclusions

Table of Contents

Introduction and Motivations

- 2 Lightning Fuzzy Sphere Review
- 3 Conformal generators
- 4 How to select primaries and construct conformal multiplets

5 Conclusions

Long-term Goal: use Fuzzy Sphere to compute High Energy states.

Long-term Goal: use Fuzzy Sphere to compute High Energy states.

Fuzzy Sphere regularization: A recent proposal [Zhu, Han, Huffman, Hofmann,He (22)] to compute CFT data $(\{\Delta_i, f_{ijk}\})$ on $\mathbb{R} \times S^2$. Starting with a system of many interacting non-relativistic fermions in the Lowest Landau Level (LLL), one can extract many data of the 3*d* Ising CFT.

Long-term Goal: use Fuzzy Sphere to compute High Energy states.

Fuzzy Sphere regularization: A recent proposal [Zhu, Han, Huffman, Hofmann,He (22)] to compute CFT data $(\{\Delta_i, f_{ijk}\})$ on $\mathbb{R} \times S^2$. Starting with a system of many interacting non-relativistic fermions in the Lowest Landau Level (LLL), one can extract many data of the 3*d* Ising CFT.

Why? We are interested in High energy states

- Explore explicitly the chaotic behavior
- Study deformations of the CFT using Hamiltonian truncation

$$H = H_{\rm CFT} + \lambda \int d^{d-1} x \, \mathcal{O}$$

• Study large charge states

Long-term Goal: use Fuzzy Sphere to compute High Energy states.

Fuzzy Sphere regularization: A recent proposal [Zhu, Han, Huffman, Hofmann,He (22)] to compute CFT data $(\{\Delta_i, f_{ijk}\})$ on $\mathbb{R} \times S^2$. Starting with a system of many interacting non-relativistic fermions in the Lowest Landau Level (LLL), one can extract many data of the 3*d* Ising CFT.

Why? We are interested in High energy states

- Explore explicitly the chaotic behavior
- Study deformations of the CFT using Hamiltonian truncation

$$H = H_{\rm CFT} + \lambda \int d^{d-1} x \, \mathcal{O}$$

• Study large charge states

Today's Goal: Select "good" CFT states by constructing **conformal generators** on the fuzzy sphere.

Table of Contents

- 3 Conformal generators
- 4 How to select primaries and construct conformal multiplets

5 Conclusions

General setup

General setup

 $A = s \cos \theta d\phi \quad \int dA = 4\pi s$

General setup

Advantage: Preserve perfect rotational invariance

Fuzzy Conformal Generators

Non-relativistic fermions on S^2 in the presence of the magnetic field $|B| = s/R^2$. $H \equiv R^2 \int d\Omega \mathcal{H}$

$$\mathcal{H}_{\text{free}} \sim \psi^{\dagger}(\Omega)(\partial_{\mu} + iA_{\mu})^{2}\psi(\Omega) \xrightarrow{LLL} \psi(\Omega) = \frac{1}{R} \sum_{m=-s}^{s} \Phi_{m}(\Omega)(c_{m,\uparrow}, c_{m,\downarrow})^{T}$$
$$\Phi_{m}(\Omega) = \mathcal{N}_{m}e^{im\phi}\cos^{s+m}\left(\frac{\theta}{2}\right)\sin^{s-m}\left(\frac{\theta}{2}\right) \qquad \text{Monopole harmonics}$$
$$\{\psi^{\dagger}(\Omega), \psi(\Omega')\} = \sum_{m=-s}^{s} \frac{\Phi_{m}^{*}(\Omega)\Phi_{m}(\Omega')}{R^{2}} = \frac{2s+1}{4\pi R^{2}}\cos^{2s}\frac{\delta\theta}{2}, \quad \delta\theta_{\text{UV}} \sim \frac{1}{\sqrt{s}}$$

Non-relativistic fermions on S^2 in the presence of the magnetic field $|B| = s/R^2$. $H \equiv R^2 \int d\Omega \mathcal{H}$

$$\mathcal{H}_{\text{free}} \sim \psi^{\dagger}(\Omega)(\partial_{\mu} + iA_{\mu})^{2}\psi(\Omega) \xrightarrow{\text{LLL}} \psi(\Omega) = \frac{1}{R} \sum_{m=-s}^{s} \Phi_{m}(\Omega)(c_{m,\uparrow}, c_{m,\downarrow})^{T}$$
$$\Phi_{m}(\Omega) = \mathcal{N}_{m}e^{im\phi}\cos^{s+m}\left(\frac{\theta}{2}\right)\sin^{s-m}\left(\frac{\theta}{2}\right) \qquad \text{Monopole harmonics}$$
$$\mathcal{H} = \sum_{n} \left(\lambda_{n}(\psi^{\dagger}\psi)\frac{\nabla_{S_{1}^{2}}^{2n}}{R^{2n}}(\psi^{\dagger}\psi) - \lambda_{n,z}(\psi^{\dagger}\sigma^{z}\psi)\frac{\nabla_{S_{1}^{2}}^{2n}}{R^{2n}}(\psi^{\dagger}\sigma^{z}\psi)\right) - h\psi^{\dagger}\sigma^{x}\psi$$

Non-relativistic fermions on S^2 in the presence of the magnetic field $|B| = s/R^2$. $H \equiv R^2 \int d\Omega \mathcal{H}$

$$\mathcal{H}_{\text{free}} \sim \psi^{\dagger}(\Omega)(\partial_{\mu} + iA_{\mu})^{2}\psi(\Omega) \xrightarrow{\text{LLL}} \psi(\Omega) = \frac{1}{R} \sum_{m=-s}^{s} \Phi_{m}(\Omega)(c_{m,\uparrow}, c_{m,\downarrow})^{T}$$
$$\Phi_{m}(\Omega) = \mathcal{N}_{m}e^{im\phi}\cos^{s+m}\left(\frac{\theta}{2}\right)\sin^{s-m}\left(\frac{\theta}{2}\right) \qquad \text{Monopole harmonics}$$
$$\mathcal{H} = \sum_{n=0,1} \left(\lambda_{n}(\psi^{\dagger}\psi)\frac{\nabla_{s_{1}^{2}}^{2n}}{R^{2n}}(\psi^{\dagger}\psi) - \lambda_{n}(\psi^{\dagger}\sigma^{z}\psi)\frac{\nabla_{s_{1}^{2}}^{2n}}{R^{2n}}(\psi^{\dagger}\sigma^{z}\psi)\right) - h\psi^{\dagger}\sigma^{x}\psi$$

Non-relativistic fermions on S^2 in the presence of the magnetic field $|B| = s/R^2$. $H \equiv R^2 \int d\Omega \mathcal{H}$

$$\mathcal{H}_{\text{free}} \sim \psi^{\dagger}(\Omega)(\partial_{\mu} + iA_{\mu})^{2}\psi(\Omega) \xrightarrow{\text{LLL}} \psi(\Omega) = \frac{1}{R} \sum_{m=-s}^{s} \Phi_{m}(\Omega)(c_{m,\uparrow}, c_{m,\downarrow})^{T}$$
$$\Phi_{m}(\Omega) = \mathcal{N}_{m}e^{im\phi}\cos^{s+m}\left(\frac{\theta}{2}\right)\sin^{s-m}\left(\frac{\theta}{2}\right) \qquad \text{Monopole harmonics}$$
$$\mathcal{H} = \sum_{n=0,1} \left(\lambda_{n}(\psi^{\dagger}\psi)\frac{\nabla_{S_{1}^{2}}^{2n}}{R^{2n}}(\psi^{\dagger}\psi) - \lambda_{n}(\psi^{\dagger}\sigma^{z}\psi)\frac{\nabla_{S_{1}^{2}}^{2n}}{R^{2n}}(\psi^{\dagger}\sigma^{z}\psi)\right) - h\psi^{\dagger}\sigma^{x}\psi$$

Ising phase transition

$$h \gg 0$$
, $|\psi_x\rangle = \prod_m |+\hat{x}\rangle_m$

$$h = 0, \quad |\psi_{\pm}\rangle = \prod_{m} |\pm \hat{z}\rangle_{m}$$

Ising symmetries

- SO(3) invariance
- \mathbb{Z}_2 symmetry: $\uparrow \leftrightarrow \downarrow$
- Parity: particle \leftrightarrow hole

Table of Contents

- Introduction and Motivations
- 2 Lightning Fuzzy Sphere Review

Conformal generators

4 How to select primaries and construct conformal multiplets

5 Conclusions

Generators from $T^{\mu\nu}$

In a CFT, Noether currents for the conformal symmetries $x^{\mu} \rightarrow x^{\mu} + \epsilon^{\mu}(x)$ can be written in terms of the energy-momentum tensor

$$j^{\mu}_{\epsilon}(x) = \epsilon^{\nu}(x) T^{\mu}_{\ \nu}(x) \quad \Rightarrow \quad Q_{\epsilon} = \int d^{d-1}x \sqrt{g} j^{0}_{\epsilon}(x)$$

In $\mathbb{R} imes S^2$ (A=1,2,3 are embedding coordinates for $S^2 \subset \mathbb{R}^3$)

$$D = \int d^2 \Omega T^0_0 \qquad \qquad J^B \propto \int d^2 \Omega \epsilon^{ABC} \hat{x}^C T^{0A}$$
$$P^A = \int d^2 \Omega (\hat{x}^A T^0_0 + iT^{0A}) \qquad \qquad \mathcal{K}^A = \int d^2 \Omega (\hat{x}^A T^0_0 - iT^{0A})$$

P+K depends **only** on T_0^0 !

Generators from $T^{\mu u}$

In a CFT, Noether currents for the conformal symmetries $x^{\mu} \rightarrow x^{\mu} + \epsilon^{\mu}(x)$ can be written in terms of the energy-momentum tensor

$$j^{\mu}_{\epsilon}(x) = \epsilon^{\nu}(x) T^{\mu}_{\ \nu}(x) \quad \Rightarrow \quad Q_{\epsilon} = \int d^{d-1}x \sqrt{g} j^{0}_{\epsilon}(x)$$

In $\mathbb{R} imes S^2$ (A=1,2,3 are embedding coordinates for $S^2 \subset \mathbb{R}^3$)

$$D = \int d^2 \Omega T^0_0 \qquad \qquad J^B \propto \int d^2 \Omega \epsilon^{ABC} \hat{x}^C T^{0A}$$
$$P^A = \int d^2 \Omega (\hat{x}^A T^0_0 + iT^{0A}) \qquad \qquad K^A = \int d^2 \Omega (\hat{x}^A T^0_0 - iT^{0A})$$

P+K depends **only** on T_0^0 !

Unfortunately the fuzzy sphere does not give us access to the CFT $T^{\mu}{}_{\nu}$ (conformal only in the IR) and the emergent stress tensor in the CFT does not correspond to a simple local operator in the microscopic description.

Giulia Fardelli (Boston U.)

Fuzzy Conformal Generators

Generators from \mathcal{H} : Dilatation

Construct T^0_0 from the Hamiltonian density \mathcal{H} and tune to criticality

$$H = \gamma H_{\rm CFT} + \sum_{\mathcal{O} \text{ primary}} g_{\mathcal{O}} \int d^2 \Omega \, \mathcal{O}(\Omega) \quad g_{\mathcal{O}} \sim \left(\frac{1}{\sqrt{s}}\right)^{\Delta_{\mathcal{O}} - 3}$$

Remove contributions from $\epsilon(x)$ ($\Delta \sim 1.4$) and $\epsilon'(x)$ ($\Delta \sim 3.8$) tuning λ_n , *h* using Conformal Perturbation Theory [Lao, Rychkov (23)].

$$H |\mathcal{O}_{i}\rangle = E_{i} |\mathcal{O}_{i}\rangle \qquad E_{i} = \gamma \Delta_{i} + g_{\mathcal{O}} \delta E_{i}^{(\mathcal{O})}$$
$$\delta E_{i}^{(\mathcal{O})} = \frac{\langle \mathcal{O}_{i} | \int d^{2} \Omega \mathcal{O} | \mathcal{O}_{i} \rangle}{\langle \mathcal{O}_{i} | \mathcal{O}_{i} \rangle} = \begin{cases} f_{\mathcal{O}_{i} \mathcal{O} \mathcal{O}_{i}} & \text{primary} \\ f_{\mathcal{O}_{i} \mathcal{O} \mathcal{O}_{i}} \left(1 + \frac{\Delta_{\mathcal{O}}(\Delta_{\mathcal{O}} - 3)}{6\Delta_{\mathcal{O}_{i}}}\right) & \partial \mathcal{O}_{i} \end{cases}$$

$$\min_{\gamma, g_{\epsilon}, g_{\epsilon'}} \sum_{\mathcal{O}_i} \left(E_i - \gamma \Delta_i - \delta E_i^{(\epsilon)} - \delta E_i^{(\epsilon')} \right)^2$$

Generators from \mathcal{H} : Dilatation

Haldane pseudopentials V_0 and V_1 are related to the couplings λ_0 and λ_1 Δ_i and $f_{\mathcal{O}_i \mathcal{O} \mathcal{O}_i}$ fixed by numerical bootstrap results

Fuzzy Conformal Generators

$$\Lambda^{A} = P^{A} + K^{A} = 2 \int d^{2}\Omega \hat{x}^{A} T^{0}_{0}$$

- T^{0A} naively constructed from the microscopic charge density for rotations is not useful to construct translations and SCT \Rightarrow build Λ^A
- We can still obtain $P^A K^A = [D, P^A + K^A]$. In practice, we define P and K by selecting matrix elements such that $\Delta \rightarrow \Delta \pm 1$

Giulia Fardelli (Boston U.)

$$\Lambda^{A} = P^{A} + K^{A} = 2 \int d^{2}\Omega \hat{x}^{A} T^{0}_{0}$$

- T^{0A} naively constructed from the microscopic charge density for rotations is not useful to construct translations and SCT \Rightarrow build Λ^A
- We can still obtain $P^A K^A = [D, P^A + K^A]$. In practice, we define P and K by selecting matrix elements such that $\Delta \rightarrow \Delta \pm 1$
- $\tilde{\Lambda}^A = \int d^2 \Omega \hat{x}^A \mathcal{H}$ with \mathcal{H} tuned as before, but still not good enough because of contributions from descendant operators

$$\begin{split} \tilde{\Lambda}_{A} &\supset 2 \int x_{A} \sum_{n=0}^{\infty} g_{\nabla^{2n} \mathcal{O}} \nabla^{2n} \mathcal{O} \\ &= 2 \left[\sum_{n=0}^{\infty} (-2)^{n} g_{\nabla^{2n} \mathcal{O}} \right] \int x_{A} \mathcal{O} \end{split}$$

Idea: tune away descendant operators

$$ilde{\Lambda}_{\mathcal{A}} = \gamma_{\mathrm{eff}} \Lambda_{\mathcal{A}} + \sum_{\mathcal{O} \text{ primary}} g_{\mathcal{O}}^{\mathrm{eff}} \int d^2 \Omega \, x_{\mathcal{A}} \mathcal{O}$$

Keeping the states fixed, we use V_0 and h to tune the generators

 $\langle \operatorname{vac}|\,\tilde{\Lambda}_{z}\,|\partial_{A}\epsilon\rangle = 0 \qquad \langle \operatorname{vac}|\,\tilde{\Lambda}_{z}\,|\partial_{A}\partial^{2}\epsilon\rangle = 0 \quad \langle \epsilon|\,\tilde{\Lambda}_{z}\,|\partial_{A}\epsilon\rangle = \sqrt{2\Delta_{\epsilon}}$

Idea: tune away descendant operators

$$ilde{\Lambda}_{\mathcal{A}} = \gamma_{\mathrm{eff}} \Lambda_{\mathcal{A}} + \sum_{\mathcal{O} \text{ primary}} g_{\mathcal{O}}^{\mathrm{eff}} \int d^2 \Omega \, x_{\mathcal{A}} \mathcal{O}$$

Keeping the states fixed, we use V_0 and h to tune the generators

Giulia Fardelli (Boston U.)

Fuzzy Conformal Generators

Rencontres théoriciennes 13 / 24

Idea: tune away descendant operators

$$ilde{\Lambda}_{\mathcal{A}} = \gamma_{\mathrm{eff}} \Lambda_{\mathcal{A}} + \sum_{\mathcal{O} \text{ primary}} g_{\mathcal{O}}^{\mathrm{eff}} \int d^2 \Omega \, x_{\mathcal{A}} \mathcal{O}$$

Keeping the states fixed, we use V_0 and h to tune the generators

Rencontres théoriciennes 13/24

Giulia Fardelli (Boston U.)

Fuzzy Conformal Generators

Rencontres théoriciennes 14 / 24

Table of Contents

- Introduction and Motivations
- 2 Lightning Fuzzy Sphere Review
- 3 Conformal generators
- 4 How to select primaries and construct conformal multiplets

5 Conclusions

Λ_z matrix elements

As the energy increases spectrum becomes really dense. We observe that *H*-eigenstates are **no longer good** K-eigenstate \Rightarrow Prioritize K!

$$egin{array}{lll} \mathcal{K}_{A} \left| \mathcal{O}
ight
angle pprox 0 & \left|
abla_{A} \mathcal{O}
ight
angle = \mathcal{P}_{A} \left| \mathcal{O}
ight
angle \end{array}$$

New states are linear combinations of previous *H*-eigenstates.

Λ_z matrix elements

As the energy increases spectrum becomes really dense. We observe that *H*-eigenstates are **no longer good** K-eigenstate \Rightarrow Prioritize K!

$$egin{array}{lll} \mathcal{K}_{\mathcal{A}} \left| \mathcal{O}
ight
angle pprox 0 & \left|
abla_{\mathcal{A}} \mathcal{O}
ight
angle = \mathcal{P}_{\mathcal{A}} \left| \mathcal{O}
ight
angle \end{array}$$

New states are linear combinations of previous *H*-eigenstates.

Commutator

To test the generators just constructed we can check how accurately they satisfy the conformal algebra

Giulia Fardelli (Boston U.)

Fuzzy Conformal Generators

Commutator

To test the generators just constructed we can check how accurately they satisfy the conformal algebra

Fuzzy Conformal Generators

Constructing primaries

Giulia Fardelli (Boston U.)

Fuzzy Conformal Generators

Rencontres théoriciennes 18 / 24

Constructing primaries

Conformal Casimir

$$C_2 = D^2 + J^2 - \frac{1}{2} \{K_A, P_A\} = D(D-3) + \ell(\ell+1) - P_A K_A$$

Energy eigenstates

Conformal multiplets w/ K, P

Table of Contents

- Introduction and Motivations
- 2 Lightning Fuzzy Sphere Review
- 3 Conformal generators
- 4 How to select primaries and construct conformal multiplets

5 Conclusions

• We have briefly discussed the fuzzy sphere regularization setup for the 3*d* Ising model. Other examples are known (3*d* SO(5) NL σ M [Zhou et al (23)], conformal defects [Hu et al (23), Cuomo et al (24)], BCFT [Zhou, Zou (24), Dedushenko (24)], 3*d* CFT with global Sp(N) [Zhou, He (24)])

- We have briefly discussed the fuzzy sphere regularization setup for the 3*d* Ising model. Other examples are known (3*d* SO(5) NL σ M [Zhou et al (23)], conformal defects [Hu et al (23), Cuomo et al (24)], BCFT [Zhou, Zou (24), Dedushenko (24)], 3*d* CFT with global Sp(N) [Zhou, He (24)])
- We have described a general Fuzzy Sphere approach to building the conformal generators

- We have briefly discussed the fuzzy sphere regularization setup for the 3*d* Ising model. Other examples are known (3*d* SO(5) NL σ M [Zhou et al (23)], conformal defects [Hu et al (23), Cuomo et al (24)], BCFT [Zhou, Zou (24), Dedushenko (24)], 3*d* CFT with global Sp(N) [Zhou, He (24)])
- We have described a general Fuzzy Sphere approach to building the conformal generators
- Using these generators we have identified primary operators

- We have briefly discussed the fuzzy sphere regularization setup for the 3*d* Ising model. Other examples are known (3*d* SO(5) NL σ M [Zhou et al (23)], conformal defects [Hu et al (23), Cuomo et al (24)], BCFT [Zhou, Zou (24), Dedushenko (24)], 3*d* CFT with global Sp(N) [Zhou, He (24)])
- We have described a general Fuzzy Sphere approach to building the conformal generators
- Using these generators we have identified primary operators
- Introduce new parameters and tune even better
- Go to higher N. Maybe by restricting to a specific spin sector?
- Compute OPE coefficients [Hu, He, Zhu (23)]. Use new OPE data for Hamiltonian truncation (3*d* Ising Field Theory)

Thank you!

Giulia Fardelli (Boston U.)