Pantheon SEMPARIS Le serveur des séminaires parisiens Paris

Statut Confirmé
Domaines math-ph
Date Jeudi 21 Décembre 2017
Heure 11:00
Institut IPHT
Salle Salle Claude Itzykson, Bât. 774
Nom de l'orateur Gaëtan Borot
Prenom de l'orateur
Addresse email de l'orateur
Institution de l'orateur Max Plank Bonn
Titre Geometric recursion
Résumé I will present a new formalism, which takes as input a functor $E$ from a category of surfaces with their mapping classes as morphisms, to a category of topological vector spaces, together with glueing operations, as well as a small amount of initial data, and produces as output functorial assignments $S \mapsto \Omega_S$ in $E(S)$. This construction is done by summing over all excisions of homotopy class of pair of pants decompositions of $S$, and we call it ``geometric recursion''. The topological recursion of Eynard and Orantin appears as a projection of the geometric recursion when $E(S)$ is chosen to be the space of continuous functions over the Teichmuller space of $S$, valued in a Frobenius algebra -- and the projection goes via integration over the moduli space. More generally, the geometric recursion aims at producing all kinds of mapping class group invariant quantities attached to surfaces. \\ \\ This is based on joint work with J.E. Andersen and N. Orantin.
Numéro de preprint arXiv
Fichiers attachés

Pour obtenir l' affiche de ce séminaire : [ Postscript | PDF ]

[ Annonces ]    [ Abonnements ]    [ Archive ]    [ Aide ]    [ ]
[ English version ]