Statut  Confirmé 
Série  MATHIHES 
Domaines  hepth 
Date  Lundi 22 Mai 2017 
Heure  16:30 
Institut  IHES 
Salle  Amphithéâtre Léon Motchane 
Nom de l'orateur  Danciger 
Prenom de l'orateur  Jeffrey 
Addresse email de l'orateur  
Institution de l'orateur  University of Texas at Austin 
Titre  Convex real projective structures and Anosov representations 
Résumé  We investigate the degree to which the geometry of a compact real projective manifold with boundary is reflected in the associated holonomy representation, a representation of the fundamental group in the projective general linear group PGL(n,R) which in general need not have any nice properties. We show that if the projective manifold is strictly convex, then its holonomy representation is projective Anosov, a condition which generalizes the dynamical properties of convex cocompact representations in rank one (e.g. hyperbolic) geometry. Conversely, a strictly convex projective manifold may be constructed from a projective Anosov representation that preserves a properly convex set in projective space. Applications include new examples of both convex projective manifolds and Anosov representations. Joint work with François Guéritaud and Fanny Kassel. 
Numéro de preprint arXiv  
Commentaires  Séminaire Géométrie et groupes discrets 
Fichiers attachés 
Pour obtenir l' affiche de ce séminaire : [ Postscript  PDF ]

[ English version ] 