Statut  Confirmé 
Série  MATHIHES 
Domaines  hepth 
Date  Lundi 18 Juin 2018 
Heure  16:30 
Institut  IHES 
Salle  Centre de conférences Marilyn et James Simons 
Nom de l'orateur  Loustau 
Prenom de l'orateur  Brice 
Addresse email de l'orateur  
Institution de l'orateur  Rutgers University 
Titre  BiLagrangian structures and Teichmüller theory 
Résumé  A biLagrangian structure on a manifold is the data of a symplectic form and a pair of transverse Lagrangian foliations. Equivalently, it can be defined as a paraKähler structure, i.e. the paracomplex analog of a Kähler structure. After discussing interesting features of biLagrangian structures in the real and complex settings, I will show that the complexification of any Kähler manifold has a natural complex biLagrangian structure. I will then specialize this discussion to moduli spaces of geometric structures on surfaces, which typically have a rich symplectic geometry. We will see that that some of the recognized geometric features of these moduli spaces are formal consequences of the general theory while revealing new other features, and derive a few wellknown results of Teichmüller theory. Time permitting, I will present the construction of an almost hyperKähler structure in the complexification of any Kähler manifold. This is joint work with Andy Sanders. 
Numéro de preprint arXiv  
Commentaires  Séminaire "Géométrie et groupes discrets" 
Fichiers attachés 
Pour obtenir l' affiche de ce séminaire : [ Postscript  PDF ]

[ English version ] 