Statut  Confirmé 
Série  COURS 
Domaines  hepth 
Date  Mardi 3 Décembre 2019 
Heure  11:30 
Institut  LPTENS 
Salle  LPT Library 
Nom de l'orateur  Cuomo 
Prenom de l'orateur  Gabriel Francisco 
Addresse email de l'orateur  
Institution de l'orateur  
Titre  The epsilon expansion meets semiclassics 
Résumé  In this talk I will study the scaling dimension of the lightest operator of charge $n$ in the $U(1)$ model at the WilsonFisher fixed point in $4\varepsilon$ dimensions. Even for a perturbatively small fixed point coupling $\lambda$, standard perturbation theory breaks down for sufficiently large $\lambda n$. Treating $\lambda n$ as fixed for small $\lambda $, I will show that the scaling dimension can be successfully computed through a semiclassical expansion around a nontrivial trajectory, resulting in a series in the coupling whose coefficients are fixed functions of $\lambda n$. I will discuss explicitly the computation of the first two orders in the expansion. The result, when expanded at small $\lambda n$, perfectly agrees with all available diagrammatic computations. The asymptotic at large $\lambda n$ reproduces the systematic large charge expansion, recently derived in CFT. Similar results can be derived in the $U(1)$ model in $3\varepsilon$ dimensions. I will briefly comment on the application of similar ideas in the calculation of other observables, such as threepoint functions of charged operators. 
Numéro de preprint arXiv  
Commentaires  
Fichiers attachés 
Pour obtenir l' affiche de ce séminaire : [ Postscript  PDF ]

[ English version ] 